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Abstract—Accurate and timely traffic flow information is im-
portant for the successful deployment of intelligent transportation
systems. Over the last few years, traffic data have been exploding,
and we have truly entered the era of big data for transportation.
Existing traffic flow prediction methods mainly use shallow traffic
prediction models and are still unsatisfying for many real-world
applications. This situation inspires us to rethink the traffic flow
prediction problem based on deep architecture models with big
traffic data. In this paper, a novel deep-learning-based traffic flow
prediction method is proposed, which considers the spatial and
temporal correlations inherently. A stacked autoencoder model
is used to learn generic traffic flow features, and it is trained in
a greedy layerwise fashion. To the best of our knowledge, this is
the first time that a deep architecture model is applied using au-
toencoders as building blocks to represent traffic flow features for
prediction. Moreover, experiments demonstrate that the proposed
method for traffic flow prediction has superior performance.

Index Terms—Deep learning, stacked autoencoders (SAEs),
traffic flow prediction.

I. INTRODUCTION

ACCURATE and timely traffic flow information is cur-
rently strongly needed for individual travelers, business

sectors, and government agencies [1]. It has the potential to
help road users make better travel decisions, alleviate traffic
congestion, reduce carbon emissions, and improve traffic op-
eration efficiency. The objective of traffic flow prediction is to
provide such traffic flow information. Traffic flow prediction
has gained more and more attention with the rapid development
and deployment of intelligent transportation systems (ITSs). It
is regarded as a critical element for the successful deployment
of ITS subsystems, particularly advanced traveler information
systems, advanced traffic management systems, advanced pub-
lic transportation systems, and commercial vehicle operations.
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Traffic flow prediction heavily depends on historical and
real-time traffic data collected from various sensor sources,
including inductive loops, radars, cameras, mobile Global Po-
sitioning System, crowd sourcing, social media, etc. With the
widespread traditional traffic sensors and new emerging traffic
sensor technologies, traffic data are exploding, and we have
entered the era of big data transportation. Transportation man-
agement and control is now becoming more data driven [2], [3].
Although there have been already many traffic flow prediction
systems and models, most of them use shallow traffic models
and are still somewhat unsatisfying. This inspires us to rethink
the traffic flow prediction problem based on deep architecture
models with such rich amount of traffic data.

Recently, deep learning, which is a type of machine learning
method, has drawn a lot of academic and industrial interest
[4]. It has been applied with success in classification tasks,
natural language processing, dimensionality reduction, object
detection, motion modeling, and so on [5]–[9]. Deep learning
algorithms use multiple-layer architectures or deep architec-
tures to extract inherent features in data from the lowest level
to the highest level, and they can discover huge amounts of
structure in the data. As a traffic flow process is complicated in
nature, deep learning algorithms can represent traffic features
without prior knowledge, which has good performance for
traffic flow prediction.

In this paper, we propose a deep-learning-based traffic flow
prediction method. Herein, a stacked autoencoder (SAE) model
is used to learn generic traffic flow features, and it is trained
in a layerwise greedy fashion. To the best of the authors’
knowledge, it is the first time that the SAE approach is used
to represent traffic flow features for prediction. The spatial and
temporal correlations are inherently considered in the model-
ing. In addition, it demonstrates that the proposed method for
traffic flow prediction has superior performance.

The rest of this paper is organized as follows. Section II
reviews the studies on short-term traffic flow prediction.
Section III presents the deep learning approach with autoen-
coders as building blocks for traffic flow prediction. Section IV
discusses the experimental results. Concluding remarks are
described in Section V.

II. LITERATURE REVIEW

Traffic flow prediction has been long regarded as a key
functional component in ITSs. Over the past few decades, a
number of traffic flow prediction models have been developed
to assist in traffic management and control for improving trans-
portation efficiency ranging from route guidance and vehicle
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routing to signal coordination. The evolution of traffic flow can
be considered a temporal and spatial process. The traffic flow
prediction problem can be stated as follows. Let Xt

i denote the
observed traffic flow quantity during the tth time interval at the
ith observation location in a transportation network. Given a
sequence {Xt

i} of observed traffic flow data, i = 1, 2, . . . ,m,
t = 1, 2, . . . , T , the problem is to predict the traffic flow at time
interval (t+Δ) for some prediction horizon Δ.

As early as 1970s, the autoregressive integrated moving av-
erage (ARIMA) model was used to predict short-term freeway
traffic flow [10]. Since then, an extensive variety of models
for traffic flow prediction have been proposed by researchers
from different areas, such as transportation engineering, statis-
tics, machine learning, control engineering, and economics.
Previous prediction approaches can be grouped into three cat-
egories, i.e., parametric techniques, nonparametric methods,
and simulations. Parametric models include time-series models,
Kalman filtering models, etc. Nonparametric models include
k-nearest neighbor (k-NN) methods, artificial neural networks
(ANNs), etc. Simulation approaches use traffic simulation tools
to predict traffic flow.

A widely used technique to the problem of traffic flow pre-
diction is based on time-series methods. Levin and Tsao applied
Box–Jenkins time-series analyses to predict expressway traffic
flow and found that the ARIMA (0, 1, 1) model was the most
statistically significant for all forecasting [11]. Hamed et al.
applied an ARIMA model for traffic volume prediction in
urban arterial roads [12]. Many variants of ARIMA were
proposed to improve prediction accuracy, such as Kohonen-
ARIMA (KARIMA) [13], subset ARIMA [14], ARIMA with
explanatory variables (ARIMAX) [15], vector autoregressive
moving average (ARMA) and space–time ARIMA [16], and
seasonal ARIMA (SARIMA) [17]. Except for the ARIMA-like
time-series models, other types of time-series models were also
used for traffic flow prediction [18].

Due to the stochastic and nonlinear nature of traffic flow,
researchers have paid much attention to nonparametric methods
in the traffic flow forecasting field. Davis and Nihan used the
k-NN method for short-term freeway traffic forecasting and
argued that the k-NN method performed comparably with but
not better than the linear time-series approach [19]. Chang et al.
presented a dynamic multiinterval traffic volume prediction
model based on the k-NN nonparametric regression [20].
El Faouzi developed a kernel smoother for the autoregression
function to do short-term traffic flow prediction, in which func-
tional estimation techniques were applied [21]. Sun et al. used
a local linear regression model for short-term traffic forecasting
[22]. A Bayesian network approach was proposed for traffic
flow forecasting in [23]. An online learning weighted support
vector regression (SVR) was presented in [24] for short-term
traffic flow predictions. Various ANN models were developed
for predicting traffic flow [25]–[34].

To obtain adaptive models, some works explore hybrid meth-
ods, in which they combine several techniques. Tan et al.
proposed an aggregation approach for traffic flow prediction
based on the moving average (MA), exponential smoothing
(ES), ARIMA, and neural network (NN) models. The MA, ES,
and ARIMA models were used to obtain three relevant time

series that were the basis of the NN in the aggregation stage
[35]. Zargari et al. developed different linear genetic program-
ming, multilayer perceptron, and fuzzy logic (FL) models for
estimating 5-min and 30-min traffic flow rates [36]. Cetin and
Comert combined the ARIMA model with the expectation—
maximization and cumulative sum algorithms [37]. An adaptive
hybrid fuzzy rule-based system approach was proposed for
modeling and predicting urban traffic flow [38].

In addition to the methods aforementioned, the Kalman
filtering method [39], [40], stochastic differential equations
[41], the online change-point-based model [42], the type-2
FL approach [43], the variational infinite-mixture model [44],
simulations [45], and dynamic traffic assignment [46], [47]
were also applied in predicting short-term traffic flow.

Comparison studies of traffic flow prediction models have
been reported in literature. The linear regression, the histori-
cal average, the ARIMA, and the SARIMA were assessed in
[48], in which it was concluded that these algorithms perform
reasonably well during normal operating conditions but do not
respond well to external system changes. The SARIMA models
and the nonparametric regression forecasting methods were
evaluated in [49]. It was found that the proposed heuristic fore-
cast generation methods improved the performance of nonpara-
metric regression, but they did not equal the performance of the
SARIMA models. The multivariate state-space models and
the ARIMA models were compared in [50], and it showed
that the performance of the multivariate state-space models
is better than that of the ARIMA models. Stathopoulos and
Karlaftis [50] also pointed out that different model specifi-
cations are appropriate for different time periods of the day.
Lippi et al. [51] compared SVR models and SARIMA models,
and they concluded that the proposed seasonal support vector
regressor is highly competitive when performing forecasts dur-
ing the most congested periods. Chen et al. [52] reported the
performance results for the ARMA, ARIMA, SARIMA, SVR,
Bayesian network, ANN, k-NN, Naïve I, and Naïve II models
at different aggregation time scales, which were set at 3, 5, 10,
and 15 min, respectively. A series of research is dedicated to
the comparison of NNs and other techniques such as the his-
torical average, the ARIMA models, and the SARIMA models
[53]–[55]. Interestingly, it could be found that nonparametric
techniques obviously outperform simple statistical techniques
such as the historical average and smoothing techniques, but
there are contradicting results on whether nonparametric meth-
ods can yield better or comparable results compared with the
advanced forms of statistical approaches such as the SARIMA.
Detailed reviews on the short-term traffic flow forecast can be
found in [56] and [57].

In summary, a large number of traffic flow prediction algo-
rithms have been developed due to the growing need for real-
time traffic flow information in ITSs, and they involve various
techniques in different disciplines. However, it is difficult to
say that one method is clearly superior over other methods in
any situation. One reason for this is that the proposed models
are developed with a small amount of separate specific traffic
data, and the accuracy of traffic flow prediction methods is
dependent on the traffic flow features embedded in the collected
spatiotemporal traffic data. Moreover, in general, literature
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Fig. 1. Autoencoder.

shows promising results when using NNs, which have good
prediction power and robustness.

Although the deep architecture of NNs can learn more
powerful models than shallow networks, existing NN-based
methods for traffic flow prediction usually only have one hidden
layer. It is hard to train a deep-layered hierarchical NN with
a gradient-based training algorithm. Recent advances in deep
learning have made training the deep architecture feasible since
the breakthrough of Hinton et al. [58], and these show that deep
learning models have superior or comparable performance with
state-of-the-art methods in some areas. In this paper, we explore
a deep learning approach with SAEs for traffic flow prediction.

III. METHODOLOGY

Here, a SAE model is introduced. The SAE model is a stack
of autoencoders, which is a famous deep learning model. It uses
autoencoders as building blocks to create a deep network [59].

A. Autoencoder

An autoencoder is an NN that attempts to reproduce its input,
i.e., the target output is the input of the model. Fig. 1 gives an
illustration of an autoencoder, which has one input layer, one
hidden layer, and one output layer. Given a set of training sam-
ples {x(1), x(2), x(3), . . .}, where x(i) ∈ Rd, an autoencoder
first encodes an input x(i) to a hidden representation y(x(i))
based on (1), and then it decodes representation y(x(i)) back
into a reconstruction z(x(i)) computed as in (2), as shown in

y(x) = f(W1x+ b) (1)
z(x) = g (W2y(x) + c) (2)

where W1 is a weight matrix, b is an encoding bias vector, W2 is
a decoding matrix, and c is a decoding bias vector; we consider
logistic sigmoid function 1/(1 + exp(−x)) for f(x) and g(x)
in this paper.

By minimizing reconstruction error L(X, Z), we can obtain
the model parameters, which are here denoted as θ, as

θ=argmin
θ

L(X, Z)=argmin
θ

1
2

N∑
i=1

∥∥∥x(i)−z
(
x(i)

)∥∥∥2

. (3)

One serious issue concerned with an autoencoder is that if
the size of the hidden layer is the same as or larger than the
input layer, this approach could potentially learn the identity
function. However, current practice shows that if nonlinear
autoencoders have more hidden units than the input or if other

Fig. 2. Layerwise training of SAEs.

restrictions such as sparsity constraints are imposed, this is not
a problem [60]. When sparsity constraints are added to the
objective function, an autoencoder becomes a sparse autoen-
coder, which considers the sparse representation of the hidden
layer. To achieve the sparse representation, we will minimize
the reconstruction error with a sparsity constraint as

SAO = L(X, Z) + γ

HD∑
j=1

KL(ρ‖ρ̂j) (4)

where γ is the weight of the sparsity term, HD is the number of
hidden units, ρ is a sparsity parameter and is typically a small
value close to zero, ρ̂j = (1/N)

∑N
i=1 yj(x

(i)) is the average
activation of hidden unit j over the training set, and KL(ρ‖ρ̂j)
is the Kullback–Leibler (KL) divergence, which is defined as

KL(ρ‖ρ̂j) = ρ log
ρ

ρ̂j
+ (1 − ρ) log

1 − ρ

1 − ρ̂j
.

The KL divergence has the property that KL(ρ‖ρ̂j) = 0
if ρ = ρ̂j . It provides the sparsity constraint on the coding.
The backpropagation (BP) algorithm can be used to solve this
optimization problem.

B. SAEs

A SAE model is created by stacking autoencoders to form a
deep network by taking the output of the autoencoder found
on the layer below as the input of the current layer [59].
More clearly, considering SAEs with l layers, the first layer is
trained as an autoencoder, with the training set as inputs. After
obtaining the first hidden layer, the output of the kth hidden
layer is used as the input of the (k + 1)th hidden layer. In this
way, multiple autoencoders can be stacked hierarchically. This
is illustrated in Fig. 2.

To use the SAE network for traffic flow prediction, we need
to add a standard predictor on the top layer. In this paper, we put
a logistic regression layer on top of the network for supervised
traffic flow prediction. The SAEs plus the predictor comprise
the whole deep architecture model for traffic flow prediction.
This is illustrated in Fig. 3.
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Fig. 3. Deep architecture model for traffic flow prediction. A SAE model is
used to extract traffic flow features, and a logistic regression layer is applied for
prediction.

C. Training Algorithm

It is straightforward to train the deep network by applying
the BP method with the gradient-based optimization technique.
Unfortunately, it is known that deep networks trained in this
way have bad performance. Recently, Hinton et al. have devel-
oped a greedy layerwise unsupervised learning algorithm that
can train deep networks successfully. The key point to using the
greedy layerwise unsupervised learning algorithm is to pretrain
the deep network layer by layer in a bottom–up way. After the
pretraining phase, fine-tuning using BP can be applied to tune
the model’s parameters in a top–down direction to obtain better
results at the same time. The training procedure is based on the
works in [58] and [59], which can be stated as follows.

1) Train the first layer as an autoencoder by minimizing the
objective function with the training sets as the input.

2) Train the second layer as an autoencoder taking the first
layer’s output as the input.

3) Iterate as in 2) for the desired number of layers.
4) Use the output of the last layer as the input for the

prediction layer, and initialize its parameters randomly or
by supervised training.

5) Fine-tune the parameters of all layers with the BP method
in a supervised way.

This procedure is summarized in Algorithm 1.

Algorithm 1. Training SAEs

Given training samples X and the desired number of hidden
layers l,

Step 1) Pretrain the SAE

— Set the weight of sparsity γ, sparsity parameter ρ,
initialize weight matrices and bias vectors randomly.

— Greedy layerwise training hidden layers.

— Use the output of the kth hidden layer as the
input of the (k + 1)th hidden layer. For the first
hidden layer, the input is the training set.

— Find encoding parameters {W k+1
1 , bk+1

1 }l−1

k=0

for the (k + 1)th hidden layer by minimizing the
objective function.

Step 2) Fine-tuning the whole network

— Initialize {W l+1
1 , bl+1

1 } randomly or by supervised
training.

— Use the BP method with the gradient-based opti-
mization technique to change the whole network’s
parameters in a top–down fashion.

IV. EXPERIMENTS

A. Data Description

The proposed deep architecture model was applied to the
data collected from the Caltrans Performance Measurement
System (PeMS) database as a numerical example. The traffic
data are collected every 30 s from over 15 000 individual
detectors, which are deployed statewide in freeway systems
across California [61]. The collected data are aggregated 5-min
interval each for each detector station. In this paper, the traffic
flow data collected in the weekdays of the first three months
of the year 2013 were used for the experiments. The data of
the first two months were selected as the training set, and the
remaining one month’s data were selected as the testing set.
For freeways with multiple detectors, the traffic data collected
by different detectors are aggregated to get the average traffic
flow of this freeway. Note that we separately treat two directions
of the same freeway among all the freeways, in which three are
one-way. Fig. 4 is a plot of a typical freeway’s traffic flow over
time for weekdays of some week.

B. Index of Performance

To evaluate the effectiveness of the proposed model, we use
three performance indexes, which are the mean absolute error
(MAE), the mean relative error (MRE), and the RMS error
(RMSE). They are defined as

MAE =
1
n

n∑
i=1

|fi − f̂i|

MRE =
1
n

n∑
i=1

|fi − f̂i|
fi

RMSE =

[
1
n

n∑
i=1

(
|fi − f̂i|

)2
] 1

2

where fi is the observed traffic flow, and f̂i is the predicted
traffic flow.
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Fig. 4. Typical daily traffic flow pattern. (a) Monday. (b) Tuesday. (c) Wednesday. (d) Thursday. (e) Friday.

C. Determination of the Structure of a SAE Model

With regard to the structure of a SAE network, we need to
determine the size of the input layer, the number of hidden
layers, and the number of hidden units in each hidden layer.
For the input layer, we use the data collected from all freeways
as the input; thus, the model can be built from the perspective of
a transportation network considering the spatial correlations of
traffic flow. Furthermore, considering the temporal relationship
of traffic flow, to predict the traffic flow at time interval t, we
should use the traffic flow data at previous time intervals, i.e.,
Xt−1, Xt−2, . . . , Xt−r. Therefore, the proposed model accounts
for the spatial and temporal correlations of traffic flow inherently.
The dimension of the input space is mr, whereas the dimension
of the output is m, where m is the number of freeways.

In this paper, we used the proposed model to predict 15-min
traffic flow, 30-min traffic flow, 45-min traffic flow, and 60-min
traffic flow. We choose r from 1 to 12, the hidden layer size
from 1 to 6, and the number of hidden units from {100, 200,
300, 400, 500, 600, 700, 800, 900, 1000}. After performing
grid search runs, we obtained the best architecture for different
prediction tasks, which is shown in Table I. For the 15-min
traffic flow prediction, our best architecture consists of three
hidden layers, and the number of hidden units in each hidden
layer is [400, 400, 400], respectively. For the 30-min traffic
flow prediction, our best architecture consists of three hidden
layers, and the number of hidden units in each hidden layer
is [200, 200, 200], respectively. For the 45-min traffic flow
prediction, our best architecture consists of two hidden layers,
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TABLE I
STRUCTURE OF SAES FOR TRAFFIC FLOW PREDICTION

Fig. 5. Traffic flow prediction of roads with different traffic volume. (a) Road
with heavy traffic flow. (b) Road with medium traffic flow. (c) Road with low
traffic flow.

and the number of hidden units in each hidden layer is [500,
500], respectively. For the 60-min traffic flow prediction, our
best architecture consists of four hidden layers, and the number
of hidden units in each hidden layer is [300, 300, 300, 300],
respectively. From the results, we can see that the best number
of hidden layers is at least two and no more than five for our
experiments. Lessons learned from experience indicate that the
number of hidden layers of an NN should be neither too small
nor too large. Our results confirmed these lessons.

D. Results

Fig. 5 presents the output of the proposed model for the
traffic flow prediction of typical roads with heavy, medium,
and low traffic loads. The observed traffic flow is also included
in Fig. 5 for comparison. In Fig. 5, it is shown that the pre-
dicted traffic flow has similar traffic patterns with the observed
traffic flow. In addition, it matches well in heavy and medium
traffic flow conditions. However, the proposed model does not

perform well in low traffic flow conditions, which is the same
as existing traffic flow prediction methods. The reason for this
phenomenon is that small differences between the observed
flow and the predicted flow can cause a bigger relative error
when the traffic flow rate is small. In fact, we are more focused
on the traffic flow prediction results under heavy and medium
traffic flow conditions; hence, the proposed method is effective
and promising for traffic flow prediction in practice.

We compared the performance of the proposed SAE model
with the BP NN, the random walk (RW) forecast method,
the support vector machine (SVM) method, and the radial
basis function (RBF) NN model. Among these four competing
methods, the RW method is a simple baseline that predicts
traffic in the future as equal to the current traffic flow (Xt+1 =
Xt), the NN methods have good performance for the traffic
flow forecast, as aforementioned in Section II, and the SVM
method is a relatively advanced model for prediction. In all
cases, we used the same data set. The prediction results on the
test data sets for freeways with the average 15-min traffic flow
rate larger than 450 vehicles are given in Table II. In Table II,
we can see that the average accuracy (1-MRE) of the SAE is
over 93% for all the four tasks and has low MAE values. This
prediction accuracy is promising, robust, and comparable with
the reported results. Notice that we only use the traffic volume
data as the input for prediction without considering hand-
engineering factors, such as weather conditions, accidents, and
other traffic flow parameters (density and speed), that have a
relationship with the traffic volume.

In Table II, we can also find that the SAE proved to be
more accurate than the BP NN model, the RW, the SVM, and
the RBF NN model for the short-term prediction of the traffic
volume. For the BP NN, the prediction performance is relatively
stationary, which is from 88% to 90% or so. For the RW,
the SVM, and the RBF, the average prediction accuracy drops
much with the aggregate time interval of the traffic flow data
increasing. For the 15-min traffic flow prediction, the average
accuracy of the RW, the SVM, and the RBF is 7.8%, 8.0%,
and 7.4%, respectively. However, for the 60-min traffic flow
prediction, the average accuracy of the RW, the SVM, and the
RBF has a large drop to 22.3%, 22.1%, and 26.4%, respectively.
The maximum average prediction accuracy improvement of
the SAE is up to 4.8% compared with the BP NN, over 16%
compared with the RW, over 15% compared with the SVM, and
over 20% compared with the RBF.

A visual display of the performance of the MRE derived with
the SAE, the BP NN model, the RW, the SVM, and the RBF NN
model is given in Fig. 6. It displays for each method the cumula-
tive distribution function (cdf) of the MRE, which describes the
statistical results on freeways with the average 15-min traffic
flow larger than 450 vehicles. The method that uses SAEs
leads to improved traffic flow prediction performance when
compared with the BP NN, the RW, the SVM, and the RBF
NN model. For the 15-min traffic flow prediction, over 86% of
freeways with the average 15-min traffic flow larger than 450
vehicles have an accuracy of more than 90%. For the 30-min
traffic flow prediction, over 88% of freeways with the average
15-min traffic flow larger than 450 vehicles have an accuracy of
more than 90%. For the 45-min traffic flow prediction and for
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TABLE II
PERFORMANCE COMPARISON OF THE MAE, THE MRE, AND THE RMSE FOR SAES, THE BP NN, THE RW, THE SVM, AND THE RBF NN

Fig. 6. Empirical cdf of the MRE for freeways with the average 15-min traffic flow larger than 450 vehicles. (a) 15-min traffic flow prediction. (b) 30-min traffic
flow prediction. (c) 45-min traffic flow prediction. (d) 60-min traffic flow prediction.

the 60-min traffic flow prediction, over 90% of freeways with
the average 15-min traffic flow larger than 450 vehicles have an
accuracy of more than 90%. Thus, the effectiveness of the SAE
method for traffic flow prediction is promising and manifested.

V. CONCLUSION

We propose a deep learning approach with a SAE model
for traffic flow prediction. Unlike the previous methods that
only consider the shallow structure of traffic data, the proposed

method can successfully discover the latent traffic flow feature
representation, such as the nonlinear spatial and temporal cor-
relations from the traffic data. We applied the greedy layerwise
unsupervised learning algorithm to pretrain the deep network,
and then, we did the fine-tuning process to update the model’s
parameters to improve the prediction performance. We evalu-
ated the performance of the proposed method on a PeMS data
set and compared it with the BP NN, the RW, the SVM, and the
RBF NN model, and the results show that the proposed method
is superior to the competing methods.
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For future work, it would be interesting to investigate other
deep learning algorithms for traffic flow prediction and to apply
these algorithms on different public open traffic data sets to
examine their effectiveness. Furthermore, the prediction layer
in our paper has been just a logistic regression. Extending it
to more powerful predictors may make further performance
improvement.
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