
22 IEEE Network • May/June 20160890-8044/16/$25.00 © 2016 IEEE

Mobile devices have matured as a reliable and cheap
platform for collecting data in pervasive and ubiq-

uitous sensing systems. Specifically, mobile devices are:
•	Sold in mass market chains
•	Connected to daily human activities
•	Supported with embedded communication and sensing modules
According to the latest traffic forecast report by Cisco Sys-
tems [1], half a billion mobile devices were globally sold in
2015, and the mobile data traffic grew by 74 percent generat-
ing 3.7 exabytes (1 exabyte = 1018 bytes) of mobile data per
month. Mobile big data (MBD) is a concept that describes
a massive amount of mobile data that cannot be processed
using a single machine. MBD contains useful information for
solving many problems such as fraud detection, marketing and
targeted advertising, context-aware computing, and health-
care. Therefore, MBD analytics is currently a high-focus topic
aimed at extracting meaningful information and patterns from
raw mobile data.

Deep learning is a solid tool in MBD analytics. Specifically,
deep learning:
•	Provides highly accurate results in MBD analytics
•	Avoids the expensive design of handcrafted features
•	Utilizes the massive unlabeled mobile data for unsupervised

feature extraction
Due to the curse of dimensionality and size of MBD, learning
deep models in MBD analytics is slow and takes anywhere
from a few hours to several days when performed on conven-
tional computing systems. Conversely, most mobile systems are
not delay-tolerant, and decisions should be made as quickly as
possible to attain high user satisfaction.

To cope with the increased demand on scalable and adaptive
mobile systems, this article presents a tutorial on developing a
framework that enables time-efficient MBD analytics using deep
models with millions of modeling parameters. Our framework is
built over Apache Spark [2], which provides an open source
cluster computing platform. This enables distributed learning
using many computing cores on a cluster where continuously
accessed data is cached to running memory, thus speeding up
the learning of deep models several-fold. To prove the viability
of the proposed framework, we implement a context-aware
activity recognition system [3] on a computing cluster and train
deep learning models using millions of data samples collect-
ed by mobile crowdsensing. In this test case, a client request
includes accelerometer signals, and the server is programmed
to extract the underlying human activity using deep activity
recognition models. We show significant accuracy improvement
of deep learning over conventional machine learning methods,
improving 9 percent over random forests and 17.8 percent over
multilayer perceptions from [4]. Moreover, the learning time of
deep models is decreased as a result of the paralleled Spark-
based implementation compared to a single-machine computa-
tion. For example, utilizing 6 Spark workers can speed up the
learning of a 5-layer deep model of 20 million parameters 4-fold
as compared to a single machine computing.

The rest of this article is organized as follows. We present
an overview of MBD and discuss the challenges of MBD ana-
lytics. Next, we discuss the advantages and challenges of deep
learning in MBD analytics. Then we propose a Spark-based
framework for learning deep models for time-efficient MBD
analytics within large-scale mobile systems. We present experi-
mental analysis using a real-world dataset. Important research
directions are discussed. Finally, we conclude the article.

Mobile Big Data: Concepts and Features
This section first introduces an overview of MBD and then
discusses the key characteristics that make MBD analytics
challenging.

Abstract
The proliferation of mobile devices, such as smartphones and Internet of Things
gadgets, has resulted in the recent mobile big data era. Collecting mobile big data
is unprofitable unless suitable analytics and learning methods are utilized to extract
meaningful information and hidden patterns from data. This article presents an over-
view and brief tutorial on deep learning in mobile big data analytics and discusses
a scalable learning framework over Apache Spark. Specifically, distributed deep
learning is executed as an iterative MapReduce computing on many Spark workers.
Each Spark worker learns a partial deep model on a partition of the overall mobile,
and a master deep model is then built by averaging the parameters of all partial
models. This Spark-based framework speeds up the learning of deep models con-
sisting of many hidden layers and millions of parameters. We use a context-aware
activity recognition application with a real-world dataset containing millions of sam-
ples to validate our framework and assess its speedup effectiveness.

Mobile Big Data Analytics
Using Deep Learning and Apache Spark

Mohammad Abu Alsheikh, Dusit Niyato, Shaowei Lin, Hwee-Pink Tan, and Zhu Han

M. Abu Alsheikh is with Nanyang Technological University and the Insti-
tute for Infocomm Research.

Dusit Niyato is with Nanyang Technological University.

Shaowei Lin is with the Singapore University of Technology and Design.

Hwee-Pink Tan is with Singapore Management University.

Zhu Han is with the University of Houston.

IEEE Network • May/June 2016 23

The Era of MBD
Figure 1a shows a typical architecture of large-scale mobile
systems used to connect various types of portable devices such
as smartphones, wearable computers, and Internet of Things
(IoT) gadgets. The widespread installation of various types
of sensors, such as accelerometers, gyroscopes, compasses,
and GPS sensors, in modern mobile devices allows many new
applications. Essentially, each mobile device encapsulates its
service request and own sensory data in a stateless data-in-
terchange structure like Javascript object notation (JSON)
format. The stateless format is important as mobile devices
operate on different mobile operating systems (e.g., Android,
iOS, and Tizen). Based on the collected MBD, a service serv-
er utilizes MBD analytics to discover hidden patterns and
information. The importance of MBD analytics stems from
its role in building complex mobile systems that could not be
assembled and confi gured on small datasets. For example, an
activity recognition application [3, 5] uses embedded accel-
erometers of mobile devices to collect proper acceleration
data about daily human activities. After receiving a request,
the service server maps the accelerometer data to the most
probable human activities, which are used to support many
interactive services (e.g., healthcare, smart building, and per-
vasive games).

MBD analytics is more versatile than conventional big
data problems as data sources are portable and data traffi c is
crowdsourced. MBD analytics deals with massive amounts of
data collected by millions of mobile devices. Next, we discuss
the main characteristics of MBD that complicate data analytics
and learning on MBD compared to small datasets.

Challenges of MBD Analytics
Figure 1b shows the main recent technologies that have pro-
duced the challenging MBD era: large-scale and high-speed
mobile networks, portability, and crowdsourcing. Each tech-
nology contributes to forming the MBD characteristics in the
following ways.

Large-scale and high-speed mobile networks: The growth
of mobile devices and high-speed mobile networks (e.g., WiFi
and cellular networks) introduces massive and increasingly
contentious mobile data traffi c. This is refl ected in the follow-
ing MBD aspects:
• MBD is massive (volume): In 2015, 3.7 exabytes of mobile

data was generated per month, which is expected to increase
through the coming years [1].

• MBD is generated at increasing rates (velocity): MBD flows
at a high rate, which impacts the latency in serving mobile
users. Long queuing time of requests results in less satisfi ed
users and increased cost of late decisions.
Portability: Each mobile device is free to move inde-

pendently among many locations. Therefore, MBD is non-sta-
tionary (volatility). Due to portability, the time duration in
which the collected data is valid for decision making can be
relatively short. MBD analytics should be frequently executed
to cope with the newly collected data samples.

Crowdsourcing: A remarkable trend of mobile applications
is crowdsourcing for pervasive sensing, which includes massive
data collection from many participating users. Crowdsensing
differs from conventional mobile sensing systems as the sens-
ing devices are not owned by one institution but instead by
many individuals from different places. This has introduced
the following MBD challenges:
• MBD quality is not guaranteed (veracity): This aspect is critical

for assessing the quality uncertainty of MBD as mobile sys-
tems do not directly manage the sensing process of mobile
devices. Since most mobile data is crowdsourced, MBD can
contain low-quality and missing data samples due to noise,
malfunctioning or uncalibrated sensors of mobile devices,
and even intruders (e.g., badly labeled crowdsourced data).
These low-quality data points affect the analytical accuracy
of MBD.

• MBD is heterogeneous (variety): The variety of MBD arises
because the data traffi c comes from many spatially distrib-
uted data sources (i.e., mobile devices). Also, MBD comes
in different data types due to the many sensors that mobile
devices support. For example, a triaxial accelerometer gen-
erates proper acceleration measurements, while a light sen-
sor generates illumination values.
MBD analytics (value) is mainly about extracting knowledge

and patterns from MBD. In this way, MBD can be utilized to
provide better services to mobile users and create revenue for
mobile businesses. The next section discusses deep learning as
a solid tool in MBD analytics.

Deep Learning in MBD Analytics
Deep learning is a new branch of machine learning that can
solve a broad set of complex problems in MBD analytics (e.g.,
classifi cation and regression). A deep learning model consists of
simulated neurons and synapses that can be trained to learn
hierarchical features from existing MBD samples. The result-

Figure 1. Illustration of the MBD era: a) typical architecture of a modern mobile network connecting smartphones, wearable
computers, and IoT gadgets; b) main technological advances behind the MBD era.

Service server

Base station

Cellular network

WiFi network

(802.11 wireless network)(802.11 wireless network)

(a) (b)

Internet backbone

(802.11 wireless network)

Router

DSL modem
SGSN

GGSN

GGSN: Gateway general packet radio service (GPRS) support node
SGSN: Serving GPRS support node

Gateway

Mobile sensor network

Portability
Time-varying data patterns

Large-scale and
high-speed networks

2.5 exabytes from
7.4 billion mobile devices [1]

Crowdsensing
Distributed data sensing

Mobile big
data (MBD)

Volatility Veracity

Variety

MBD analytics
(value)

IEEE Network • May/June 201624

ing deep model can generalize and process unseen streaming
MBD samples.

For simplicity, we present a general discussion of deep
learning methods without focusing on the derivations of par-
ticular techniques. Nonetheless, we refer interested readers to
more technical papers of deep belief networks [6] and stacked
denoising autoencoders [7]. A deep model can be scaled to
contain many hidden layers and millions of parameters, which
are difficult to train at once. Instead, greedy layer-by-layer
learning algorithms [6, 7] have been proposed that basically
work as follows.

Generative layer-wise pre-training: This stage requires only
unlabeled data, which is often abundant and cheap to collect
in mobile systems using crowdsourcing. Figure 2 shows the
layer-wise tuning of a deep model. First, one layer of neurons
is trained using the unlabeled data samples. To learn the input
data structure, each layer includes encoding and decoding
functions. The encoding function uses the input data and the
layer parameters to generate a set of new features. Then the
decoding function uses the features and the layer parameters
to produce a reconstruction of the input data. As a result, a
first set of features is generated at the output of the first layer.
Then a second layer of neurons is added on top of the first
layer, where the output of the first layer is fed as input of the
second layer. This process is repeated by adding more layers
until a suitable deep model is formed. Accordingly, more com-
plex features are learned at each layer based on the features
that were generated at its lower layer.

Discriminative fine-tuning: The model’s parameters, which
are initialized in the first step, are then slightly fine-tuned
using the available set of labeled data to solve the problem at
hand.

Deep Learning Advantages in MBD Analytics
Deep learning provides solid learning models for MBD analyt-
ics. This argument can be supported with the following advan-
tages of using deep learning in MBD analytics.

Deep learning scores highly accurate results, which are
a top priority for growing mobile systems. Highly accurate
results of MBD analytics are required for sustainable business
and effective decisions. For example, poor fraud detection
results in expensive loss of income for mobile systems. Deep

learning models have been reported as state-of-the-art meth-
ods to solve many MBD tasks. For example, the authors in [8]
propose a method for indoor localization using deep learning
and channel state information. In [9], deep learning is success-
fully applied to inference tasks in mobile sensing (e.g., activity
and emotion recognition, and speaker identification).

Deep learning generates intrinsic features that are
required in MBD analytics. A feature is a measurement attri-
bute extracted from sensory data to capture the underlying
phenomena being observed and enable more effective MBD
analytics. Deep learning can automatically learn high-level
features from MBD, eliminating the need for the handcrafted
features in conventional machine learning methods.

Deep learning can learn from unlabeled mobile data, which
minimizes the data labeling effort. In most mobile systems,
labeled data is limited, as manual data annotation requires
expensive human intervention, which is both costly and time
consuming. On the other hand, unlabeled data samples are
abundant and cheap to collect. Deep learning models utilize
unlabeled data samples for generative data exploration during
a pre-training stage. This minimizes the need for labeled data
during MBD analytics.

Multimodal deep learning. The “variety” aspect of MBD
leads to multiple data modalities of multiple sensors (e.g.,
accelerometer samples, audio, and images). Multimodal deep
learning [10] can learn from multiple modalities and heteroge-
neous input signals.

Deep Learning Challenges in MBD Analytics
Discussing MBD in terms of volume only and beyond the ana-
lytical and profit perspectives is incomplete and restricted.
Collecting MBD is unprofitable unless suitable learning meth-
ods and analytics are utilized to extract meaningful informa-
tion and patterns. Deep learning in MBD analytics is slow and
can take a few days of processing time, which does not meet
the operation requirements of most modern mobile systems.
This is due to the following challenges.

The curse of dimensionality: MBD comes with volume and
velocity related challenges. Historically, data analytics on small
amounts of collected data (a.k.a. random sampling) was uti-
lized. Despite the low computational burden of random sam-
pling, it suffers from poor performance on unseen streaming

Figure 2. Generative layer-wise training of a deep model. Each layer applies nonlinear transformation to its input vector and
produces intrinsic features at its output.

Mobile data input (unlabeled data)

Feature represenetation

High-level features

EncodingDecoding

EncodingDecoding

Fixed

EncodingDecoding

Fixed

Fixed

In
cr

ea
si

ng
ly

 c
om

pl
ex

 f
ea

tu
re

s

Copy Copy

Copy

A neuron

(1) First-layer training (2) Second-layer training (3) Third-layer training

IEEE Network • May/June 2016 25

samples. This performance problem is typically avoided by
using the full set of available big data samples, which signifi-
cantly increases the computational burdens.

Large-scale deep models: To fully capture the information
on MBD and avoid underfitting, deep learning models should
contain millions of free parameters; for example, a 5-layer
deep model with 2000 neurons per layer contains around 20
million parameters. Models’ free parameters are optimized
using gradient-based learning [6, 7], which is computationally
expensive for large-scale deep models.

Time-varying deep models: In mobile systems, the contin-
uous adaptation of deep models over time is required due to
the volatility characteristic of MBD.
To tackle these challenges, we next describe a scalable frame-
work for MBD analytics using deep learning models and
Apache Spark.

A Spark-Based Deep Learning Framework for
MBD Analytics
Learning deep models in MBD analytics is slow and computa-
tionally demanding. Typically, this is due to the large number
of parameters of deep models and the large number of MBD
samples. Figure 3 shows the proposed architecture for learning
deep models on MBD with Apache Spark. Apache Spark [2]
is an open source platform for scalable MapReduce comput-
ing on clusters. The main goal of the proposed framework is
speeding up MBD decision making by parallelizing the learn-
ing of deep models to a high-performance computing cluster.
In short, the parallelization of a deep model is performed
by slicing the MBD into many partitions. Each partition is
contained in a resilient distributed dataset (RDD) that pro-
vides an abstraction for data distribution by the Spark engine.
Besides data caching, RDDs of a Spark program natively sup-
port fault-tolerant executions and recover the program opera-
tions at worker nodes.

In short, our Spark-based framework consists of two main
components:
•	A Spark master
•	One or more Spark workers
The master machine initializes an instance of the Spark driver
that manages the execution of many partial models in a group

of Spark workers. At each iteration of the deep learning algo-
rithm (Fig. 2), each worker node learns a partial deep model
on a small partition of the MBD and sends the computed
parameters back to the master node. Then, the master node
reconstructs a master deep model by averaging the computed
partial models of all executor nodes.

Parallelized Learning Collections
Learning deep models can be performed in two main steps:
•	Gradient computation
•	Parameter update [6, 7] (for the mathematical derivation)
In the first step, the learning algorithm iterates through all
data batches independently to compute gradient updates (i.e.,
the rate of change) of the model’s parameters. In the second
step, the model’s parameters are updated by averaging the
computed gradient updates on all data batches. These two
steps fit the learning of deep models in the MapReduce pro-
gramming model [11, 12]. In particular, the parallel gradient
computation is realized as a Map procedure, while the param-
eter update step reflects the Reduce procedure. The iterative
MapReduce computing of deep learning on Apache Spark is
performed as follows.

MBD partitioning: The overall MBD is first split into many
partitions using the parallelize() application programming
interface (API) of Spark. The resulting MBD partitions are
stored into RDDs and distributed to the worker nodes. These
RDDs are crucial to speed up the learning of deep models as
the memory data access latency is significantly shorter than the
disk data operations.

Deep learning parallelism: The solution of a deep learning
problem depends on the solution of smaller instances of the
same learning problem with smaller datasets. In particular, the
deep learning job is divided into learning stages. Each learning
stage contains a set of independent MapReduce iterations
where the solution of one iteration is the input for the next
iteration. During each MapReduce iteration, a partial model
is trained on a separate partition of the available MBD as
follows:
•	Learning partial models: Each worker node computes the

gradient updates of its partitions of the MBD (a.k.a. the
Map procedure). During this step, all Spark workers execute
the same Map task in parallel but on different partitions of

Figure 3. A Spark-based framework for distributed deep learning in MBD analytics.

Service server

Partial
model

Partial
model

Partial
model

One Spark master

Cluster in the cloud

Cluster manager
(resource scheduler)

Assign computing
resources

Partial
models

Many Spark workers

MBD
partition . . .

Task

TaskTask

Task Task Tasks

Task

Serve requests based
on the learned model

Convergence Convergence

Initialize
parameters

Learning a partial
model

Read worker’s
RDDs

Compute
gradients

Update
parameters

Partial model

Task

Task

Spark
driver

MBD
partitioning

Learning partial
models

Parameter
averaging

Parameter
dissemination

Deep model

RDD RDD RDD RDD

RDD

Deep learning job

(number of workers,

data, and code)

Secure connection

Request

Req
uest

Request

Deep learning

model

IEEE Network • May/June 201626

the MBD. In this way, the expensive gradient computation
task of the deep model learning is divided into many paral-
lel sub-tasks.

•	Parameter averaging: Parameters of the partial models are
sent to the master machine to build a master deep model
by averaging the parameter calculation of all Spark workers
(a.k.a. the Reduce procedure).

•	Parameter dissemination: The resulting master model after
the Reduce procedure is disseminated to all worker nodes.
A new MapReduce iteration is then started based on the
updated parameters. This process is continued until the
learning convergence criterion is satisfied.

As a result, a well-tuned deep learning model is generated that
can be used to infer information and patterns from streaming
requests. In the following, we discuss how the proposed frame-
work helps tackle the key characteristics of MBD.

Discussion
The proposed framework is grounded over deep learning and
Apache Spark technologies to perform effective MBD analyt-
ics. This integration tackles the challenging characteristics of
MBD as follows.

Deep learning: Deep learning addresses the value and vari-
ety aspects of MBD. First, deep learning in MBD analytics
helps in understanding raw MBD. Therefore, deep learning
effectively addresses the value aspect of MBD. MBD analytics,
as discussed in this article, is integral in providing user-custom-
ized mobile services. Second, deep learning enables learning
from multimodal data distributions [10] (e.g., concatenated
input from accelerometer and light sensors), which is import-
ant for the variety issue of MBD.

Apache Spark: The main role of the Spark platform in the
proposed framework is tackling the volume, velocity, and vol-
atility aspects of MBD. Essentially, the Spark engine tackles
the volume aspect by parallelizing the learning task into many
sub-tasks, each performed on a small partition of the overall
MBD. Therefore, no single machine is required to process
the massive MBD volume as one chunk. Similarly, the Spark
engine tackles the velocity point through its streaming exten-
sions, which enable fast and high-throughput processing of
streaming data. Finally, the volatility aspect is addressed by
significantly speeding up the training of deep models. This
ensures that the learned model reflects the latest dynamics of
the mobile system.

The proposed framework does not directly tackle the veraci-
ty aspect of MBD. This quality aspect requires domain experts
to design conditional routines to check the validity of crowd-
sourced data before being added to central MBD storage.

Prototyping a Context-Aware Activity
Recognition System
Context awareness [3, 5] has high impact on understanding
MBD by describing the circumstances in which the data was
collected to provide personalized mobile experience to end
users (e.g., targeted advertising, healthcare, and social ser-
vices). A context contains attributes of information to describe
the sensed environment such as performed human activities,
surrounding objects, and locations. A context learning model is
a program that defines the rules of mapping between raw sen-
sory data and the corresponding context labels (e.g., mapping
accelerometer signals to activity labels). This section describes
a proof-of-concept case study in which we consider a con-
text-aware activity recognition system, such as detecting walk-
ing, jogging, climbing stairs, sitting, standing, and lying down.
We use a real-world dataset during the training of deep activi-
ty recognition models.

Problem Statement
Accelerometers are sensors that measure proper acceleration
of an object due to motion and gravitational force. Modern
mobile devices are widely equipped with tiny accelerometer
circuits, which are produced from electromechanically sensi-
tive elements and generate electrical signals in response to any
mechanical motion. The proper acceleration is distinctive from
coordinate acceleration in classical mechanics. The latter mea-
sures the rate of change of velocity, while the former measures
acceleration relative to a free fall; that is, the proper accelera-
tion of an object in a free fall is zero.

Consider a mobile device with an embedded accelerometer
sensor that generates proper acceleration samples. Activity
recognition is applied to time series data frames formulat-
ed using a sliding and overlapping window. The number of
time-series samples depends on the accelerometer’s sampling
frequency (in Hertz) and windowing length (in seconds). At
time t, the activity recognition classifier f : xt → S matches the
framed acceleration data xt with the most probable activity
label from the set of supported activity labels S = {1, 2, …,
N}, where N is the number of supported activities in the activ-
ity detection component.

Conventional approaches to recognizing activities require
handcrafted features (e.g., statistical features) [3], which are
expensive to design, require domain expert knowledge, and
generalize poorly to support more activities. To avoid this, a
deep activity recognition model learns not only the mapping
between raw acceleration data and the corresponding activity
label, but also a set of meaningful features that are superior to
handcrafted features.

Experimental Setup
In this section, we use the Actitracker dataset [13], which includes
accelerometer samples of 6 conventional activities (walking, jog-
ging, climbing stairs, sitting, standing, and lying down) from 563
crowdsourcing users. Figure 4a plots accelerometer signals of the
six different activities. Clearly, high-frequency signals are sampled
for activities with active body motion (e.g., walking, jogging, and
climbing stairs). On the other hand, low-frequency signals are
collected during semi-static body motions (e.g., standing, sitting,
and lying down). The data is collected using mobile phones with
20 Hz sampling rate, and it contains both labeled and unlabeled
data of 2,980,765 and 38,209,772 samples, respectively. This is a
real-world example of the limited number of labeled data com-
pared to unlabeled data as data labeling requires manual human
intervention. The data is framed using a 10 s windowing function
that generates 200 samples of time-series samples. We first pre-
train deep models on the unlabeled data samples only, and then
fine-tune the models on the labeled dataset. To enhance the
activity recognition performance, we use the spectrogram of the
acceleration signal as input of the deep models. Basically, differ-
ent activities contain different frequency contents that reflect the
body dynamics and movements.

We implemented the proposed framework on a shared
cluster system (https://www.acrc.a-star.edu.sg) running the
load sharing facility (LSF) management platform and RedHat
Linux. Each node has 8 cores (Intel Xeon 5570 CPU with clock
speed of 2.93 Ghz) and a total of 24 GB RAM. In our experi-
ments, we set the cores in multiples of 8 to allocate the entire
node’s resources. One partial model learning task is initialized
for each computing core. Each task learns using a data batch
consisting of 100 samples for 100 iterations. Clearly, increasing
the number of cores results in quicker training of deep models.
Finally, it is important to note that distributed deep learning
is a strong type of regularization. Thus, regularization tech-
niques, such as the sparsity and dropout constraints, are not
recommended to avoid the problem of underfitting.

IEEE Network • May/June 2016 27

Experimental Results
The Impact of Deep Models: Figure 4b shows the activity rec-
ognition error under different setups of deep models (num-
ber of hidden layers and number of neurons at each layer).
Specifically, the capacity of a deep model to capture MBD
structures is increased when using deeper models with more
layers and neurons. Nonetheless, using deeper models involves
a significant increase in the learning algorithm’s computational
burdens and time. An accuracy comparison of deep activity
recognition models and other conventional methods is shown
in Table 1. In short, these results clarify that:

•	Deep models are superior to existing shallow context learn-
ing models.

•	The learned hierarchical features of deep models eliminate
the need for handcrafted statistical features in conventional
methods.
In our implementation, we use early stopping to track the

model capacity during training, select the best parameters of
deep models, and avoid overfitting. Underfitting is typically
avoided by using deeper models and more neurons per layer
(e.g., 5 layers with 2000 neurons per layer). Next, a speedup
analysis is presented to show the importance of the Spark-
based framework for learning deep models on MBD.

The Impact of Computing Cores: The main performance metric
of cluster-based computing is the task speedup metric. In par-
ticular, we compute the speedup efficiency as T8/TM, where T8
is the computing time of one machine with 8 cores, and TM is
the computing time under different computing power. Figure 4c
shows the speedup in learning deep models when the number of
computing cores is varied. As the number of cores increases, the
learning time decreases. For example, learning a deep model
of 5 layers with 2000 neurons per layer can be trained in 3.63 h
with 6 Spark workers. This results in speedup efficiency of 4.1
as compared to single-machine computing, which takes 14.91 h.

MBD Veracity: A normalized confusion matrix of a deep model
is shown in Fig. 5. This confusion matrix shows the high per-
formance of deep models on a per-activity basis (high scores at
the diagonal entries). The incorrect detection of the “sitting”
activity instead of the “lying down” activity is typically due to
the different procedures in performing the activities by crowd-
sourcing users. This gives a real-world example of the veracity
characteristic of MBD (i.e., uncertainties in MBD collection).

In the next section, we identify some notable future research
directions in MBD collection, labeling, and economics.

Future Work
Based on the proposed framework, the following future work
can be further pursued.

Crowd Labeling of MBD
A major challenge facing MBD analysts is the limited amounts
of labeled data samples as data labeling is typically a manual
process. An important research direction is proposing crowd
labeling methods for MBD. Crowd labeling can be designed
under two main schemes:
•	Paid crowd labeling
•	Embedded crowd labeling
In paid crowd labeling, the crowdsourcing mobile users anno-
tate mobile data and are accordingly paid based on their label-
ing performance and speed. Under this paid scheme, optimal
budget allocation methods are required. In embedded crowd
labeling, data labeling can also be achieved by adding label-

Figure 4. Experimental analysis: a) accelerometer signal of
different human activities; b) recognition accuracy of deep
learning models under different deep model setups;
c) speedup of learning deep models using the Spark-based
framework under different computing cores. The upper
speedup limit is achieved under full CPU utilization and
zero communication overhead.

0 10

(a)

(b)

(c)

20 30 40 50 60
Time slots (t)

−20

−10

0

10

20
A

cc
el

er
om

et
er

’s
 3

-a
xi

al
 s

ig
na

ls

x-acceleration y-acceleration z-acceleration

1 2 3 4 5
Number of model's layers

13

14

15

16

17

18

19

Re
co

gn
it

io
n

er
ro

r
(%

)

500 neurons per layer
1000 neurons per layer

1500 neurons per layer
2000 neurons per layer

8 16 24 32 48 64
Number of computing cores

0

1

2

3

4

5

6

7

8

Sp
ee

du
p

ef
fic

ie
nc

y

Upper speedup limit

Jogging t [10;20)

Standing t [40;50)

Lying down t [50;60)

Climbing stairs t [20;30)

Walking t [0;10)

Sitting t [10;20)

5 layers of 1000 neurons each (T8 = 5.56 hours)
5 layers of 2000 neurons each (T8 = 14.91 hours)

Table 1. Activity recognition error of deep learning and other
conventional methods used in [4]. The conventional meth-
ods use handcrafted statistical features.

Method
Recognition
error (%)

Multilayer perceptrons 32.2

Instance-based learning 31.6

Random forests 24.1

Deep learning (5 layers of 2000 neurons each) 14.4

IEEE Network • May/June 201628

ing tasks within mobile application functional routines (e.g.,
CAPTCHA-based image labeling) [14]. Here, the mobile users
can access more functions of a mobile application by indirectly
helping in the data labeling process. More work is required on
designing innovative methods for embedded crowd labeling
without disturbing the user experience or harming the mobile
application’s main functionality.

Economics of MBD
MBD, as discussed in this article, is about extracting meaning-
ful information and patterns from raw mobile data. This infor-
mation is used during decision making and to enhance existing
mobile services. An important research direction is proposing
business models (e.g., pricing and auction design [15]) for sell-
ing and buying MBD among mobile organizations and parties.

Privacy and MBD Collection
As MBD is people-centric, mobile users would be concerned
about the risks of sharing their personal mobile data with a
service server. Thus, a low percentage of users will opt out of
sharing their personal data unless trustworthy privacy mech-
anisms are applied. Meanwhile, anonymized data collection
(i.e., data that could not be used to identify individuals) is
adopted by many services. An alternative research direction
is proposing fair data exchange models that encourage the
sharing of mobile data in return for rewarding points (e.g.,
premium membership points).

Conclusions
In this article, we have presented and discussed a scalable
Spark-based framework for deep learning in mobile big data
analytics. The framework enables the tuning of deep models
with many hidden layers and millions of parameters on a com-
puting cluster. Typically, deep learning provides a promising
learning tool for adding value by learning intrinsic features
from raw mobile big data. The framework has been validated
using a large-scale activity recognition system as a case study.
Finally, important research directions on mobile big data have
been outlined.

Acknowledgment
This work was supported in part by the A*STAR Computa-
tional Resource Centre through the use of its high-perfor-
mance computing facilities. It was also supported in part by the

National Research Foundation of Korea (NRF) grant funded
by the Korean government (MSIP) (2014R1A5A1011478), Sin-
gapore MOE Tier 1 (RG18/13 and RG33/12) and MOE Tier
2 (MOE2014-T2-2-015 ARC 4/15), and the U.S. National Sci-
ence Foundation under Grants US NSF ECCS-1547201, CCF-
1456921, CNS-1443917, ECCS-1405121, and NSFC61428101.
The authors thank Ahmed Selim, Trinity College Dublin, for
valuable discussions in the early stages of the study.

References
[1] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic Fore-

cast Update 2015–2020,” White Paper, 2016.
[2] Apache Spark, “Apache Spark–Lightning-Fast Cluster Computing,” 2016,

accessed 19 Feb.2016; http://spark.apache.org.
[3] O. D. Lara and M. A. Labrador, “A Survey on Human Activity Recognition

Using Wearable Sensors,” IEEE Commun. Surveys & Tutorials, vol. 15, no.
3, 2013, pp. 1192–1209.

[4] G. M. Weiss and J. W. Lockhart, “The Impact of Personalization on Smart-
phone-Based Activity Recognition,” AAAI Wksp. Activity Context Represen-
tation: Techniques and Languages, 2012.

[5] C. Perera et al., “Context Aware Computing for the Internet of Things: A Sur-
vey,” IEEE Commun. Surveys & Tutorials, vol. 16, no. 1, 2014, pp. 414–54.

[6] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning Algorithm for Deep
Belief Nets,” Neural Computation, vol. 18, no. 7, 2006, pp. 1527–54.

[7] P. Vincent et al., “Stacked Denoising Autoencoders: Learning Useful Rep-
resentations in a Deep Network with a Local Denoising Criterion,” J.
Machine Learning Research, vol. 11, 2010, pp. 3371–3408.

[8] X. Wang et al., “Deepfi: Deep Learning for Indoor Fingerprinting Using
Channel State Information,” IEEE Wireless Commun. and Networking
Conf., Mar. 2015, pp. 1666–71.

[9] N. D. Lane and P. Georgiev, “Can Deep Learning Revolutionize Mobile
Sensing?,” Proc. 16th ACM Int’l. Wksp. Mobile Computing Systems and
Applications, 2015, pp. 117–22.

[10] J. Ngiam et al., “Multimodal Deep Learning,” Proc. 28th Int’l. Conf.
Machine Learning, 2011, pp. 689–96.

[11] J. Dean et al., “Large Scale Distributed Deep Networks,” Advances in
Neural Information Processing Systems, 2012, pp. 1223–31.

[12] K. Zhang and X.-w. Chen, “Large-Scale Deep Belief Nets with
MapReduce,” IEEE Access, vol. 2, 2014, pp. 395–403.

[13] J. W. Lockhart et al., “Design Considerations for the WISDM Smart
Phone-Based Sensor Mining Architecture,” Proc. 5th ACM Int’l. Wksp.
Knowledge Discovery from Sensor Data, 2011, pp. 25–33.

[14] L. Von Ahn et al., “reCAPTCHA: Human-Based Character Recognition via
Web Security Measures,” Science, vol. 321, no. 5895, 2008, pp. 1465–68.

[15] P. Klemperer, Auctions: Theory and Practice, ser. Princeton paperbacks,
Princeton Univ. Press, 2004.

Biographies
Mohammad Abu Alsheikh [S’14] (stumyhaa@i2r.a-star.edu.sg) received his
B.Eng. in computer systems engineering from Birzeit University, Palestine, in
2011. Between 2010 and 2012, he was a software engineer working on
developing robust web services, Ajax-based web components, and smartphone
applications. He is currently a Ph.D. candidate in the School of Computer Engi-
neering, Nanyang Technological University, Singapore. His research interests
include machine learning in big data analytics, mobile sensing technologies,
and sensor-based activity recognition.

Dusit Niyato [M’09, SM’15] (dniyato@ntu.edu.sg) is currently an associate
professor in the School of Computer Engineering at Nanyang Technological
University, Singapore. He received his B.E. from King Mongkut’s Institute of
Technology Ladkrabang (KMITL) in 1999. He obtained his Ph.D. in electrical
and computer engineering from the University of Manitoba, Canada, in 2008.
His research interests are in the area of radio resource management in cogni-
tive radio networks and energy harvesting for wireless communication.

Shaowei Lin (shaowei_lin@sutd.edu.sg) received his Ph.D. in mathematics under
Bernd Sturmfels in 2011 from the University of California, Berkeley, where he
analyzed singularities in statistical models over large datasets through the lens
of modern algebraic geometry. This work was continued at Stanford Universi-
ty in a one-year DARPA postdoctoral collaboration with Andrew Ng’s lab to
explore mathematical challenges in deep learning. In 2012, he returned to
Singapore to join the Institute for Infocomm Research (A*STAR), where he started
the Sense-making Group in the Sense and Sense-abilities (S&S) programme. The
group focused on exploiting machine learning techniques in sensor networks to
create resource-efficient algorithms that exhibit higher-order intelligence. Before
joining Singapore University of Technology and Design (SUTD), he oversaw
deep science activities in S&S as the deputy head for research.

Hwee-Pink Tan [S’00, M’04, SM’14] (hptan@smu.edu.sg) is currently an asso-
ciate professor of information systems (practice) at Singapore Management
University (SMU). He also holds the concurrent appointment of academic director

Figure 5. Normalized confusion matrix of a deep model
(5 layers of 2000 neurons each). The diagonal elements
represent correct activity recognition.

W
alk Jo

g
St

air
s Sit

St
an

d

Lie
 d

ow
n

Predicted activity

W
alk

Jo
g

St
air

s

Sit

St
an

d

Lie
 d

ow
n

A
ct

ua
l a

ct
iv

it
y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

IEEE Network • May/June 2016 29

of the SMU-TCS iCity Lab at SMU, where he leads a team of nine technology
and social science researchers to bring together Internet of Things technologies,
and social-behavioral research to enable and sustain aging-in-place, leading, in
a broader sense, to intelligent and inclusive societies, in close partnership with
A*STAR, TCS, various government agencies, as well as voluntary welfare organi-
zations. Prior to joining SMU in March 2015, he spent seven years at A*STAR,
where he was a senior scientist and concurrently the SERC Programme Manager
for the A*STAR Sense and Sense-abilities Programme. In this programme, he
led a team of 30 full-time research scientists and engineers to design, pilot, and
evaluate architectures to support large-scale and heterogeneous sensor systems
to enable smart city applications. In recognition of his contributions, he was
awarded the I2R Role Model Award in 2012 and 2013, and the A*STAR Most
Inspiring Mentor, TALENT, and Borderless Awards in 2014.

Zhu Han [S’01, M’04, SM’09, F’14] (zhan2@uh.edu) received his B.S.
degree in electronic engineering from Tsinghua University in 1997, and

his M.S. and Ph.D. degrees in electrical engineering from the University of
Maryland, College Park, in 1999 and 2003, respectively. From 2000 to
2002, he was an R&D engineer at JDSU, Germantown, Maryland. From
2003 to 2006, he was a research associate at the University of Maryland.
From 2006 to 2008, he was an assistant professor at Boise State University,
Idaho. Currently, he is a professor in the Electrical and Computer Engineer-
ing Department as well as the Computer Science Department at the University
of Houston, Texas. His research interests include wireless resource allocation
and management, wireless communications and networking, game theory,
wireless multimedia, security, and smart grid communication. He received an
NSF Career Award in 2010, the Fred W. Ellersick Prize of the IEEE Commu-
nication Society in 2011, the EURASIP Best Paper Award for the Journal on
Advances in Signal Processing in 2015, the 2016 IEEE Leonard G. Abraham
Prize in the field of Communications Systems, and several best paper awards
at IEEE conferences, and is currently an IEEE Communications Society Distin-
guished Lecturer.

