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Mobile devices have matured as a reliable and cheap 
platform for collecting data in pervasive and ubiq-

uitous sensing systems. Specifically, mobile devices are:
•	Sold in mass market chains
•	Connected to daily human activities 
•	Supported with embedded communication and sensing modules
According to the latest traffic forecast report by Cisco Sys-
tems [1], half a billion mobile devices were globally sold in 
2015, and the mobile data traffic grew by 74 percent generat-
ing 3.7 exabytes (1 exabyte = 1018 bytes) of mobile data per 
month. Mobile big data (MBD) is a concept that describes 
a massive amount of mobile data that cannot be processed 
using a single machine. MBD contains useful information for 
solving many problems such as fraud detection, marketing and 
targeted advertising, context-aware computing, and health-
care. Therefore, MBD analytics is currently a high-focus topic 
aimed at extracting meaningful information and patterns from 
raw mobile data.

Deep learning is a solid tool in MBD analytics. Specifically, 
deep learning:
•	Provides highly accurate results in MBD analytics
•	Avoids the expensive design of handcrafted features
•	Utilizes the massive unlabeled mobile data for unsupervised 

feature extraction
Due to the curse of dimensionality and size of MBD, learning 
deep models in MBD analytics is slow and takes anywhere 
from a few hours to several days when performed on conven-
tional computing systems. Conversely, most mobile systems are 
not delay-tolerant, and decisions should be made as quickly as 
possible to attain high user satisfaction. 

To cope with the increased demand on scalable and adaptive 
mobile systems, this article presents a tutorial on developing a 
framework that enables time-efficient MBD analytics using deep 
models with millions of modeling parameters. Our framework is 
built over Apache Spark [2], which provides an open source 
cluster computing platform. This enables distributed learning 
using many computing cores on a cluster where continuously 
accessed data is cached to running memory, thus speeding up 
the learning of deep models several-fold. To prove the viability 
of the proposed framework, we implement a context-aware 
activity recognition system [3] on a computing cluster and train 
deep learning models using millions of data samples collect-
ed by mobile crowdsensing. In this test case, a client request 
includes accelerometer signals, and the server is programmed 
to extract the underlying human activity using deep activity 
recognition models. We show significant accuracy improvement 
of deep learning over conventional machine learning methods, 
improving 9 percent over random forests and 17.8 percent over 
multilayer perceptions from [4]. Moreover, the learning time of 
deep models is decreased as a result of the paralleled Spark-
based implementation compared to a single-machine computa-
tion. For example, utilizing 6 Spark workers can speed up the 
learning of a 5-layer deep model of 20 million parameters 4-fold 
as compared to a single machine computing.

The rest of this article is organized as follows. We present 
an overview of MBD and discuss the challenges of MBD ana-
lytics. Next, we discuss the advantages and challenges of deep 
learning in MBD analytics. Then we propose a Spark-based 
framework for learning deep models for time-efficient MBD 
analytics within large-scale mobile systems. We present experi-
mental analysis using a real-world dataset. Important research 
directions are discussed. Finally, we conclude the article.

Mobile Big Data: Concepts and Features
This section first introduces an overview of MBD and then 
discusses the key characteristics that make MBD analytics 
challenging.
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The Era of MBD
Figure 1a shows a typical architecture of large-scale mobile 
systems used to connect various types of portable devices such 
as smartphones, wearable computers, and Internet of Things 
(IoT) gadgets. The widespread installation of various types 
of sensors, such as accelerometers, gyroscopes, compasses, 
and GPS sensors, in modern mobile devices allows many new 
applications. Essentially, each mobile device encapsulates its 
service request and own sensory data in a stateless data-in-
terchange structure like Javascript object notation (JSON) 
format. The stateless format is important as mobile devices 
operate on different mobile operating systems (e.g., Android, 
iOS, and Tizen). Based on the collected MBD, a service serv-
er utilizes MBD analytics to discover hidden patterns and 
information. The importance of MBD analytics stems from 
its role in building complex mobile systems that could not be 
assembled and confi gured on small datasets. For example, an 
activity recognition application [3, 5] uses embedded accel-
erometers of mobile devices to collect proper acceleration 
data about daily human activities. After receiving a request, 
the service server maps the accelerometer data to the most 
probable human activities, which are used to support many 
interactive services (e.g., healthcare, smart building, and per-
vasive games).

MBD analytics is more versatile than conventional big 
data problems as data sources are portable and data traffi c is 
crowdsourced. MBD analytics deals with massive amounts of 
data collected by millions of mobile devices. Next, we discuss 
the main characteristics of MBD that complicate data analytics 
and learning on MBD compared to small datasets.

Challenges of MBD Analytics
Figure 1b shows the main recent technologies that have pro-
duced the challenging MBD era: large-scale and high-speed 
mobile networks, portability, and crowdsourcing. Each tech-
nology contributes to forming the MBD characteristics in the 
following ways.

Large-scale and high-speed mobile networks: The growth 
of mobile devices and high-speed mobile networks (e.g., WiFi 
and cellular networks) introduces massive and increasingly 
contentious mobile data traffi c. This is refl ected in the follow-
ing MBD aspects:
• MBD is massive (volume): In 2015, 3.7 exabytes of mobile 

data was generated per month, which is expected to increase 
through the coming years [1].

• MBD is generated at increasing rates (velocity): MBD flows 
at a high rate, which impacts the latency in serving mobile 
users. Long queuing time of requests results in less satisfi ed 
users and increased cost of late decisions.
Portability: Each mobile device is free to move inde-

pendently among many locations. Therefore, MBD is non-sta-
tionary (volatility). Due to portability, the time duration in 
which the collected data is valid for decision making can be 
relatively short. MBD analytics should be frequently executed 
to cope with the newly collected data samples.

Crowdsourcing: A remarkable trend of mobile applications 
is crowdsourcing for pervasive sensing, which includes massive 
data collection from many participating users. Crowdsensing 
differs from conventional mobile sensing systems as the sens-
ing devices are not owned by one institution but instead by 
many individuals from different places. This has introduced 
the following MBD challenges:
• MBD quality is not guaranteed (veracity): This aspect is critical 

for assessing the quality uncertainty of MBD as mobile sys-
tems do not directly manage the sensing process of mobile 
devices. Since most mobile data is crowdsourced, MBD can 
contain low-quality and missing data samples due to noise, 
malfunctioning or uncalibrated sensors of mobile devices, 
and even intruders (e.g., badly labeled crowdsourced data). 
These low-quality data points affect the analytical accuracy 
of MBD.

• MBD is heterogeneous (variety): The variety of MBD arises 
because the data traffi c comes from many spatially distrib-
uted data sources (i.e., mobile devices). Also, MBD comes 
in different data types due to the many sensors that mobile 
devices support. For example, a triaxial accelerometer gen-
erates proper acceleration measurements, while a light sen-
sor generates illumination values.
MBD analytics (value) is mainly about extracting knowledge 

and patterns from MBD. In this way, MBD can be utilized to 
provide better services to mobile users and create revenue for 
mobile businesses. The next section discusses deep learning as 
a solid tool in MBD analytics.

Deep Learning in MBD Analytics
Deep learning is a new branch of machine learning that can 
solve a broad set of complex problems in MBD analytics (e.g., 
classifi cation and regression). A deep learning model consists of 
simulated neurons and synapses that can be trained to learn 
hierarchical features from existing MBD samples. The result-

Figure 1. Illustration of the MBD era: a) typical architecture of a modern mobile network connecting smartphones, wearable 
computers, and IoT gadgets; b) main technological advances behind the MBD era.
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ing deep model can generalize and process unseen streaming 
MBD samples.

For simplicity, we present a general discussion of deep 
learning methods without focusing on the derivations of par-
ticular techniques. Nonetheless, we refer interested readers to 
more technical papers of deep belief networks [6] and stacked 
denoising autoencoders [7]. A deep model can be scaled to 
contain many hidden layers and millions of parameters, which 
are difficult to train at once. Instead, greedy layer-by-layer 
learning algorithms [6, 7] have been proposed that basically 
work as follows.

Generative layer-wise pre-training: This stage requires only 
unlabeled data, which is often abundant and cheap to collect 
in mobile systems using crowdsourcing. Figure 2 shows the 
layer-wise tuning of a deep model. First, one layer of neurons 
is trained using the unlabeled data samples. To learn the input 
data structure, each layer includes encoding and decoding 
functions. The encoding function uses the input data and the 
layer parameters to generate a set of new features. Then the 
decoding function uses the features and the layer parameters 
to produce a reconstruction of the input data. As a result, a 
first set of features is generated at the output of the first layer. 
Then a second layer of neurons is added on top of the first 
layer, where the output of the first layer is fed as input of the 
second layer. This process is repeated by adding more layers 
until a suitable deep model is formed. Accordingly, more com-
plex features are learned at each layer based on the features 
that were generated at its lower layer. 

Discriminative fine-tuning: The model’s parameters, which 
are initialized in the first step, are then slightly fine-tuned 
using the available set of labeled data to solve the problem at 
hand.

Deep Learning Advantages in MBD Analytics
Deep learning provides solid learning models for MBD analyt-
ics. This argument can be supported with the following advan-
tages of using deep learning in MBD analytics.

Deep learning scores highly accurate results, which are 
a top priority for growing mobile systems. Highly accurate 
results of MBD analytics are required for sustainable business 
and effective decisions. For example, poor fraud detection 
results in expensive loss of income for mobile systems. Deep 

learning models have been reported as state-of-the-art meth-
ods to solve many MBD tasks. For example, the authors in [8] 
propose a method for indoor localization using deep learning 
and channel state information. In [9], deep learning is success-
fully applied to inference tasks in mobile sensing (e.g., activity 
and emotion recognition, and speaker identification).

Deep learning generates intrinsic features that are 
required in MBD analytics. A feature is a measurement attri-
bute extracted from sensory data to capture the underlying 
phenomena being observed and enable more effective MBD 
analytics. Deep learning can automatically learn high-level 
features from MBD, eliminating the need for the handcrafted 
features in conventional machine learning methods.

Deep learning can learn from unlabeled mobile data, which 
minimizes the data labeling effort. In most mobile systems, 
labeled data is limited, as manual data annotation requires 
expensive human intervention, which is both costly and time 
consuming. On the other hand, unlabeled data samples are 
abundant and cheap to collect. Deep learning models utilize 
unlabeled data samples for generative data exploration during 
a pre-training stage. This minimizes the need for labeled data 
during MBD analytics.

Multimodal deep learning. The “variety” aspect of MBD 
leads to multiple data modalities of multiple sensors (e.g., 
accelerometer samples, audio, and images). Multimodal deep 
learning [10] can learn from multiple modalities and heteroge-
neous input signals.

Deep Learning Challenges in MBD Analytics
Discussing MBD in terms of volume only and beyond the ana-
lytical and profit perspectives is incomplete and restricted. 
Collecting MBD is unprofitable unless suitable learning meth-
ods and analytics are utilized to extract meaningful informa-
tion and patterns. Deep learning in MBD analytics is slow and 
can take a few days of processing time, which does not meet 
the operation requirements of most modern mobile systems. 
This is due to the following challenges.

The curse of dimensionality: MBD comes with volume and 
velocity related challenges. Historically, data analytics on small 
amounts of collected data (a.k.a. random sampling) was uti-
lized. Despite the low computational burden of random sam-
pling, it suffers from poor performance on unseen streaming 

Figure 2. Generative layer-wise training of a deep model. Each layer applies nonlinear transformation to its input vector and 
produces intrinsic features at its output.

Mobile data input (unlabeled data)

Feature represenetation

High-level features

EncodingDecoding

EncodingDecoding

Fixed

EncodingDecoding

Fixed

Fixed

In
cr

ea
si

ng
ly

 c
om

pl
ex

 f
ea

tu
re

s

Copy Copy

Copy

A neuron

(1) First-layer training (2) Second-layer training (3) Third-layer training



IEEE Network • May/June 2016 25

samples. This performance problem is typically avoided by 
using the full set of available big data samples, which signifi-
cantly increases the computational burdens.

Large-scale deep models: To fully capture the information 
on MBD and avoid underfitting, deep learning models should 
contain millions of free parameters; for example, a 5-layer 
deep model with 2000 neurons per layer contains around 20 
million parameters. Models’ free parameters are optimized 
using gradient-based learning [6, 7], which is computationally 
expensive for large-scale deep models.

Time-varying deep models: In mobile systems, the contin-
uous adaptation of deep models over time is required due to 
the volatility characteristic of MBD.
To tackle these challenges, we next describe a scalable frame-
work for MBD analytics using deep learning models and 
Apache Spark.

A Spark-Based Deep Learning Framework for 
MBD Analytics
Learning deep models in MBD analytics is slow and computa-
tionally demanding. Typically, this is due to the large number 
of parameters of deep models and the large number of MBD 
samples. Figure 3 shows the proposed architecture for learning 
deep models on MBD with Apache Spark. Apache Spark [2] 
is an open source platform for scalable MapReduce comput-
ing on clusters. The main goal of the proposed framework is 
speeding up MBD decision making by parallelizing the learn-
ing of deep models to a high-performance computing cluster. 
In short, the parallelization of a deep model is performed 
by slicing the MBD into many partitions. Each partition is 
contained in a resilient distributed dataset (RDD) that pro-
vides an abstraction for data distribution by the Spark engine. 
Besides data caching, RDDs of a Spark program natively sup-
port fault-tolerant executions and recover the program opera-
tions at worker nodes.

In short, our Spark-based framework consists of two main 
components:
•	A Spark master
•	One or more Spark workers
The master machine initializes an instance of the Spark driver 
that manages the execution of many partial models in a group 

of Spark workers. At each iteration of the deep learning algo-
rithm (Fig. 2), each worker node learns a partial deep model 
on a small partition of the MBD and sends the computed 
parameters back to the master node. Then, the master node 
reconstructs a master deep model by averaging the computed 
partial models of all executor nodes.

Parallelized Learning Collections
Learning deep models can be performed in two main steps: 
•	Gradient computation
•	Parameter update [6, 7] (for the mathematical derivation)
In the first step, the learning algorithm iterates through all 
data batches independently to compute gradient updates (i.e., 
the rate of change) of the model’s parameters. In the second 
step, the model’s parameters are updated by averaging the 
computed gradient updates on all data batches. These two 
steps fit the learning of deep models in the MapReduce pro-
gramming model [11, 12]. In particular, the parallel gradient 
computation is realized as a Map procedure, while the param-
eter update step reflects the Reduce procedure. The iterative 
MapReduce computing of deep learning on Apache Spark is 
performed as follows.

MBD partitioning: The overall MBD is first split into many 
partitions using the parallelize() application programming 
interface (API) of Spark. The resulting MBD partitions are 
stored into RDDs and distributed to the worker nodes. These 
RDDs are crucial to speed up the learning of deep models as 
the memory data access latency is significantly shorter than the 
disk data operations.

Deep learning parallelism: The solution of a deep learning 
problem depends on the solution of smaller instances of the 
same learning problem with smaller datasets. In particular, the 
deep learning job is divided into learning stages. Each learning 
stage contains a set of independent MapReduce iterations 
where the solution of one iteration is the input for the next 
iteration. During each MapReduce iteration, a partial model 
is trained on a separate partition of the available MBD as 
follows:
•	Learning partial models: Each worker node computes the 

gradient updates of its partitions of the MBD (a.k.a. the 
Map procedure). During this step, all Spark workers execute 
the same Map task in parallel but on different partitions of 

Figure 3. A Spark-based framework for distributed deep learning in MBD analytics.
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the MBD. In this way, the expensive gradient computation 
task of the deep model learning is divided into many paral-
lel sub-tasks.

•	Parameter averaging: Parameters of the partial models are 
sent to the master machine to build a master deep model 
by averaging the parameter calculation of all Spark workers 
(a.k.a. the Reduce procedure).

•	Parameter dissemination: The resulting master model after 
the Reduce procedure is disseminated to all worker nodes. 
A new MapReduce iteration is then started based on the 
updated parameters. This process is continued until the 
learning convergence criterion is satisfied.

As a result, a well-tuned deep learning model is generated that 
can be used to infer information and patterns from streaming 
requests. In the following, we discuss how the proposed frame-
work helps tackle the key characteristics of MBD.

Discussion
The proposed framework is grounded over deep learning and 
Apache Spark technologies to perform effective MBD analyt-
ics. This integration tackles the challenging characteristics of 
MBD as follows.

Deep learning: Deep learning addresses the value and vari-
ety aspects of MBD. First, deep learning in MBD analytics 
helps in understanding raw MBD. Therefore, deep learning 
effectively addresses the value aspect of MBD. MBD analytics, 
as discussed in this article, is integral in providing user-custom-
ized mobile services. Second, deep learning enables learning 
from multimodal data distributions [10] (e.g., concatenated 
input from accelerometer and light sensors), which is import-
ant for the variety issue of MBD.

Apache Spark: The main role of the Spark platform in the 
proposed framework is tackling the volume, velocity, and vol-
atility aspects of MBD. Essentially, the Spark engine tackles 
the volume aspect by parallelizing the learning task into many 
sub-tasks, each performed on a small partition of the overall 
MBD. Therefore, no single machine is required to process 
the massive MBD volume as one chunk. Similarly, the Spark 
engine tackles the velocity point through its streaming exten-
sions, which enable fast and high-throughput processing of 
streaming data. Finally, the volatility aspect is addressed by 
significantly speeding up the training of deep models. This 
ensures that the learned model reflects the latest dynamics of 
the mobile system.

The proposed framework does not directly tackle the veraci-
ty aspect of MBD. This quality aspect requires domain experts 
to design conditional routines to check the validity of crowd-
sourced data before being added to central MBD storage.

Prototyping a Context-Aware Activity 
Recognition System
Context awareness [3, 5] has high impact on understanding 
MBD by describing the circumstances in which the data was 
collected to provide personalized mobile experience to end 
users (e.g., targeted advertising, healthcare, and social ser-
vices). A context contains attributes of information to describe 
the sensed environment such as performed human activities, 
surrounding objects, and locations. A context learning model is 
a program that defines the rules of mapping between raw sen-
sory data and the corresponding context labels (e.g., mapping 
accelerometer signals to activity labels). This section describes 
a proof-of-concept case study in which we consider a con-
text-aware activity recognition system, such as detecting walk-
ing, jogging, climbing stairs, sitting, standing, and lying down. 
We use a real-world dataset during the training of deep activi-
ty recognition models.

Problem Statement
Accelerometers are sensors that measure proper acceleration 
of an object due to motion and gravitational force. Modern 
mobile devices are widely equipped with tiny accelerometer 
circuits, which are produced from electromechanically sensi-
tive elements and generate electrical signals in response to any 
mechanical motion. The proper acceleration is distinctive from 
coordinate acceleration in classical mechanics. The latter mea-
sures the rate of change of velocity, while the former measures 
acceleration relative to a free fall; that is, the proper accelera-
tion of an object in a free fall is zero.

Consider a mobile device with an embedded accelerometer 
sensor that generates proper acceleration samples. Activity 
recognition is applied to time series data frames formulat-
ed using a sliding and overlapping window. The number of 
time-series samples depends on the accelerometer’s sampling 
frequency (in Hertz) and windowing length (in seconds). At 
time t, the activity recognition classifier f : xt → S matches the 
framed acceleration data xt with the most probable activity 
label from the set of supported activity labels S = {1, 2, …, 
N}, where N is the number of supported activities in the activ-
ity detection component.

Conventional approaches to recognizing activities require 
handcrafted features (e.g., statistical features) [3], which are 
expensive to design, require domain expert knowledge, and 
generalize poorly to support more activities. To avoid this, a 
deep activity recognition model learns not only the mapping 
between raw acceleration data and the corresponding activity 
label, but also a set of meaningful features that are superior to 
handcrafted features.

Experimental Setup
In this section, we use the Actitracker dataset [13], which includes 
accelerometer samples of 6 conventional activities (walking, jog-
ging, climbing stairs, sitting, standing, and lying down) from 563 
crowdsourcing users. Figure 4a plots accelerometer signals of the 
six different activities. Clearly, high-frequency signals are sampled 
for activities with active body motion (e.g., walking, jogging, and 
climbing stairs). On the other hand, low-frequency signals are 
collected during semi-static body motions (e.g., standing, sitting, 
and lying down). The data is collected using mobile phones with 
20 Hz sampling rate, and it contains both labeled and unlabeled 
data of 2,980,765 and 38,209,772 samples, respectively. This is a 
real-world example of the limited number of labeled data com-
pared to unlabeled data as data labeling requires manual human 
intervention. The data is framed using a 10 s windowing function 
that generates 200 samples of time-series samples. We first pre-
train deep models on the unlabeled data samples only, and then 
fine-tune the models on the labeled dataset. To enhance the 
activity recognition performance, we use the spectrogram of the 
acceleration signal as input of the deep models. Basically, differ-
ent activities contain different frequency contents that reflect the 
body dynamics and movements.

We implemented the proposed framework on a shared 
cluster system (https://www.acrc.a-star.edu.sg) running the 
load sharing facility (LSF) management platform and RedHat 
Linux. Each node has 8 cores (Intel Xeon 5570 CPU with clock 
speed of 2.93 Ghz) and a total of 24 GB RAM. In our experi-
ments, we set the cores in multiples of 8 to allocate the entire 
node’s resources. One partial model learning task is initialized 
for each computing core. Each task learns using a data batch 
consisting of 100 samples for 100 iterations. Clearly, increasing 
the number of cores results in quicker training of deep models. 
Finally, it is important to note that distributed deep learning 
is a strong type of regularization. Thus, regularization tech-
niques, such as the sparsity and dropout constraints, are not 
recommended to avoid the problem of underfitting. 
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Experimental Results
The Impact of Deep Models: Figure 4b shows the activity rec-
ognition error under different setups of deep models (num-
ber of hidden layers and number of neurons at each layer). 
Specifically, the capacity of a deep model to capture MBD 
structures is increased when using deeper models with more 
layers and neurons. Nonetheless, using deeper models involves 
a significant increase in the learning algorithm’s computational 
burdens and time. An accuracy comparison of deep activity 
recognition models and other conventional methods is shown 
in Table 1. In short, these results clarify that:

•	Deep models are superior to existing shallow context learn-
ing models.

•	The learned hierarchical features of deep models eliminate 
the need for handcrafted statistical features in conventional 
methods.
In our implementation, we use early stopping to track the 

model capacity during training, select the best parameters of 
deep models, and avoid overfitting. Underfitting is typically 
avoided by using deeper models and more neurons per layer 
(e.g., 5 layers with 2000 neurons per layer). Next, a speedup 
analysis is presented to show the importance of the Spark-
based framework for learning deep models on MBD.

The Impact of Computing Cores: The main performance metric 
of cluster-based computing is the task speedup metric. In par-
ticular, we compute the speedup efficiency as T8/TM, where T8 
is the computing time of one machine with 8 cores, and TM is 
the computing time under different computing power. Figure 4c 
shows the speedup in learning deep models when the number of 
computing cores is varied. As the number of cores increases, the 
learning time decreases. For example, learning a deep model 
of 5 layers with 2000 neurons per layer can be trained in 3.63 h 
with 6 Spark workers. This results in speedup efficiency of 4.1 
as compared to single-machine computing, which takes 14.91 h.

MBD Veracity: A normalized confusion matrix of a deep model 
is shown in Fig. 5. This confusion matrix shows the high per-
formance of deep models on a per-activity basis (high scores at 
the diagonal entries). The incorrect detection of the “sitting” 
activity instead of the “lying down” activity is typically due to 
the different procedures in performing the activities by crowd-
sourcing users. This gives a real-world example of the veracity 
characteristic of MBD (i.e., uncertainties in MBD collection).

In the next section, we identify some notable future research 
directions in MBD collection, labeling, and economics.

Future Work
Based on the proposed framework, the following future work 
can be further pursued.

Crowd Labeling of MBD
A major challenge facing MBD analysts is the limited amounts 
of labeled data samples as data labeling is typically a manual 
process. An important research direction is proposing crowd 
labeling methods for MBD. Crowd labeling can be designed 
under two main schemes:
•	Paid crowd labeling
•	Embedded crowd labeling
In paid crowd labeling, the crowdsourcing mobile users anno-
tate mobile data and are accordingly paid based on their label-
ing performance and speed. Under this paid scheme, optimal 
budget allocation methods are required. In embedded crowd 
labeling, data labeling can also be achieved by adding label-

Figure 4. Experimental analysis: a) accelerometer signal of 
different human activities; b) recognition accuracy of deep 
learning models under different deep model setups;  
c) speedup of learning deep models using the Spark-based 
framework under different computing cores. The upper 
speedup limit is achieved under full CPU utilization and 
zero communication overhead.
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Lying down t [50;60)
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Table 1. Activity recognition error of deep learning and other 
conventional methods used in [4]. The conventional meth-
ods use handcrafted statistical features.

Method
Recognition 
error (%)

Multilayer perceptrons 32.2

Instance-based learning 31.6

Random forests 24.1

Deep learning (5 layers of 2000 neurons each) 14.4
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ing tasks within mobile application functional routines (e.g., 
CAPTCHA-based image labeling) [14]. Here, the mobile users 
can access more functions of a mobile application by indirectly 
helping in the data labeling process. More work is required on 
designing innovative methods for embedded crowd labeling 
without disturbing the user experience or harming the mobile 
application’s main functionality.

Economics of MBD
MBD, as discussed in this article, is about extracting meaning-
ful information and patterns from raw mobile data. This infor-
mation is used during decision making and to enhance existing 
mobile services. An important research direction is proposing 
business models (e.g., pricing and auction design [15]) for sell-
ing and buying MBD among mobile organizations and parties.

Privacy and MBD Collection
As MBD is people-centric, mobile users would be concerned 
about the risks of sharing their personal mobile data with a 
service server. Thus, a low percentage of users will opt out of 
sharing their personal data unless trustworthy privacy mech-
anisms are applied. Meanwhile, anonymized data collection 
(i.e., data that could not be used to identify individuals) is 
adopted by many services. An alternative research direction 
is proposing fair data exchange models that encourage the 
sharing of mobile data in return for rewarding points (e.g., 
premium membership points). 

Conclusions
In this article, we have presented and discussed a scalable 
Spark-based framework for deep learning in mobile big data 
analytics. The framework enables the tuning of deep models 
with many hidden layers and millions of parameters on a com-
puting cluster. Typically, deep learning provides a promising 
learning tool for adding value by learning intrinsic features 
from raw mobile big data. The framework has been validated 
using a large-scale activity recognition system as a case study. 
Finally, important research directions on mobile big data have 
been outlined.
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