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Abstract—What is a systematic way to efficiently apply a wide spectrum of advanced ML programs to industrial scale problems, using

Big Models (up to 100 s of billions of parameters) on Big Data (up to terabytes or petabytes)? Modern parallelization strategies employ

fine-grained operations and scheduling beyond the classic bulk-synchronous processing paradigm popularized by MapReduce, or

even specialized graph-based execution that relies on graph representations of ML programs. The variety of approaches tends to pull

systems and algorithms design in different directions, and it remains difficult to find a universal platform applicable to a wide range of

ML programs at scale. We propose a general-purpose framework, Petuum, that systematically addresses data- and model-parallel

challenges in large-scale ML, by observing that many ML programs are fundamentally optimization-centric and admit error-tolerant,

iterative-convergent algorithmic solutions. This presents unique opportunities for an integrative system design, such as bounded-error

network synchronization and dynamic scheduling based on ML program structure. We demonstrate the efficacy of these system

designs versus well-known implementations of modern ML algorithms, showing that Petuum allows ML programs to run in much less

time and at considerably larger model sizes, even on modestly-sized compute clusters.

Index Terms—Machine learning, big data, big model, distributed systems, theory, data-parallelism, model-parallelism
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1 INTRODUCTION

MACHINE Learning (ML) is becoming a primary mecha-
nism for extracting information from data. However,

the surging volume of Big Data from Internet activities and
sensory advancements, and the increasing needs for Big
Models for ultra high-dimensional problems have put tre-
mendous pressure on ML methods to scale beyond a single
machine, due to both space and time bottlenecks. For exam-
ple, on the Big Data front, the Clueweb 2012 web crawl1 con-
tains over 700 million web pages as 27 TB of text data; while
photo-sharing sites such as Flickr, Instagram and Facebook
are anecdotally known to possess 10 s of billions of images,
again taking up TBs of storage. It is highly inefficient, if
possible, to use such big data sequentially in a batch or
scholastic fashion in a typical iterative ML algorithm. On
the Big Model front, state-of-the-art image recognition sys-
tems have now embraced large-scale deep learning (DL)
models with billions of parameters [1]; topic models with
up to 106 topics can cover long-tail semantic word sets for
substantially improved online advertising [2], [3]; and very-
high-rank matrix factorization (MF) yields improved pre-
diction on collaborative filtering problems [4]. Training

such big models with a single machine can be prohibitively
slow, if not impossible. While careful model design and fea-
ture engineering can certainly reduce the size of the model,
they require domain-specific expertise and are fairly labor-
intensive, hence the recent appeal (as seen in the above
papers) of building high-capacity Big Models in order to
substitute computation cost for labor cost.

Despite the recent rapid development of many new ML
models and algorithms aiming at scalable applications [5],
[6], [7], [8], [9], [10], adoption of these technologies remains
generally unseen in the wider data mining, NLP, vision,
and other application communities for big problems, espe-
cially those built on advanced probabilistic or optimization
programs. A likely reason for such a gap, at least from
the scalable execution point of view, that prevents many
state-of-the-art ML models and algorithms from being more
widely applied at Big-Learning scales is the difficult migra-
tion from an academic implementation, often specialized
for a small, well-controlled computer platform such as desk-
top PCs and small lab-clusters, to a big, less predictable
platform such as a corporate cluster or the cloud, where
correct execution of the original programs require careful
control and mastery of low-level details of the distributed
environment and resources through highly nontrivial dis-
tributed programming.

Many programmable platforms have provided partial sol-
utions to bridge this research-to-production gap: while
Hadoop [11] is a popular and easy to program platform, its
implementation of MapReduce requires the program state
to be written to disk every iteration, thus its performance on
many ML programs has been surpassed by in-memory
alternatives [12], [13]. One such alternative is Spark [12],
which improves upon Hadoop by keeping ML program
state in memory—resulting in large performance gains over

1. http://www.lemurproject.org/clueweb12.php/
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Hadoop—whilst preserving the easy-to-use MapReduce
programming interface. However, Spark ML implementa-
tions are often still slower than specially-designed ML
implementations, in part because Spark does not offer
flexible and fine-grained scheduling of computation and
communication, which has been shown to be hugely advan-
tageous, if not outright necessary, for fast and correct execu-
tion of advanced ML algorithms [14]. Graph-centric
platforms such as GraphLab [13] and Pregel [15] efficiently
partition graph-based models with built-in scheduling and
consistency mechanisms, but due to limited theoretical
work, it is unclear whether asynchronous graph-based con-
sistency models and scheduling will always yield correct
execution of ML programs. Other systems provide low-level
programming interfaces [16], [17], that, while powerful and
versatile, do not yet offer higher-level general-purpose
building blocks such as scheduling, model partitioning
strategies, and managed communication that are key to sim-
plifying the adoption of a wide range of ML methods. In
summary, existing systems supporting distributed ML each
manifest a unique tradeoff on efficiency, correctness,
programmability, and generality.

In this paper, we explore the problem of building a distrib-
uted machine learning framework with a new angle toward
the efficiency, correctness, programmability, and generality
tradeoff. We observe that, a hallmark of most (if not all) ML
programs is that they are defined by an explicit objective func-
tion over data (e.g., likelihood, error-loss, graph cut), and the
goal is to attain optimality of this function, in the space
defined by themodel parameters and other intermediate vari-
ables. Moreover, these algorithms all bear a common style, in
that they resort to an iterative-convergent procedure (see
Eq. (1)). It is noteworthy that iterative-convergent computing
tasks are vastly different from conventional programmatic
computing tasks (such as database queries and keyword
extraction), which reach correct solutions only if every deter-
ministic operation is correctly executed, and strong consis-
tency is guaranteed on the intermediate program state—thus,
operational objectives such as fault tolerance and strong con-
sistency are absolutely necessary. However, anMLprogram’s
true goal is fast, efficient convergence to an optimal solution,
andwe argue that fine-grained fault tolerance and strong con-
sistency are but one vehicle to achieve this goal, andmight not
even be themost efficient one.

We present a new distributed ML framework, Petuum,
built on an ML-centric optimization-theoretic principle,
as opposed to various operational objectives explored ear-
lier. We begin by formalizing ML algorithms as iterative-
convergent programs, which encompass a large space of
modern ML, such as stochastic gradient descent (SGD)[18]
and coordinate descent (CD) [10] for convex optimization
problems, proximal methods [19] for more complex con-
strained optimization, as well as MCMC [20] and varia-
tional inference [7] for inference in probabilistic models. To
our knowledge, no existing programmable2 platform has

considered such a wide spectrum of ML algorithms, which
exhibit diverse representation abstractions, model and data
access patterns, and synchronization and scheduling
requirements. So what are the shared properties across such
a “zoo of ML algorithms”? We believe that the key lies in
the recognition of a clear dichotomy between data (which is
conditionally independent and persistent throughout the
algorithm) and model (which is internally coupled, and is
transient before converging to an optimum). This inspires a
simple yet statistically-rooted bimodal approach to parallel-
ism: data parallel and model parallel distribution and execu-
tion of a big ML program over a cluster of machines. This
data parallel, model parallel approach keenly exploits the
unique statistical nature of ML algorithms, particularly the
following three properties: (1) Error tolerance—iterative-
convergent algorithms are often robust against limited
errors in intermediate calculations; (2) Dynamic structural
dependency—during execution, the changing correlation
strengths between model parameters are critical to efficient
parallelization; (3) Non-uniform convergence—the number
of steps required for a parameter to converge can be highly
skewed across parameters. The core goal of Petuum is to
execute these iterative updates in a manner that quickly
converges to an optimum of the ML program’s objective
function, by exploiting these three statistical properties of
ML, which we argue are fundamental to efficient large-scale
ML in cluster environments.

This design principle contrasts that of several existing
programmable frameworks discussed earlier. For example,
central to the Spark framework [12] is the principle of per-
fect fault tolerance and recovery, supported by a persistent
memory architecture (Resilient Distributed Datasets);
whereas central to the GraphLab framework is the principle
of local and global consistency, supported by a vertex pro-
gramming model (the Gather-Apply-Scatter abstraction).
While these design principles reflect important aspects of
correct ML algorithm execution—e.g., atomic recoverability
of each computing step (Spark), or consistency satisfaction
for all subsets of model variables (GraphLab)—some other
important aspects, such as the three statistical properties
discussed above, or perhaps ones that could be more funda-
mental and general, and which could open more room for
efficient system designs, remain unexplored.

To exploit these properties, Petuum introduces three
novel system objectives grounded in the aforementioned
key properties of ML programs, in order to accelerate their
convergence at scale: (1) Petuum synchronizes the parame-
ter states with bounded staleness guarantees, thereby
achieves provably correct outcomes due to the error-toler-
ant nature of ML, but at a much cheaper communication
cost than conventional per-iteration bulk synchronization;
(2) Petuum offers dynamic scheduling policies that take
into account the changing structural dependencies between
model parameters, so as to minimize parallelization error
and synchronization costs; and (3) Since parameters in ML
programs exhibit non-uniform convergence costs (i.e., dif-
ferent numbers of updates required), Petuum prioritizes
computation towards non-converged model parameters, so
as to achieve faster convergence.

To demonstrate this approach, we show how data-paral-
lel and model-parallel algorithms can be implemented on

2. Our discussion is focused on platforms which provide libraries
and tools for writing new ML algorithms. Because programmability is
an important criteria for writing new ML algorithms, we exclude ML
software that does not allow new algorithms to be implemented on top
of them, such as AzureML and Mahout.
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Petuum, allowing them to scale to large data/model sizes
with improved algorithm convergence times. The experi-
ments section provides detailed benchmarks on a range of
ML programs: topic modeling, matrix factorization, deep
learning, Lasso regression, and distance metric learning
(DML). These algorithms are only a subset of the full open-
source Petuum ML library3—the PMLlib, which we will
briefly discuss in this paper. As illustrated in Fig. 1, Petuum
PMLlib covers a rich collection of advanced ML methods
not usually seen in existing ML libraries; the Petuum plat-
form enables PMLlib to solve a range of ML problems at
large scales—scales that have only been previously
attempted in a case-specific manner with corporate-scale
efforts and resources—but using relatively modest clusters
(10-100 machines) that are within reach of most ML
practitioners.

2 PRELIMINARIES: ON DATA PARALLELISM AND

MODEL PARALLELISM

We begin with a principled formulation of iterative-
convergent ML programs, which exposes a dichotomy of
data and model, that inspires the parallel system architec-
ture (Section 3), algorithm design (Section 4), and theoretical
analysis (Section 6) of Petuum. Consider the following pro-
grammatic view of ML as iterative-convergent programs,
driven by an objective function.

Iterative-convergent ML algorithm: Given data D and a
model objective function L (e.g., mean-squared loss, likeli-
hood, margin), a typical ML problem can be grounded as
executing the following update equation iteratively, until
the model state (i.e., parameters and/or latent variables) A
reaches some stopping criteria:

AðtÞ ¼ F ðAðt�1Þ;DLðAðt�1Þ; DÞÞ; (1)

where superscript ðtÞ denotes the iteration counter. The
update function DLðÞ (which improves the loss L) performs
computation on data D and model state A, and outputs

intermediate results to be aggregated with the current esti-
mate of A by F ðÞ to produce the new estimate of A. For sim-
plicity, in the rest of the paper we omit L in the subscript
with the understanding that all ML programs of our interest
here bear an explicit loss function that can be used to moni-
tor the quality of convergence to a solution, as opposed to
heuristics or procedures not associated such a loss function.
Also for simplicity, we focus on iterative-convergent equa-
tions with an additive form:

AðtÞ ¼ Aðt�1Þ þ DðAðt�1Þ; DÞ; (2)

i.e., the aggregation F ðÞ is replaced with a simple addition.
The approaches we propose can also be applied to this gen-
eral F ðÞ.

In large-scale ML, both data D and model A can be very
large. Data-parallelism, in which data is divided across
machines, is a common strategy for solving Big Data prob-
lems, while model-parallelism, which divides the ML model,
is common for Big Models. Both strategies are not exclusive,
and can be combined to tackle challenging problems with
large data D and large model A. Hence, every Petuum ML
program is either data-parallel, model-parallel, or data-and-
model-parallel, depending on problem needs. Below, we
discuss the (different) mathematical implications of each
parallelism (see Fig. 2).

2.1 Data Parallelism

In data-parallel ML, the dataD is partitioned and assigned to
computational workers (indexed by p ¼ 1::P ); we denote
the pth data partition byDp. The function DðÞ can be applied
to each data partition independently, and the results com-
bined additively, yielding a data-parallel equation (left
panel of Fig. 2):

AðtÞ ¼ Aðt�1Þ þPP
p¼1 DðAðt�1Þ; DpÞ: (3)

This form is commonly seen in stochastic gradient descent or
sampling-based algorithms. For example, in distance metric
learning optimized via stochastic gradient descent, the data
pairs are partitioned over different workers, and the interme-
diate results (subgradients) are computed on each partition,
before being summed and applied to the model parameters.

Fig. 1. The scale of Big ML efforts in recent literature. A key goal of Pet-
uum is to enable larger ML models to be run on fewer resources, even
relative to highly-specialized implementations.

Fig. 2. The difference between data and model parallelism: data samples
are always conditionally independent given the model, but some model
parameters are not independent of each other.

3. Petuum is available as open source at http://petuum.org.
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A slightly modified form, AðtÞ ¼PP
p¼1 DðAðt�1Þ;DpÞ, is used

by some algorithms, such as variational EM.
Importantly, this additive updates property allows the

updates DðÞ to be computed at each local worker before
transmission over the network, which is crucial because
CPUs can produce updates DðÞ much faster than they can
be (individually) transmitted over the network. Additive
updates are the foundation for a host of techniques to
speed up data-parallel execution, such as minibatch,
asynchronous and bounded-asynchronous execution, and
parameter servers. Key to the validity of additivity of
updates from different workers is the notion of indepen-
dent and identically distributed (iid) data, which is assumed
for many ML programs, and implies that each parallel
worker contributes “equally” (in a statistical sense) to the
ML algorithm’s progress via DðÞ, no matter which data
subset Dp it uses.

2.2 Model Parallelism

In model-parallel ML, the model A is partitioned and
assigned to workers p ¼ 1::P and updated therein in paral-
lel, running update functions DðÞ. Because the outputs from
each DðÞ affect different elements of A (hence denoted now
by DpðÞ to make explicit the parameter subset affected at
worker p), they are first concatenated into a full vector of
updates (i.e., the full DðÞ), before aggregated with model
parameter vector A (see right panel of Fig. 2):

AðtÞ ¼ Aðt�1Þ þ Con
�
DpðAðt�1Þ; Sðt�1Þp ðAðt�1ÞÞÞ�P

p¼1
� �

; (4)

where we have omitted the data D for brevity and clarity.
Coordinate descent algorithms for regression and matrix
factorization are a canonical example of model-parallelism.
Each update function DpðÞ also takes a scheduling function

Sðt�1Þp ðAÞ, which restricts DpðÞ to modify only a carefully-

chosen subset of the model parameters A. Sðt�1Þp ðAÞ outputs
a set of indices fj1; j2; . . . ; g, so that DpðÞ only performs
updates on Aj1 ; Aj2 ; . . .—we refer to such selection of model

parameters as scheduling. In some cases, the additive update
formula above can be replaced by a replace operator that
directly replaces corresponding elements in A with ones in
the concatenated update vector.

Unlike data-parallelism which enjoys iid data properties,
the model parameters Aj are not, in general, independent of
each other (Fig. 2), and it has been established that model-
parallel algorithms can only be effective if the parallel
updates are restricted to independent (or weakly-corre-
lated) parameters [10], [13], [21], [22]. Hence, our definition
of model-parallelism includes the global scheduling mecha-
nism SpðÞ that can select carefully-chosen parameters for
parallel updating.

The scheduling function SðÞ opens up a large design
space, such as fixed, randomized, or even dynamically-
changing scheduling on the whole space, or a subset of, the
model parameters. SðÞ not only can provide safety and cor-
rectness (e.g., by selecting independent parameters and thus
minimize parallelization error), but can offer substantial
speed-up (e.g., by prioritizing computation onto non-
converged parameters). In the Lasso example, Petuum uses
SðÞ to select coefficients that are weakly correlated (thus
preventing divergence), while at the same time prioritizing
coefficients far from zero (which are more likely to be non-
converged).

2.3 Implementing Data- and Model-Parallel
Programs

Data- and model-parallel programs (Fig. 3) exhibit a certain
programming and systems desiderata: they are stateful, in
that they continually update shared model parameters A.
Thus, an ML platform needs to synchronize A across all run-
ning threads and processes, and this should be done via a
high-performance, non-blocking asynchronous strategy that
still guarantees convergence. If the program is model-paral-
lel, it may require fine control over the order of parameter
updates, in order to avoid non-convergence due to depen-
dency violations—thus, the ML platform needs to provide
fine-grained scheduling capability. We discuss some of the
difficulties associatedwith achieving these desiderata.

Data- and model-parallel programs can certainly be writ-
ten in a message-passing style, in which the programmer
explicitly writes code to send and receive parameters over
the network. However, we believe it is more desirable to
provide a Distributed Shared Memory (DSM) abstraction,
in which the programmer simply treats A like a global pro-
gram variable, accessible from any thread/process in a
manner similar to single-machine programming—no explict
network code is required from the user, and all synchroni-
zation is done in the background. While DSM-like interfaces
could be added to alternative ML platforms like Hadoop,
Spark and GraphLab, these systems usually operate in
either a bulk synchronous (prone to stragglers and blocking
due to the high rate of update DðÞ generation) or asynchro-
nous (having no parameter consistency guarantee, and
hence no convergence guarantee) fashion.

Model-parallel programs pose an additional challenge, in
that they require fine-grained control over the parallel order-
ing of variable updates. Again, while it is completely
possible to achieve such control via message-passing pro-
gramming style, there is nevertheless an opportunity to pro-
vide a simpler abstraction, in which the user merely has to
define the model scheduling function Sðt�1Þp ðAÞ. In such an
abstraction, networking and synchronization code is again
hidden from the user. While Hadoop and Spark provide

Fig. 3. Conceptual illustration of data and model parallelism. In data-par-
allelism, workers are responsible for generating updates DðÞ on different
data partitions, in order to updated the (shared) model state. In model-
parallelism, workers generate D on different model partitions, possibly
using all of the data.
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easy-to-use abstractions, their design does not give users
fine-grained control over the ordering of updates—for exam-
ple, MapReduce provides no control over the order in which
mappers or reducers are executed. We note that GraphLab
has a priority-based scheduler specialized for some model-
parallel applications, but still does not expose a dedicated

scheduling function Sðt�1Þp ðAÞ. One could certainly modify

Hadoop’s or Spark’s built-in schedulers to expose the
required level of control, but we do not consider this
reasonable for the average ML practitioner without strong
systems expertise.

These considerations make effective data- and model-
parallel programming challenging, and there is an opportu-
nity to abstract them away via a platform that is specifically
focused on data/model-parallel ML.

3 PETUUM – A PLATFORM FOR DISTRIBUTED ML

A core goal of Petuum is to allow practitioners to easily
implement data-parallel and model-parallel ML algorithms.
Petuum provides APIs to key systems that make data- and
model-parallel programming easier: (1) a parameter server
system, which allows programmers to access global model
state A from any machine via a convenient distributed
shared-memory interface that resembles single-machine pro-
gramming, and adopts a bounded-asychronous consistency
model that preserves data-parallel convergence guarantees,
thus freeing users from explicit network synchronization;
(2) a scheduler, which allows fine-grained control over
the parallel ordering of model-parallel updates DðÞ—in
essence, the scheduler allows users to define their own ML
application consistency rules.

3.1 Programming Interface

Fig. 4 shows pseudocode for a generic Petuum program,
consisting of three user-written functions (in either C++ or
Java): a central scheduler function schedule(), a parallel

update function push() (analogous to Map in MapRe-
duce), and a central aggregation function pull() (analo-
gous to Reduce). Data-parallel programs can be written
with just push(), while model-parallel programs are writ-
ten with all three functions schedule(), push() and
pull().

The model variables A are held in the parameter server,
which can be accessed at any time from any function via the
PS object. The PS object can be accessed from any function,
and has 3 functions: PS.get() to read a parameter, PS.
inc() to add to a parameter, and PS.put() to overwrite a
parameter. With just these operations, the parameter server
automatically ensures parameter consistency between all
Petuum components; no additional user programming is
necessary. In the example pseudocode, DATA is a place-
holder for data D; this can be any 3rd-party data structure,
database, or distributed file system.

3.2 Petuum System Design

ML algorithms exhibit several principles that can be
exploited to speed up distributed ML programs: depen-
dency structures between parameters, non-uniform conver-
gence of parameters, and a limited degree of error tolerance
[13], [14], [17], [21], [23], [24]. Through schedule(), push
() and pull(), Petuum allows practitioners to write data-
parallel and model-parallel ML programs that exploit these
principles, and can be scaled to Big Data and Big Model
applications. The Petuum system comprises three compo-
nents (Fig. 5): parameter server, scheduler, and workers.

3.2.1 Parameter Server

The parameter server (PS) enables data-parallelism, by pro-
viding users with global read/write access to model param-
eters A, via a convenient distributed shared memory API
that is similar to table-based or key-value stores. The PS API
consists of three functions: PS.get(), PS.inc() and PS.

put(). As the names suggest, the first function reads a part
of the global A into local memory, while the latter two add
or overwrite local changes into the global A.

To take advantage of ML error tolerance, the PS
implements the Eager Stale Synchronous Parallel (ESSP)
consistency model [14], [23], which reduces network syn-
chronization and communication costs, while maintaining
bounded-staleness convergence guarantees implied by
ESSP. The ESSP consistency model ensures that, if a worker
reads from parameter server at iteration c, it will definitely
receive all updates from all workers computed at and before
iteration c� s� 1, where s is a staleness threshold—see

Fig. 4. Petuum program structure.

Fig. 5. Petuum system: scheduler, workers, parameter servers.
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Fig. 6 for an illustration. In Section 6, we will cover theoreti-
cal guarantees enjoyed by ESSP consistency.

3.2.2 Scheduler

The scheduler system (Fig. 7) enables model-parallelism, by
allowing users to control which model parameters are
updated by worker machines. This is performed through a
user-defined scheduling function schedule() (corre-
sponding to Sðt�1Þp ðÞ), which outputs a set of parameters for
each worker. The scheduler sends the identities of these
parameters to workers via the scheduling control channel
(Fig. 5), while the actual parameter values are delivered
through the parameter server system. In Section 6, we will
discuss the theoretical guarantees enjoyed by model-paral-
lel schedules.

Several common patterns for schedule design are worth
highlighting: fixed-scheduling (schedule_fix()) dispatches
model parameters A in a pre-determined order; static,
round-robin schedules (e.g., repeatedly loop over all param-
eters) fit the schedule_fix() model. Dependency-aware
(schedule_dep()) scheduling allows re-ordering of vari-
able/parameter updates to accelerate model-parallel ML
algorithms, e.g., in Lasso regression, by analyzing the
dependency structure over model parameters A. Finally,
prioritized scheduling (schedule_pri()) exploits uneven
convergence in ML, by prioritizing subsets of variables

Usub � A according to algorithm-specific criteria, such as
the magnitude of each parameter, or boundary conditions
such as KKT. These common schedules are provided as pre-
implemented software libraries, or users can opt to write
their own schedule().

3.2.3 Workers

Each worker p receives parameters to be updated from
schedule(), and then runs parallel update functions
push() (corresponding to DðÞ) on data D. While push() is
being executed, the model state A can be easily synchro-
nized with the parameter server, using the PS.get() and
PS.inc() API. After the workers finish push(), the
scheduler may use the new model state to generate future
scheduling decisions.

Petuum intentionally does not enforce a data abstraction,
so that any data storage system may be used—workers may
read from data loaded into memory, or from disk, or over a
distributed file system or database such as HDFS. Further-
more, workers may touch the data in any order desired by
the programmer: in data-parallel stochastic algorithms,

workers might sample one data point at a time, while in
batch algorithms, workers might instead pass through all
data points in one iteration.

4 PETUUM PARALLEL ALGORITHMS

Now we turn to development of parallel algorithms for
large-scale distributed ML problems, in light of the data
and model parallel principles underlying Petuum. As exam-
ples, we explain how to use Petuum’s programming inter-
face to implement novel or state-of-the-art versions of the
following four algorithms: (1) data-parallel Distance Metric
Learning, (2) model-parallel Lasso regression, (3) model-
parallel topic modeling [ Latent Dirichlet Allocation (LDA)],
and (4) model-parallel Matrix Factorization. These algo-
rithms all enjoy significant performance advantages over
the previous state-of-the-art and existing open-source soft-
ware, as we will show.

Through pseudocode, it can be seen that Petuum
allows these algorithms to be easily realized on distrib-
uted clusters, without dwelling on low level system pro-
gramming, or non-trivial recasting of our ML problems
into representations such as RDDs or vertex programs.
Instead our ML problems can be coded at a high level,
more akin to Matlab or R. We round off with a brief
description of how we used Petuum implement a couple
of other ML algorithms.

4.1 Data-Parallel Distance Metric Learning

Let us first consider a large-scale Distance Metric Learning
problem. DML improves the performance of other ML pro-
grams such as clustering, by allowing domain experts to
incorporate prior knowledge of the form “data points x, y
are similar (or dissimilar)” [25]—for example, we could
enforce that “books about science are different from books
about art”. The output is a distance function dðx; yÞ that cap-
tures the aforementioned prior knowledge. Learning a
proper distance metric [25], [26] is essential for many dis-
tance based data mining and machine learning algorithms,
such as retrieval, k-means clustering and k-nearest neighbor
(k-NN) classification. DML has not received much attention

Fig. 6. ESSP consistency model, used by the Parameter Server. Work-
ers are allowed to run at different speeds, but are prevented from being
more than s iterations apart. Updates from the most recent s iterations
are “eagerly” pushed out to workers, but are not guaranteed to be visible.

Fig. 7. Scheduler system. Using algorithm or model-specific criteria,
the Petuum scheduler prioritizes a small subset of parameters from the
full model A. This is followed by a dependency analysis on the prioritized
subset: parameters are further subdivided into groups, where a parame-
ter Ai in group gu is must be independent of all other parameters Aj in all
other groups gv. This is illustrated as a graph partitioning, although the
implementation need not actually construct a graph.
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in the Big Data setting, and we are not aware of any distrib-
uted implementations of DML.

The most popular version of DML tries to learn a Maha-
lanobis distance matrix M (symmetric and positive-semide-
finite), which can then be used to measure the distance

between two samples Dðx; yÞ ¼ ðx� yÞTMðx� yÞ. Given a

set of “similar” sample pairs S ¼ fðxi; yiÞgjSji¼1, and a set of

“dissimilar” pairs D ¼ fðxi; yiÞgjDji¼1, DML learns the Mahala-
nobis distance by optimizing

minM
X
ðx;yÞ2S

ðx� yÞTMðx� yÞ

s:t: ðx� yÞTMðx� yÞ � 1; 8ðx; yÞ 2 D
M � 0;

(5)

whereM � 0 denotes thatM is required to be positive semi-
definite. This optimization problem minimizes the Mahala-
nobis distances between all pairs labeled as similar, while
separating dissimilar pairs with a margin of 1.

In its original form, this optimization problem is diffi-
cult to parallelize due to the constraint set. To create a
data-parallel optimization algorithm and implement it on
Petuum, we shall relax the constraints via slack variables
(similar to SVMs). First, we replace M with LTL, and
introduce slack variables � to relax the hard constraint in
Eq.(5), yielding

minL
X
ðx;yÞ2S

kLðx� yÞk2 þ �
X
ðx;yÞ2D

�x;y

s:t: kLðx� yÞk2 � 1� �x;y; �x;y � 0; 8ðx; yÞ 2 D:
(6)

Using hinge loss, the constraint in Eq.(6) can be eliminated,
yielding an unconstrained optimization problem:

minL
X
ðx;yÞ2S

kLðx� yÞk2

þ �
X
ðx;yÞ2D

maxð0; 1� kLðx� yÞk2Þ:
(7)

Unlike the original constrained DML problem, this relaxa-
tion is fully data-parallel, because it now treats the dis-
similar pairs as iid data to the loss function (just like the
similar pairs); hence, it can be solved via data-parallel
Stochastic Gradient Descent. SGD can be naturally paral-
lelized over data, and we partition the data pairs onto P
machines. Every iteration, each machine p randomly sam-
ples a minibatch of similar pairs Sp and dissimilar pairs
Dp from its data shard, and computes the following
update to L:

4Lp ¼
X
ðx;yÞ2Sp

2Lðx� yÞðx� yÞT

�
X
ða;bÞ2Dp

2Lða� bÞða� bÞT � IðkLða� bÞk2 � 1Þ;
(8)

where Ið�Þ is the indicator function.
Fig. 8 shows pseudocode for Petuum DML, which is

simple to implement because the parameter server system
PS abstracts away complex networking code under a sim-
ple get()/read() API. Moreover, the PS automatically

ensures high-throughput execution, via a bounded-asyn-
chronous consistency model (Stale Synchronous Parallel
(SSP)) that can provide workers with stale local copies of
the parameters L, instead of forcing workers to wait for
network communication. Later, we will review the strong
consistency and convergence guarantees provided by the
SSP model.

Since DML is a data-parallel algorithm, only the paral-
lel update push() needs to be implemented (Fig. 8). The
scheduling function schedule() is empty (because
every worker touches every model parameter L), and
we do not need aggregation push() for this SGD algo-
rithm. In our next example, we will show how sched-

ule() and push() can be used to implement model-
parallel execution.

4.2 Model-Parallel Lasso

Lasso is a widely used model to select features in high-
dimensional problems, such as gene-disease association
studies, or in online advertising via ‘1-penalized regres-
sion [27]. Lasso takes the form of an optimization problem:

minbb‘ðX; y;bbÞ þ �
P

j jbjj; (9)

where � denotes a regularization parameter that deter-
mines the sparsity of bb, and ‘ð�Þ is a non-negative convex
loss function such as squared-loss or logistic-loss; we
assume that X and y are standardized and consider (9)
without an intercept. For simplicity but without loss of

generality, we let ‘ðX; y;bbÞ ¼ 1
2 y� Xbbk k22; other loss func-

tions (e.g., logistic) are straightforward and can be solved
using the same approach [10]. We shall solve this via a
coordinate descent model-parallel approach, similar but
not identical to [10], [22].

The simplest parallel CD Lasso , shotgun [10], selects a
random subset of parameters to be updated in parallel. We
now present a scheduled model-parallel Lasso that
improves upon shotgun: the Petuum scheduler chooses
parameters that are nearly independent with each other,4

thus guaranteeing convergence of the Lasso objective. In
addition, it prioritizes these parameters based on their dis-
tance to convergence, thus speeding up optimization.

Why is it important to choose independent parameters
via scheduling? Parameter dependencies affect the CD

Fig. 8. Petuum DML data-parallel pseudocode.

4. In the context of Lasso, this means the data columns x�j corre-
sponding to the chosen parameters j have very small pair-wise dot
product, below a threshold t.

XING ET AL.: PETUUM: A NEW PLATFORM FOR DISTRIBUTED MACHINE LEARNING ON BIG DATA 55



update equation in the following manner: by taking the gra-
dient of (9), we obtain the CD update for bj:

d
ðtÞ
ij  xijyi �

P
k 6¼j xijxikb

ðt�1Þ
k ; (10)

b
ðtÞ
j  S

PN
i¼1 d

ðtÞ
ij ; �

� �
; (11)

where Sð�; �Þ is a soft-thresholding operator, defined by

Sðbj; �Þ 	 signðbÞ bj j � �ð Þ. In (11), if xTj xk 6¼ 0 (i.e., nonzero

correlation) and b
ðt�1Þ
j 6¼ 0 and b

ðt�1Þ
k 6¼ 0, then a coupling

effect is created between the two features bj and bk. Hence,

they are no longer conditionally independent given the
data: bj 6? bkjX; y. If the jth and the kth coefficients are

updated concurrently, parallelization error may occur,
causing the Lasso problem to converge slowly (or even
diverge outright).

Petuum’s schedule(), push() and pull() interface
is readily suited to implementing scheduled model-parallel
Lasso. We use schedule() to choose parameters with low
dependency, and to prioritize non-converged parameters.
Petuum pipelines schedule() and push(); thus sched-
ule() does not slow down workers running push(). Fur-
thermore, by separating the scheduling code schedule()

from the core optimization code push() and pull(), Pet-
uum makes it easy to experiment with complex scheduling
policies that involve prioritization and dependency check-
ing, thus facilitating the implementation of new model-par-
allel algorithms—for example, one could use schedule()

to prioritize according to KKT conditions in a constrained
optimization problem, or to perform graph-based depen-
dency checking like in Graphlab [13]. Later, we will show
that the above Lasso schedule schedule() is guaranteed
to converge, and gives us near optimal solutions by control-
ling errors from parallel execution. The pseudocode
for scheduled model parallel Lasso under Petuum is shown
in Fig. 9.

4.3 Topic Model (LDA)

Topic Modeling uncovers semantically-coherent topics from
unstructured document corpora, and is widely used in
industry—e.g., Yahoo’s YahooLDA [28], and Google’s
Rephil [29]. The most well-known member of the topic
modeling family is Latent Dirichlet Allocation: given a cor-
pus of N documents and a pre-specified K for number of
topics, the objective of LDA inference is to output K
“topics” (discrete distributions over V unique words in the
corpus), as well as the topic distribution of each document
(a discrete distribution over topics).

One popular LDA inference technique is collapsed Gibbs
sampling, a Markov Chain Monte Carlo algorithm that sam-
ples the topic assignments for each “token” (word position)
in each document until convergence. This is an iterative-
convergent algorithm that repeatedly updates three types of
model state parameters: an M-by-K “word-topic table” V ,
an N-by-K “doc-topic” table U , and the token topic assign-
ments zij. The LDA Gibbs sampler update is

P ðzij ¼ k jU; V Þ / aþUik

Kaþ
PK

‘¼1 Ui‘

þ bþVwij;k

Mbþ
PM

m¼1 Vmk

; (12)

where zij are topic assignments to each word “token” wij in
document i. The document word tokens wij, topic assign-
ments zij and doc-topic table rows Ui are partitioned across
worker machines and kept fixed, as is common practice
with Big Data. Although there are multiple parameters, the
only one that is read and updated by all parallel worker
(and hence needs to be globally-stored) is the word-topic
table V .

We adopt a model-parallel approach to LDA, and use a
schedule() (Algorithm 10) that cycles rows of the word-
topic table (rows correspond to different words, e.g.,
“machine” or “learning”) across machines, to be updated
via push() and pull(); data is kept fixed at each machine.
This schedule() ensures that no two workers will ever
touch the same rows of V in the same iteration,5 unlike pre-
vious LDA implementations [28] which allow workers to
update any parameter, resulting in dependency violations.

Note that the function LDAGibbsSample() in push()

can be replaced with any recent state-of-the art Gibbs

Fig. 9. Petuum Lasso model-parallel pseudocode.

5. Petuum LDA’s “cyclic” schedule differs from the model streaming
in [3]; the latter has workers touch the same set of parameters, one set at
a time. Model streaming can easily be implemented in Petuum, by
changing schedule() to output the same word range for every jp.
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sampling algorithm, such as the fast Metropolis-Hastings
algorithm in LightLDA [3]. Our experiments use the Spar-
seLDA algorithm [30], to ensure a fair comparison with
YahooLDA [28] (which also uses SparseLDA).

4.4 Matrix Factorization

MF is used in recommendation, where users’ item preferen-
ces are predicted based on other users’ partially observed
ratings. TheMF algorithm decomposes an incomplete obser-
vation matrix XN
M into two smaller matrices W 2 RK
N

andH 2 RK
M such thatWTH � X, whereK � minfM;Ng
is a user-specified rank:

minW;H

X
ði;jÞ2V

jjXij � wwT
i hhjjj2 þRegðW;HÞ; (13)

where RegðW;HÞ is a regularizer such as the Frobenius
norm, and V indexes the observed entries in X. High-rank
decompositions of large matrices provide improved accu-
racy [4], and can be solved by a model-parallel stochastic
gradient approach (Fig. 11) that ensures workers never
touch the same elements of W;H in the same iteration.
There are two update equations, forW;H respectively:

dWik ¼
X
ða;bÞ2V

Iða ¼ iÞ �2XabHkb þ 2Wa�H�bHkb½ 
; (14)

dHkj ¼
X
ða;bÞ2V

Iðb ¼ jÞ �2XabWak þ 2Wa�H�bWak½ 
; (15)

where IðÞ is the indicator function.
Previous systems using this approach [18] exhibited a

load-balancing issue, because the rows of X exhibit a power-
law distribution of non-zero entries; this was theoretically
solved by the Fugue algorithm implemented onHadoop [31],

which essentially repeats the available data xij at each
worker to restore load balance. Petuum can implement
Fugue SGD MF as Algorithm 11; we also provide an Alter-
nating Least Squares implementation for comparison against
other ALS-using systems like Spark andGraphLab.

4.5 Other Algorithms

We have implemented other data- and model-parallel
algorithms on Petuum as well. Here, we briefly mention a
few algorithms whose data/model-parallel implementa-
tion on Petuum substantially differs from existing soft-
ware. Many other ML algorithms are included in the
Petuum open-source code.

4.5.1 Deep Learning

We implemented two types on Petuum: a general-purpose
fully-connected Deep Neural Network (DNN) using the
cross-entropy loss, and a Convolutional Neural Network
(CNN) for image classification based off the open-source
Caffe project. We adopt a data-parallel strategy schedu-

le_fix(), where each worker uses its data subset to per-
form updates push() to the full model A. While this data-
parallel strategy could be amenable to MapReduce, Spark
and GraphLab, we are not aware of DL implementations on
those platforms.

Fig. 10. Petuum Topic Model (LDA) model-parallel pseudocode.

Fig. 11. Petuum MF model-parallel pseudocode.
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4.5.2 Logstic Regression (LR) and Support Vector

Machines (SVM)

Petuum implements LR and SVM using the same depen-
dency-checking, prioritized model-parallel strategy as the
Lasso Algorithm 9. Dependency checking and prioritization
are not easily implemented on MapReduce and Spark.
While GraphLab has support for these features; the key dif-
ference with Petuum is that Petuum’s scheduler performs
dependency checking on small subsets of parameters at a
time, whereas GraphLab performs graph partitioning on all
parameters at once (which can be costly).

4.5.3 Maximum Entropy Discrimination LDA (MedLDA)

MedLDA [32] is a constrained variant of LDA, that uses side
information to constrain and improve the recovered topics.
Petuum implements MedLDA using a data-parallel strategy
schedule_fix(), where each worker uses push() to alter-
nate between Gibbs sampling (like regular LDA) and solv-
ing for Lagrange multiplers associated with the constraints.

5 BIG DATA ECOSYSTEM SUPPORT

To support ML at scale in production, academic, or cloud-
compute clusters, Petuum provides a ready-to-run ML
library, called PMLlib; Table 1 shows the current list of ML
applications, with more applications are actively being
developed for future releases. Petuum also integrates with
Hadoop ecosystem modules, thus reducing the engineering
effort required to deploy Petuum in academic and real-
world settings.

Many industrial and academic clusters run Hadoop,
which provides, in addition to the MapReduce program-
ming interface, a job scheduler that allows multiple pro-
grams to run on the same cluster (YARN) and a distributed
filesystem for storing Big Data (HDFS). However, programs
that are written for stand-alone clusters are not compatible
with YARN/HDFS, and vice versa, applications written for
YARN/HDFS are not compatible with stand alone clusters.

Petuum solves this issue by providing common libraries
that work on either Hadoop or non-Hadoop clusters. Hence,

all Petuum PMLlib applications (and new user-written
applications) can be run in stand-alone mode or deployed
as YARN jobs to be scheduled alongside other MapReduce
jobs, and PMLlib applications can also read/write input
data and output results from both the local machine filesys-
tem as well as HDFS. More specifically, Petuum provides a
YARN launcher that will deploy any Petuum application
(including user-written ones) onto a Hadoop cluster; the
YARN launcher will automatically restart failed Petuum
jobs and ensure that they always complete. Petuum also
provides a data access library with C++ iostreams (or Java
file streams) for HDFS access, which allows users to write
generic file stream code that works on both HDFS files the
local filesystem. The data access library also provides pre-
implemented routines to load common data formats, such
as CSV, libSVM, and sparse matrix.

While Petuum PMLlib applications are written in C++
for maximum performance, new Petuum applications can
be written in either Java or C++; Java has the advantages of
easier deployment and a wider user base.

6 PRINCIPLES AND THEORY

Our iterative-convergent formulation of ML programs, and
the explicit notion of data and model parallelism, make it
convenient to explore three key properties of ML pro-
grams—error-tolerant convergence, non-uniform conver-
gence, dependency structures (Fig. 12)—and to analyze
how Petuum exploits these properties in a theoretically-

TABLE 1
Petuum ML Library (PMLlib): ML Applications and Achievable Problem Scale for a Given Cluster Size

ML Application Problem scale achieved on given cluster size

Topic Model (LDA) 220 b params (22 m unique words, 10 k topics) on 256 cores and 1 TB memory
Constrained Topic Model (MedLDA) 610 m params (61k unique words, 10 k topics, 20 classes) on 16 cores and

128 GB memory
Convolutional Neural Networks 1b params on 1,024 CPU cores and 2 TB memory
Fully-connected Deep Neural Networks 24 m params on 96 CPU cores and 768 GB memory
Matrix Factorization (MF) 20 m-by-20k input matrix, rank 400 (8 b params) on 128 cores and 1 TB memory
Non-negative Matrix Factorization (NMF) 20 m-by-20k input matrix, rank 50 (1 b params) on 128 cores and 1 TB memory
Sparse Coding (SC) 1 b params on 128 cores and 1TB memory
Logistic Regression (LR) 100 m params (50 k samples, 2 b nonzeros) on 512 cores and 1 TB memory
Multi-class Logistic Regression (MLR) 10 m params (10 classes, 1 m features) on 512 cores and 1 TB memory
Lasso Regression 100 m params (50 k samples, 2 b nonzeros) on 512 cores and 1 TB memory
Support Vector Machines 100 m params (50 k samples, 2 b nonzeros) on 512 cores and 1 TB memory
Distance Metric Learning (DML) 441m params (63 k samples, 21 k feature dimension) on 64 cores and 512 GBmemory
K-means clustering 1 m params (10 m samples, 1 k feature dimension, 1 k clusters) on 32 cores and

256 GB memory
Random Forest 8,000 trees (2 m samples) on 80 cores and 640 GB memory

Petuum’s goal is to solve large model and data problems using medium-sized clusters with only 10 s of machines (100-1,000 cores, 1 TB+ memory). Running time
varies between 10 s of minutes to several days, depending on the application.

Fig. 12. Key properties of ML algorithms: (a) Non-uniform convergence;
(b) Error-tolerant convergence; (c) Dependency structures amongst
variables.

58 IEEE TRANSACTIONS ON BIG DATA, VOL. 1, NO. 2, APRIL-JUNE 2015



sound manner to speed up ML program completion at Big
Learning scales.

Some of these properties have previously been success-
fully exploited by a number of bespoke, large-scale imple-
mentations of popular ML algorithms: e.g., topic models [3],
[17], matrix factorization [33], [34], and deep learning [1]. It
is notable that MapReduce-style systems (such as
Hadoop [11] and Spark [12]) often do not fare competitively
against these custom-built ML implementations, and one of
the reasons is that these key ML properties are difficult to
exploit under a MapReduce-like abstraction. Other abstrac-
tions may offer a limited degree of opportunity—for exam-
ple, vertex programming [13] permits graph dependencies
to influence model-parallel execution.

6.1 Error Tolerant Convergence

Data-parallel ML algorithms are often robust against minor
errors in intermediate calculations; as a consequence, they
still execute correctly even when their model parameters A
experience synchronization delays (i.e., the P workers only
see old or stale parameters), provided those delays are
strictly bounded [8], [9], [14], [23], [31], [35]. Petuum
exploits this error-tolerance to reduce network communica-
tion/synchronization overheads substantially, by imple-
menting the Stale Synchronous Parallel consistency
model [14], [23] on top of the parameter server system,
which provides all machines with access to parameters A.

The SSP consistency model guarantees that if a worker
reads from parameter server at iteration c, it is guaranteed
to receive all updates from all workers computed at and
before iteration c� s� 1, where s is the staleness threshold.
If this is impossible because some straggling worker is more
than s iterations behind, the reader will stop until the strag-
gler catches up and sends its updates. For stochastic gradi-
ent descent algorithms (such as the DML program), SSP has
very attractive theoretical properties [14], which we par-
tially re-state here:

Theorem 1 (adapted from [14] SGD under SSP, conver-
gence in probability). Let fðxÞ ¼PT

t¼1 ftðxÞ be a convex
function, where the ft are also convex. We search for a mini-
mizer x� via stochastic gradient descent on each component
rft under SSP, with staleness parameter s and P workers. Let
ut :¼ �htrtftð~xtÞ with ht ¼ hffiffi

t
p . Under suitable conditions

(ft are L-Lipschitz and bounded divergence Dðxjjx0Þ � F 2),
we have

P
R X½ 

T
� 1ffiffiffiffi

T
p hL2 þ F 2

h
þ 2hL2mg

� �
� t

	 


� exp
�Tt2

2�hTsg þ 2
3 hL

2ð2sþ 1ÞPt

( )
;

where R½X
 :¼PT
t¼1 ftð~xtÞ � fðx�Þ, and �hT ¼ h2L4ðlnTþ1Þ

T ¼
oð1Þ as T !1.

This theorem has two implications: (1) learning under the
SSP model is correct (like Bulk Synchronous Parallel (BSP)
learning), because R½X


T —which is the difference between the
SSP parameter estimate and the true optimum—converges

to OðT�1=2Þ in probability with an exponential tail-bound;

(2) keeping staleness (i.e., asynchrony) as low as possible
improves per-iteration convergence—specifically, the
bound becomes tighter with lower maximum staleness s,
and lower average mg and variance sg of the staleness expe-

rienced by the workers. Conversely, naive asynchronous
systems (e.g., Hogwild! [35] and YahooLDA [28]) may expe-
rience poor convergence, particularly in production envi-
ronments where machines may slow down due to other
tasks or users. Such slowdown can cause the maximum
staleness s and staleness variance sg to become arbitrarily
large, leading to poor convergence rates. In addition to the
above theorem (which bounds the distribution of x), Dai
et al. also showed that the variance of x can be bounded,
ensuring reliability and stability near an optimum [14].

6.2 Dependency Structures

Naive parallelization of model-parallel algorithms (e.g.,
coordinate descent) may lead to uncontrolled parallelization
error and non-convergence, caused by inter-parameter
dependencies in the model. The mathematical definition of
dependency differs between algorithms and models; exam-
ples include the Markov Blanket structure of graphical
models (explored in GraphLab [13]) and deep neural net-
works (partially considered in [5]), or the correlation
between data dimensions in regression problems (explored
in [22]).

Such dependencies have been thoroughly analyzed under
fixed execution schedules (where each worker updates the
same set of parameters every iteration) [10], [22], [36], but
there has been little research on dynamic schedules that can
react to changing model dependencies or model state A.
Petuum’s scheduler allows users to write dynamic schedul-

ing functions SðtÞp ðAðtÞÞ—whose output is a set of model indi-

ces fj1; j20; . . .g, telling worker p to update Aj1 ; Aj2 ; . . .—as

per their application’s needs. This enables ML programs to
analyze dependencies at run time (implemented via sched-
ule()), and select subsets of independent (or nearly-inde-
pendent) parameters for parallel updates.

To motivate this, we consider a generic optimization
problem, which many regularized regression problems
(RRPs)—including the Petuum Lasso example—fit into:

Definition (Regularized Regression Problem).

min
w2Rd

fðwÞ þ rðwÞ; (16)

where w is the parameter vector, rðwÞ ¼Pi rðwiÞ is separable
and f has b-Lipschitz continuous gradient in the following
sense:

fðwþ zÞ � fðwÞ þ z>rfðwÞ þ b

2
z>X>Xz; (17)

where X ¼ ½x1; . . . ; xd
 are d feature vectors. W.l.o.g., we
assume that each feature vector xi is normalized, i.e.,
kxik2 ¼ 1; i ¼ 1; . . . ; d. Therefore jx>i xjj � 1 for all i; j.

In the regression setting, fðwÞ represents a least-squares
loss, rðwÞ represents a separable regularizer (e.g., ‘1 pen-
alty), and xi represents the ith feature column of the design
(data) matrix, each element in xi is a separate data sample.

In particular, jx>i xjj is the correlation between the ith and
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jth feature columns. The parameters w are simply the
regression coefficients.

In the context of the model-parallel equation (4), we can
map the model A ¼ w, the data D ¼ X, and the update
equation DðA;SpðAÞÞ to

wþjp  argmin
z2R

b

2
½z� ðwjp �

1

b
gjpÞ
2 þ rðzÞ; (18)

where SðtÞp ðAÞ has selected a single coordinate jp to be
updated by worker p—thus, P coordinates are updated in
every iteration. The aggregation function F ðÞ simply allows
each update wjp to pass through without change.

The effectiveness of parallel coordinate descent depends
on how the schedule SðtÞp ðÞ selects the coordinates jp. In par-
ticular, naive random selection can lead to poor conver-
gence rate or even divergence, with error proportional to

the correlation jx>jaxjb j between the randomly-selected coor-

dinates ja; jb [10], [22]. An effective and cheaply-computable

schedule S
ðtÞ
RRP;pðÞ involves randomly proposing a small set

of Q > P features fj1; . . . ; jQg, and then finding P features

in this set such that jx>jaxjb j � u for some threshold u, where

ja; jb are any two features in the set of P . This requires at

most OðB2Þ evaluations of jx>jaxjb j � u (if we cannot find P

features that meet the criteria, we simply reduce the
degree of parallelism). We have the following convergence
theorem:

Theorem 2 (SRRP ðÞ convergence). Let � :¼ dðE½P2
=E½P�1
Þðr�1Þ
d2

�
ðE½P�1
Þðr�1Þ

d < 1, where r is a constant that depends on the

input data x and the scheduler SRRP ðÞ. After t steps, we have

E½F ðwðtÞÞ � F ðw$ Þ
 � Cdb

E½P ð1� �Þ

1

t
; (19)

where F ðwÞ :¼ fðwÞ þ rðwÞ and w
$

is a minimizer of F .
E½P 
 is the average degree of parallelization over all itera-
tions—we say “average” to account for situations where the
scheduler cannot select P nearly-independent parameters (due
to high correlation in the data). The proof for this theorem can
be found in the Appendix. For most real-world data sets, this is
not a problem, and E½P 
 is equal to the number of workers.

This theorem states that SRRP ðÞ-scheduling (which is
used by Petuum Lasso) achieves close to P -fold (linear)
improvement in per-iteration convergence (where P is the
number of workers). This comes from the 1=E½P ð1� �Þ
 fac-
tor on the RHS of Eq. (19); for input data x that is sparse and
high-dimensional, the SRRP ðÞ scheduler will cause r� 1 to
become close to zero, and therefore � will also be close to
zero—thus the per-iteration convergence rate is improved
by nearly P -fold. We contrast this against a naive system
that selects coordinates at random; such a system will have
far larger r� 1, thus degrading per-iteration convergence.

In addition to asymptotic convergence, we show that
SRRP ’s trajectory is close to ideal parallel execution:

Theorem 3 (SRRP ðÞ is close to ideal execution). Let SidealðÞ be
an oracle schedule that always proposes P random features

with zero correlation. Let w
ðtÞ
ideal be its parameter trajectory,

and letw
ðtÞ
RRP be the parameter trajectory of SRRP ðÞ. Then,

E½jwðtÞideal �w
ðtÞ
RRP j
 �

2dPm

ðtþ 1Þ2P̂ L2X>XC; (20)

for constants C;m;L; P̂ . The proof for this theorem can be
found in the Appendix.

This theorem says that the difference between the SRRP ðÞ
parameter estimate wRRP and the ideal oracle estimate

wideal rapidly vanishes, at a fast 1=ðtþ 1Þ2 rate. In other
words, one cannot do much better than SRRP ðÞ schedul-
ing—it is near-optimal.

We close this section by noting that SRRP ðÞ is different
from Scherrer et al. [22], who pre-cluster all M features
before starting coordinate descent, in order to find “blocks”
of nearly-independent parameters. In the Big Data and
especially Big Model setting, feature clustering can be pro-

hibitive—fundamentally, it requires OðM2Þ evaluations of

jx>i xjj for all M2 feature combinations ði; jÞ, and although
greedy clustering algorithms can mitigate this to some
extent, feature clustering is still impractical when M is very
large, as seen in some regression problems [27]. The pro-
posed SRRP ðÞ only needs to evaluate a small number of

jx>i xjj every iteration. Furthermore, the random selection in
SRRP ðÞ can be replaced with prioritization to exploit non-uni-
form convergence in ML problems, as explained next.

6.3 Non-Uniform Convergence

In model-parallel ML programs, it has been empirically
observed that some parameters Aj can converge in much
fewer/more updates than other parameters [21]. For
instance, this happens in Lasso regression because the
model enforces sparsity, so most parameters remain at zero
throughout the algorithm, with low probability of becoming
non-zero again. Prioritizing Lasso parameters according to
their magnitude greatly improves convergence per itera-
tion, by avoiding frequent (and wasteful) updates to zero
parameters [21].

We call this non-uniform ML convergence, which can be
exploited via a dynamic scheduling function SðtÞp ðAðtÞÞ
whose output changes according to the iteration t—for
instance, we can write a scheduler SmagðÞ that proposes
parameters with probability proportional to their current

magnitude ðAðtÞj Þ2. This SmagðÞ can be combined with the

earlier dependency structure checking, leading to a depen-
dency-aware, prioritizing scheduler. Unlike the dependency
structure issue, prioritization has not received as much
attention in the ML literature, though it has been used to
speed up the PageRank algorithm, which is iterative-
convergent [37].

The prioritizing schedule SmagðÞ can be analyzed in the
context of the Lasso problem. First, we rewrite it by dupli-
cating the original J features with opposite sign, as in [10]:

F ðbbÞ :¼ minbb
1
2 y� Xbbk k22þ�

P2J
j¼1 bj: Here, X contains 2J

features and bj � 0, for all j ¼ 1; . . . ; 2J .

Theorem 4 (Adapted from [21] Optimality of Lasso prior-
ity scheduler). Suppose B is the set of indices of coefficients
updated in parallel at the tth iteration, and r is sufficiently

small constant such that rdb
ðtÞ
j db

ðtÞ
k � 0, for all j 6¼ k 2 B.

Then, the sampling distribution pðjÞ / ðdbðtÞj Þ2 approximately

maximizes a lower bound on EB½F ðbbðtÞÞ � F ðbbðtÞ þ dbbðtÞÞ
.
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This theorem shows that a prioritizing scheduler will
speed up Lasso convergence, by decreasing the objective as
much as is theoretically possible every iteration.

In practice, the Petuum scheduler system approximates

pðjÞ / ðdbðtÞj Þ2 with p0ðjÞ / ðbðt�1Þj Þ2 þ h, in order to allow

pipelining of multiple iterations for faster real-time conver-
gence.6 The constant h ensures that all bj’s have a non-zero

probability of being updated.

7 PERFORMANCE

Petuum’s ML-centric system design supports a variety of
ML programs, and improves their performance on Big Data
in the following senses: (1) Petuum ML implementations
achieve significantly faster convergence rate than well-opti-
mized single-machine baselines (i.e., DML implemented on
single machine, and Shotgun [10]); (2) Petuum ML imple-
mentations can run faster than other programmable plat-
forms (e.g., Spark, GraphLab7), because Petuum can exploit
model dependencies, uneven convergence and error toler-
ance; (3) Petuum ML implementations can reach larger
model sizes than other programmable platforms, because
Petuum stores ML program variables in a lightweight fash-
ion (on the parameter server and scheduler); (4) for ML
programs without distributed implementations, we can
implement them on Petuum and show good scaling with an
increasing number of machines. We emphasize that Petuum
is, for the moment, primarily about allowing ML practi-
tioners to implement and experiment with new data/
model-parallel ML algorithms on small-to-medium clusters.
Our experiments are therefore focused on clusters with 10-
100 machines, in accordance with our target users.

7.1 Hardware Configuration

To demonstrate that Petuum is adaptable to different hard-
ware generations, our experiments used three clusters with
varying specifications: Cluster-1 has up to 128 machines
with two AMD cores, 8 GB RAM, 1 Gbps Ethernet; Cluster-2
has up to 16 machines with 64 AMD cores, 128 GB RAM,
40 Gbps Infiniband; Cluster-3 has up to 64 machines with
16 Intel cores, 128 GB RAM, 10 Gbps Ethernet.

7.2 Parameter Server and Scheduler Performance

Petuum’s Parameter Server (PS) and Scheduler speed up
existing ML algorithms by improving iteration throughput and
iteration quality respectively.Wemeasure iteration throughput
as “iterations executed per second”, andwe quantify iteration
quality by plotting the ML objective function L against itera-
tion number—“objective progress per iteration”. In either
case, the goal is to improve the ML algorithm’s real-time con-
vergence rate, quantified by plotting the objective function L
against real time (“objective progress per second”).

7.2.1 Parameter Server

We consider how the PS improves iteration throughput
(through the Eager SSP consistency model), evaluated

using PLMlib’s Matrix Factorization with the schedule

() function disabled (in order to remove the beneficial
effect of scheduling, so we may focus on the PS). This
experiment was conducted using 64 Cluster-3 machines
on a 332 GB sparse matrix (7.7 m by 288 k entries, 26 b
nonzeros, created by duplicating the Netflix dataset 16
times horizontally and 16 times vertically). We compare
the performance of MF running under Petuum PS’s
Eager SSP mode (using staleness s ¼ 2; higher staleness
values did not produce additional benefit), versus run-
ning under MapReduce-style Bulk Synchronous Parallel
mode. Fig. 13 shows that ESSP provides a 30 percent
improvement to iteration throughput (top left), without a
significantly affecting iteration quality (top right). Conse-
quently, the MF application converges 30 percent faster
in real time (middle left).

The iteration throughput improvement occurs because
ESSP allows both gradient computation and inter-worker
communication to occur at the same time, whereas classic
BSP execution requires computation and communication to
alternate in a mutually exclusive manner. Because the maxi-
mum staleness s ¼ 2 is small, and because ESSP eagerly
pushes parameter updates as soon as they are available,
there is almost no penalty to iteration quality despite allow-
ing staleness.

Fig. 13. Performance increase in ML applications due to the Petuum
Parameter Server (PS) and Scheduler. The Eager Stale Synchro-
nous Parallel consistency model (on the PS) improves the number
of iterations executed per second (throughput) while maintaining
per-iteration quality. Prioritized, dependency-aware scheduling
allows the Scheduler to improve the quality of each iteration, while
maintaining iteration throughput. In both cases, overall real-time con-
vergence rate is improved—30 percent improvement for the PS
Matrix Factorization example, and several orders of magnitude for
the Scheduler Lasso example.

6. Without this approximation, pipelining is impossible because

db
ðtÞ
j is unavailable until all computations on b

ðtÞ
j have finished.

7. We omit Hadoop and Mahout, as it is already well-established
that Spark and GraphLab significantly outperform it [12], [13].

XING ET AL.: PETUUM: A NEW PLATFORM FOR DISTRIBUTED MACHINE LEARNING ON BIG DATA 61



7.2.2 Scheduler

We examine how the Scheduler improves iteration quality
(through a well-designed schedule() function), evaluated
using PMLlib’s Lasso application. This experiment was con-
ducted using 16Cluster-2 on a simulated 150 GB sparse data-
set (50 m features); adjacent features in the dataset are highly
correlated in order to simulate the effects of realistic feature
engineering. We compare the original PMLlib Lasso (whose
schedule() performs prioritization and dependency check-
ing) to a simpler version whose schedule() selects parame-
ters at random (the shotgun algorithm [10]). Fig. 13 shows
that PMLlib Lasso’s schedule() slightly decreases iteration
throughput (middle right), but greatly improves iteration
quality (bottom left), resulting in several orders of magnitude
improvement to real-time convergence (bottom right).

The iteration quality improvement is mostly due to prior-
itization; we note that without prioritization, 85 percent of
the parameters would converge within five iterations, but
the remaining 15 percent would take over 100 iterations.
Moreover, prioritization alone is not enough to achieve fast
convergence speed—when we repeated the experiment
with a prioritization-only schedule() (not shown), the
parameters became unstable, which caused the objective
function to diverged. This is because dependency checking
is necessary to avoid correlation effects in Lasso (discussed
in the proof to Theorem 2), which we observed were greatly
amplified under the prioritization-only schedule().

7.3 Comparison to Programmable Platforms

Fig. 14(left) compares Petuum to popular platforms for writ-
ing newML programs (Spark v1.2 and GraphLab), as well as
a well-known cluster implementation of LDA (YahooLDA).
We compared Petuum to Spark, GraphLab and YahooLDA
on two applications: LDA andMF.We ran LDA on 128Clus-
ter-1machines, using 3.9 m EnglishWikipedia abstracts with
unigram (V ¼ 2:5m) and bigram (V ¼ 21:8m) vocabularies;
the bigram vocabulary is an example of feature engineering
to improve performance at the cost of additional computa-
tion. The MF comparison was performed on 10 Cluster-2
machines using the original Netflix dataset.

7.3.1 Speed

For MF and LDA, Petuum is between 2-6 times faster than
other platforms (Figs. 14, 15). For MF, Petuum uses the
same model-parallel approach as Spark and GraphLab, but

it performs twice as fast as Spark, while GraphLab ran out
of memory (due to the need to construct an explicit graph
representation, which consumes significant memory). On
the other hand, Petuum LDA is nearly six times faster than
YahooLDA; the speedup mostly comes from the Petuum
LDA schedule() (Fig. 10), which performs correct model-
parallel execution by only allowing each worker to operate
on disjoint parts of the vocabulary. This is similar to Graph-
Lab’s implementation, but is far more memory-efficient
because Petuum does not need to construct a full graph
representation of the problem.

7.3.2 Model Size

We show that Petuum supports larger ML models for the
same amount of cluster memory. Fig. 15 shows ML program
running time versus model size, given a fixed number of
machines—the left panel compares Petuum LDA and
YahooLDA; PetuumLDA converges faster and supports
LDA models that are > 10 times larger,8 allowing long-tail
topics to be captured. The right panels compare PetuumMF
versus Spark and GraphLab; again Petuum is faster and
supports much larger MF models (higher rank) than either
baseline. Petuum’s model scalability comes from two fac-
tors: (1) model-parallelism, which divides the model across
machines; (2) a lightweight parameter server system with
minimal storage overhead. In contrast, Spark and GraphLab
have additional overheads that may not be necessary in an
ML context—Spark needs to construct a “lineage graph” in
order to preserve its strict fault recovery guarantees, while
GraphLab needs to represent the ML problem in graph
form. Because ML applications are error-tolerant, fault
recovery can be performed with lower overhead through
periodic checkpointing.

7.4 Fast Cluster Implementations of New ML
Programs

Petuum facilitates the development of new ML programs
without existing cluster implementations; here we present
two case studies. The first is a cluster version of the open-
source Caffe CNN toolkit, created by adding � 600 lines of
Petuum code. The basic data-parallel strategy in Caffe was
left unchanged, so the Petuum port directly tests Petuum’s
efficiency. We tested on four Cluster-3 machines, using a
250k subset of Imagenet with 200 classes, and 1.3 m model

Fig. 14. Left: Petuum relative speedup versus popular platforms (larger
is better). Across ML programs, Petuum is at least 2-10 times faster
than popular implementations. Right: Petuum allows single-machine
algorithms to be transformed into cluster versions, while still achieving
near-linear speedup with increasing number of machines (Caffe CNN
and DML).

Fig. 15. Left: LDA convergence time: Petuum versus YahooLDA (lower
is better). Petuum’s data-and-model-parallel LDA converges faster than
YahooLDA’s data-parallel-only implementation, and scales to more LDA
parameters (larger vocab size, number of topics). Right panels: Matrix
Factorization convergence time: Petuum vs GraphLab vs Spark. Petuum
is fastest and the most memory-efficient, and is the only platform that
could handle Big MF models with rank K � 1;000 on the given hardware
budget.

8. LDA model size is equal to vocab size times number of topics.
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parameters. Compared to the original single-machine
Caffe (which does not have the overhead of network com-
munication), Petuum approaches linear speedup (3:1-times
speedup on 4 machines, Fig. 14 (right plot)) due to the
parameter server’s ESSP consistency for managing network
communication.

Second, we compare the Petuum DML program against
the original DML algorithm proposed in [25] (denoted by
Xing2002), implemented using SGD on a single machine
(with parallelization over matrix operations). The intent is to
show that, even for ML algorithms that have received less
research attention towards scalability (such as DML), one
can still implement a reasonably simple data-parallel SGD
algorithm on Petuum, and enjoy the benefits of paralleliza-
tion over a cluster. The DML experiment was run on four
Cluster-2 machines, using the 1-million-sample Imagenet
[38] dataset with 1,000 classes (21.5k-by-21.5k matrix with
220 m model parameters), and 200 m similar/dissimilar
statements. The PetuumDML implementation converges 3.8
times faster than Xing2002 on four machines (Fig. 14, right
plot). We also evaluated Petuum DML’s convergence speed
on 1-4 machines (Fig. 16)—compared to using 1 machine,
Petuum DML achieves 3.8 times speedup with four
machines and 1.9 times speedupwith twomachines.

8 SUMMARY AND FUTURE WORK

Petuum provides ML practitioners with an ML library and
ML programming platform, capable of handling Big Data
and Big ML Models with performance that is competitive
with specialized implementations, while running on reason-
able cluster sizes (10-100 machines). This is made possible
by systematically exploiting the unique properties of itera-
tive-convergent ML algorithms—error tolerance, depen-
dency structures and uneven convergence; these properties
have yet to be thoroughly explored in general-purpose Big
Data platforms such as Hadoop and Spark.

In terms of feature set, Petuum is still relatively imma-
ture compared to Hadoop and Spark, and lacks the follow-
ing: fault recovery from partial program state (critical for
scaling to 1,000+ machines), ability to adjust resource usage
on-the-fly in running jobs, scheduling jobs for multiple
users (multi-tenancy), a unified data interface that closely
integrates with databases and distributed file systems, and
support for interactive scripting languages such as Python
and R. The lack of these features imposes a barrier to entry
for new users, and future work on Petuum will address
these issues—but in a manner consistent with Petuum’s

focus on iterative-convergent ML properties. For example,
fault recovery in ML does not require perfect, synchronous
checkpoints (used in Hadoop and Spark); instead, check-
points with ESSP-style bounded error consistency can be
used. This in turn opens up new ways to achieve on-the-fly
resource adjustment and multi-tenancy.

APPENDIX

PROOF OF THEOREM 2

We prove that the Petuum SRRP ðÞ scheduler makes the Reg-
ularized Regression Problem converge. We note that SRRP ðÞ
has the following properties: (1) the scheduler uniformly ran-
domly selects Q out of d coordinates (where d is the number
of features); (2) the scheduler performs dependency checking
and retains P out of Q coordinates; (3) in parallel, each of
the P workers is assigned one coordinate, and performs
coordinate descent on it:

wþjp  argmin
z2R

b

2
z� wjp �

1

b
gjp

� �	 
2
þrðzÞ; (21)

where gj ¼ rjfðwÞ is the j-th partial derivative, and the
coordinate jp is assigned to the p-th worker. Note that (21) is

simply the gradient update: w w� 1
b
g, followed by apply-

ing the proximity operator of r.
As we just noted, SRRP ðÞ scheduling selects P coordi-

nates out of Q by performing dependency checking: effec-
tively, the scheduler will put coordinates i and j into the

same “block” iff jx>i xjj � u for some “correlation threshold”

u 2 ð0; 1Þ. The idea is that coordinates in the same block will
never be updated in parallel; the algorithm must choose the
P coordinates from P distinct blocks. In order to analyze
the effectiveness of this procedure, we will consider the fol-
lowing matrix:

8i; Aii ¼ 1; 8i 6¼ j; Aij ¼ x>i xj; if jx>i xjj � u

0; otherwise

�
: (22)

This matrix A captures the impact of grouping coordinates
into blocks, and its spectral radius r ¼ rðAÞ will be used to
show that scheduling entails a nearly P -fold improvement
in convergence with P processors. A simple bound for the
spectral radius rðAÞ is:

jr� 1j �
X
j6¼i
jAijj � ðd� 1Þu: (23)

SRRP ðÞ scheduling sets the correlation threshold u to a
small constant, causing the spectral radius r to also be
small (which will lead to a nearly P -fold improvement in
per-iteration convergence rate). We contrast SRRP ðÞ with
random shotgun-style [10] scheduling, which is equivalent
to setting u ¼ 1; this causes r to become large, which will
degrade the per-iteration convergence rate.

Finally, let N denote the number of pairs ði; jÞ that pass
the dependency check jx>i xjj � u. In high-dimensional prob-

lems with over 100 million dimensions, it is often the case

that N � d2, because each coordinate i is unlikely to be cor-
related with more than a few other coordinates j. We there-

fore assume N � d2 for our analysis. We note that P , the

Fig. 16. Petuum DML objective versus time convergence curves, from
one to four machines.
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number of coordinates selected for parallel update by the
scheduler, is a random variable (because it may not always
be possible to select P independent coordinates). Our analy-
sis therefore considers the expected value E½P 
. We are now
ready to prove Theorem 2:

Theorem 2. Let � :¼ dðE½P2
=E½P�1
Þðr�1Þ
N � ðE½P�1
Þðr�1Þd < 1, then

after t steps, we have

E½F ðwðtÞÞ � F ðw$ Þ
 � Cdb

E½P ð1� �Þ

1

t
; (24)

where F ðwÞ :¼ fðwÞ þ rðwÞ and w
$
denotes a (global) mini-

mizer of F (whose existence is assumed for simplicity).

Proof of Theorem 2. We first bound the algorithm’s prog-
ress at step t. To avoid cumbersome double indices, let
w ¼ wt and z ¼ wtþ1. Then, by applying (17), we have

E½F ðzÞ � F ðwÞ


� E

	XP
p¼1

gjpðwþjp � wjpÞ þ rðwþjpÞ � rðwjpÞ

þ b

2
ðwþjp � wjpÞ2 þ

b

2

X
p6¼q
ðwþjp � wjpÞðwþjq � wjq Þx>jpxjq




¼ E½P 

d

	
g>ðwþ �wÞ þ rðwþÞ � rðwÞ þ b

2
kwþ �wk22




þ bE½P ðP � 1Þ

2N

ðwþ �wÞ>ðA� IÞðwþ �wÞ

� �bE½P 

2d
kwþ �wk22 þ

bE½P ðP � 1Þ
ðr� 1Þ
2N

kwþ �wk22

� �bE½P ð1� �Þ

2d

kwþ �wk22;

where we define � ¼ dðE½P2
=E½P�1
Þðr�1Þ
N , and the second

inequality follows from the optimality of wþ as defined
in (21). Therefore as long as � < 1, the algorithm is
decreasing the objective. This in turn puts a limit on the
maximum number of parallel workers, which is inversely
proportional to the spectral radius r.

The rest of the proof follows the same line as the
shotgun paper [10]. Briefly, consider the case where
0 2 @rðwtÞ, then

F ðwtþ1Þ � F ðw$ Þ � ðwtþ1 �w
$ Þ>g � kwtþ1 �w

$ k2 � kgk2;
and kwtþ1 �wtk22 ¼ kgk22=b2. Thus, defining dt ¼ F ðwtÞ�
F ðw$ Þ, we have

Eðdtþ1 � dtÞ � � E½P ð1� �Þ

2dbkwtþ1 �w$ k22

Eðd2tþ1Þ (25)

� � E½P ð1� �Þ

2dbkwtþ1 �w$ k22

½Eðdtþ1Þ
2: (26)

Using induction it follows that EðdtÞ � Cdb
E½P ð1��Þ


1
t for some

universal constant C. tu

The theorem confirms two intuitions: The larger the
number of selected coordinates E½P 
 (i.e., more parallel
workers), the faster the algorithm converges per-iteration;
however, this also increases �, demonstrating a tradeoff
between parallelization and correctness. Also, the smaller

the variance E½P 2
, the faster the algorithm converges (since
� is proportional to it).

Remark. We compare Theorem 2 with Shotgun [10] and the
Block greedy algorithm in [22]. The convergence rate we
get is similar to shotgun, but with a significant difference:
Our spectral radius r ¼ rðAÞ is potentially much smaller

than shotgun’s rðX>XÞ, since by partitioning we zero

out all entries in the correlation matrix X>X that are big-
ger than the threshold u. In other words, we get to control
the spectral radius while shotgun is totally passive.

The convergence rate in [22] is CB
P ð1��0Þ

1
t, where

�0 ¼ ðP�1Þðr0�1ÞB�1 . Compared with ours, we have a bigger

(hence worse) numerator (d versus B) but the denomina-
tor (�0 versus �) are not directly comparable: we have a
bigger spectral radius r and bigger d while [22] has a
smaller spectral radius r0 (essentially taking a submatrix
of our A) and smaller B� 1. Nevertheless, we note that
[22] may have a higher per-step complexity: each worker
needs to check all of its assigned t coordinates just to
update one “optimal” coordinate. In contrast, we simply
pick a random coordinate, and hence can be much
cheaper per-step.

PROOF OF THEOREM 3

For the Regularized Regression Problem, we prove that the
Petuum SRRP ðÞ scheduler produces a solution trajectory

w
ðtÞ
RRP that is close to ideal execution:

Theorem 3. (SRRP ðÞ is close to ideal execution). Let SidealðÞ
be an oracle schedule that always proposes P random features

with zero correlation. Let w
ðtÞ
ideal be its parameter trajectory,

and letw
ðtÞ
RRP be the parameter trajectory of SRRP ðÞ. Then,

E½jwðtÞideal �w
ðtÞ
RRP j
 �

2JPm

ðT þ 1Þ2P̂ L2XTXC; (27)

C is a data dependent constant, m is the strong convexity con-

stant, L is the domain width of Aj, and P̂ is the expected num-
ber of indexes that SRRP ðÞ can actually parallelize in each
iteration (since it may not be possible to find P nearly-indepen-
dent parameters).

We assume that the objective function F ðwÞ ¼ fðwÞ þ
rðwÞ is strongly convex — for certain problems, this can be

achieved through parameter replication, e.g., minw
1
2 jjy�

Xwjj22 þ �
P2M

j¼1 wj is the replicated form of Lasso regression

seen in Shotgun [10].

Lemma 1. The difference between successive updates is:

F ðwþ DwÞ � F ðwÞ � �ðDwÞTDwþ 1

2
ðDwÞTXTXDw:

(28)

Proof of Lemma 1. The Taylor expansion of F ðwþ DwÞ
around w coupled with the fact that F ðwÞ000 (3rd-order)
and higher order derivatives are zero leads to the above
result. tu
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Proof of Theorem 3. By using Lemma 1, and telescoping
sum:

F ðwðT ÞidealÞ � F ðwð0ÞidealÞ

¼
XT
t¼1
�ðDwðtÞidealÞ>DwðtÞideal þ

1

2
ðDwðtÞidealÞ>X>XDw

ðtÞ
ideal:

(29)
Since Sideal chooses P features with 0 correlation,

F ðwðT ÞidealÞ � F ðwð0ÞidealÞ ¼
XT
t¼1
�ðDwðtÞidealÞ>DwðtÞideal:

Again using Lemma 1, and telescoping sum:

F ðwðT ÞRRP Þ � F ðwð0ÞRRP Þ

¼
XT
t¼1
�ðDwðtÞRRP Þ>DwðtÞRRP þ

1

2
ðDwðtÞRRP Þ>X>XDw

ðtÞ
RRP :

(30)

Taking the difference of the two sequences, we have:

F ðwðT ÞidealÞ � F ðwðT ÞRRP Þ

¼
XT
t¼1
�ðDwðtÞidealÞ>DwðtÞideal

 !

�
XT
t¼1
�ðDwðtÞRRP Þ>DwðtÞRRP þ

1

2
ðDwðtÞRRP Þ>X>XDw

ðtÞ
RRP

 !
:

(31)

Taking expectations w.r.t. the randomness in iteration,
indices chosen at each iteration, and the inherent ran-
domness in the two sequences, we have:

E½jF ðwðT ÞidealÞ � F ðwðT ÞRRP Þj


¼ E½j
XT
t¼1
�ðDwðtÞidealÞTDwðtÞideal

 !

�
XT
t¼1
��DwðtÞRRP 
TDwðtÞRRP þ 1

2

�
Dw

ðtÞ
RRP


>
X>XDw

ðtÞ
RRP

 !
j


¼ Cdata þ 1

2

� �
E½j
XT
t¼1
ðDwðtÞRRP Þ>X>XDw

ðtÞ
RRP Þj
;

(32)

where Cdata is a data dependent constant. Here, the dif-

ference between ðDwðtÞidealÞ>DwðtÞideal and ðDwðtÞRRP Þ>DwðtÞRRP
can only be possible due to ðDwðtÞRRP Þ>X>XDw

ðtÞ
RRP .

Following the proof in the shotgun paper [10], we get

E½jF ðwðtÞidealÞ � F ðwðtÞRRP Þj
 �
2dP

ðtþ 1Þ2P̂ L2X>XC; (33)

where d is the length of w (number of features), C is a
data dependent constant, L is the domain width of wj

(i.e., the difference between its maximum and minimum

possible values), and P̂ is the expected number of
indexes that SRRP ðÞ can actually parallelize in each
iteration.

Finally, we apply the strong convexity assumption
to get

E½jwðtÞideal �w
ðtÞ
RRP j
 �

2dPm

ðtþ 1Þ2P̂ L2X>XC; (34)

wherem is the strong convexity constant. tu
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