
Solution for CIS 670 Data Science Assignment 5

1. Suppose that the data mining task is to cluster the following nine points (with (x,y)
representing location) into three clusters: A1(3,9), A2(2,5), A3(9,4), B1(4,8),
B2(8,5), B3(7,4), C1(2,2), C2(5,10), C3(6,8). Suppose initially we assign A1, B1 and
C1 as the center of each cluster, respectively. Please add a Map-reduce function
for the K-means algorithm. Show the results for the first two iterations and
explain how Map-reduce can help.

Answer:

Map Reduce:

 Let K1, K2, K3 be the three centroids for the current iteration, let d(P, K) be the
distance between points P and K.

 Map: We map each points with coordinates i, j, P(i, j) to l if P is closest to
centroid Kl. A sample map function could be

 map(P) {

 emit(index_of_cloest_cetroid(K1, K2, K3, P), P)

}

Reduce:

reduce(tuples){

 return [tuples.centroid_index, sum(tuples.x)/tuples.count,
sum(tuples.y)/tuples.count];

}

Execution:

Iteration 1:

Cluster 1: A1, C2
Centroid 1: (4, 9.5)

Cluster 2: B1, C3, B3, B2, A3

 Centroid 2: (6.8, 5.8)

Cluster 3: C1, A2
Centroid 3: (2, 3.5)

Iteration 2:

Cluster 1: A1, B1, C2
Centroid 1: (4, 9)

Cluster 2: C3, B3, B2, A3
Centroid 2: (7.5, 5.25)

Cluster 3: C1, A2
Centroid 1: (2, 3.5)

Benefit:

The map reduce can help in the sense that all these operations can run in parallel.

2. A database has six transactions. Let min sup = 50%.

Please add a Map-reduce function for the Apriori algorithm to generate all
frequent itemsets. Show the results for each step and explain how Map-reduce
can help.

Answer:

Map: For each iteration, generate frequent items.

 function(doc) {

 var iteration;

 var frequent_itemset;

 if(0 == iteration)

 for_each(trans = doc.transactions)

 for_each(item = trans.items)

 frequent_itemset.add(item);

 else{

 // the function below take each two frequent_itemset, generate the
union of them and add in the set.

 frequent_itemset = set(Cartesian_union(frequent_itemset));

 }

 for_each(trans in doc.transactions){

 for_each(item in frequent_itemset){

 if(trans.contains(item)){

 emit(item, 1);

 }

 }

 }

}

Reduce: Count all the emitted items, compare with the support threshold.

reduce(keys, values, reducer){

 var count = _count;
 if(count / doc.transactions.length > doc.support)
 return (c, value)

}

L1 (frequency >= 3):

B, 4
C, 6
D, 4
E, 4
F, 4
W, 3

Candidate C2

BC, BD, BE, BF, BW, CD, CE, CF, CW, DE, DF, DW, EF, EW, FW.

L2

BC 4
BE 3
BF 3
CD 4
CE 4
CF 4
CW 3
DE 3

C3:

BCE, BCF, CDE

L3

BCE 3
BCF 3
CDE 3

C4

None.

Benefit:
The map reduce function can help process the map reduce function in parallel.

