
Project 1 - Develop a Classroom Cold-Call Assist Software Program
CIS 422 - A. Hornof - January 5, 2022

An initial submission is due at on Tuesday, January 11, at 8PM. It will be submitted as a PDF on
Canvas. This initial submission will include everything discussed under "Initial Project Plan /
SRS / SDS" at

https://classes.cs.uoregon.edu/22W/cis422/Project_Evaluation.html.

The final submission is due on Sunday, January 30, at 8PM. It will be submitted as a zip file on
Canvas. It will include everything else discussed at https://classes.cs.uoregon.edu/22W/cis422/
Project_Evaluation.html.

As a group, you should probably start by considering the suggestions here:
https://classes.cs.uoregon.edu/22W/cis422/first_meetings.html.

Initial group tasks could be to consider alternatives for the following. Keep in mind that, for each
brainstorming activity, it is wise to start silently working separately rather than as a group
throwing out ideas.

Project Planning
• Specific tasks that will need to be accomplished.
• Who might be assigned to accomplish each task.
• What will be delivered to show each task has been completed?
The outcome of this activity could be an initial list of brainstormed tasks, and a final  

list of <date> <task or what-will-be-done> <who will do it>

After everyone has read the SRS in detail, you can consider alternatives to the following:

Software Requirements
• Which requirements your team might fulfill, and which requirements might not fulfill.
• The SRS that you submit in Project 1 should not be a complete SRS but rather should explain

which requirements in the SRS will be fulfilled.

Software Design
• Fundamentally different language and programming approaches to solving the problem.

Your submissions should ideally show a history of alternatives that were considered for each
activity. This can be included in an appendix.

!1

https://classes.cs.uoregon.edu/22W/cis422/Project_Evaluation.html
https://classes.cs.uoregon.edu/22W/cis422/Project_Evaluation.html
https://classes.cs.uoregon.edu/22W/cis422/Project_Evaluation.html
https://classes.cs.uoregon.edu/22W/cis422/first_meetings.html

Software Requirement Specification (SRS) 
for a Classroom Cold-Call Assist Software Program

A. Hornof - January 5, 2022 - v3

1. System Summary

The system is intended to assist an instructor with “cold calling” on students in a classroom. “Cold
calling” means requesting input from a specific student who did not raise his or her hand. At the
very least, the system will provide the instructor with the names of randomly-chosen students in
the class so that the instructor can direct the next question to those students.

The system is designed to equally distribute the cold calls across all students, across multiple days.

The system provides a compact (in terms of screen real estate) list of the students of who are next
in the queue ("on deck"), which can be displayed to the class, ideally across the top of the slides
being displayed, so that students can “warm up” to being called on.

The system will keep track of all the students who were permit the instructor to discretely “flag”
students that the instructor might want to follow up with after class.

The instructor can use a handheld physical push-button device, such as a clicker, a Wii, or a
wireless numeric keypad, to remove a student from the "on deck" list while also recording
something about the student's response.

2. The Motivation

The system is motivated by efforts to improve the educational experience through the use of
"active learning" in the classroom. Engaging students in live in-class discussions helps students to
learn the course material while also developing their critical thinking skills (Dallimore et al.,
2006). Though many faculty are reluctant to use cold-calling techniques for fear of making
students uncomfortable, giving a small group of students a "heads up" that they will be asked to
answer the next question has been shown to reduce potential discomfort among students, and that
students are comfortable with cold-calling when this technique is used (ibid.). The instructor can
then move through subsets of students in the classroom, giving each group of students a chance to
be cold-called. This overall technique has been referred to as "cold-calling with a warm-up" (ibid.).

The system proposed here is designed to assist with cold-calling with warm-up, while helping the
instructor to give roughly equal access to all students to speak in class, and also giving the
instructor the opportunity to keep track of which students are participating, so that the instructor
might provide a little extra guidance outside of class to students who need it.

An intriguing use of the cold-call technique was used by the fictional Professor Kingsfield in the
Paper Chase television show from the 1970s. Hopefully the system proposed here will lead to
more positive and collaborative classroom experiences that is shown in this video. Note the photo
roster that the professor references 8 seconds into this video: https://www.youtube.com/watch?
v=WCkMDvikGNM

Cold-calling was a useful technique during remote teaching due to Covid-19 (Sharp et al., 2021).
The system proposed here is intended for live in-class use, but could certainly be adapted for
remote teaching.

!2

https://www.youtube.com/watch?v=WCkMDvikGNM
https://www.youtube.com/watch?v=WCkMDvikGNM

———————————————————————————————————————
3. Use Cases

A. Day-to-day in-class usage
Preconditions: An instructor wants to encourage students to participate in class discussions, is
comfortable “cold calling” on students, wants to be egalitarian (treat students equally) with her
cold-calling, and uses a computer as part of her in-class presentations.
1. The instructor arrives in the classroom for a lecture, connects her computer to the projector,

opens Powerpoint, greets the class, announces the lecture topics, asks if anyone has any
questions, and starts lecturing from the slides.

2. After lecturing for five minutes, the instructor wants to check in and see if students are
understanding the material, and so she poses a question to the class. She waits ten seconds but
nobody answers.

3. The instructor recalls that she has the cold-call-assist software installed on her laptop, and so
she searches her hard drive for the program (such as, on a Mac, by typing command-space and
the name of the program). This entire step takes less than 5 seconds.

4. A list of four student names appears. They are “on deck” (as in baseball). Ideally, it is
automatically positioned so that it minimally blocks the PowerPoint slide content, such as a
horizontal list of names at the top of the display. The instructor switches the focus of the
operating system back to the Powerpoint presentation, but the name window stays in front.

5. The instructor notes that none of these students were cold-called at the beginning or the end of
the previous lecture, reassuring her that the system re-jumbles the names between runs.

6. The instructor asks if any of the students in the list would like to answer the question. None
volunteer, and so she cold calls on the third student in the list.

7. After the student responds, the instructor thanks the student and removes the student from the
list in one of the following two manners:

 A. Arrow Key Input (preferred).
 (a) Press the left and right arrow keys to highlight the student’s name in the list.  

(b) Press a down arrow key to “drop” the name from the visible list without a flag, or  
(c) an up arrow key to remove the name but also “raise” a flag for that student.

 B. Numeric Key Input:
 (a) Press the number key 1 through 4, whichever corresponds to the position
 of the student on the list.

8. The fourth student on the list moves into the third position. A new student’s name appears in
the fourth position.

9. After class, the instructor reviews a list of students who responded to cold-calls that day, and
notes a couple students who were flagged for one reason or another. She uses her mouse to
copy from a list of preformatted strings of “Firstname Lastname <flast@uoregon.edu>” that
she can copy into the “To:” header of an email, and email encouragement to that student.

Postconditions: The system, though it is not running, is completely ready for its next usage.

B. After class, the instructor reviews if any students might benefit from encouragement.
Preconditions: After class, in her office, the instructor knows that she did some cold-calling in class
that day, and that a student demonstrated special interest in a topic. She wants to email a
conference paper on the topic to that student.
1. After class, in her office, the instructor opens the daily log file and reviews its contents.
2. She sees the heading at the top of the file indicating that this is the daily log file for the cold-

call-assist program.
3. She sees today’s date immediately under that heading, and then one line for each cold-call that

she made that day. Each line is formatted as follows:

!3

 <response_code> <tab> <first name> <last name> “<” <email address> “>”  
The <response_code> is blank if there was no flag, and “X” if there was. Such as:  
X Fatima Patel <fpatel@uoregon.edu>

4. The instructor recalls that Fatima was breakdancing in class and did not hear when the
instructor called on her, and wants to email a polite request to the student to practice her
headspins outside of class. Or the instructor recalls that Fatima showed special interest in a
topic, and wants to email a conference paper.

5. The instructor drags her mouse cursor across the portion of the line that includes the student’s
name and email address in brackets, issues a “copy” command (such as using the right mouse-
button), and then pastes the string into the “To:” header of her email client.

6. She composes and sends the email.
Postconditions: The instructor is done with her after-class review. Students have been emailed.

C. Adjust the contents of the system a week into the term.
Preconditions: The instructor needs to update the contents of the roster that is stored in cold-call-
assist but does not want to loose any of the data she already entered into the system.
1. The instructor exports the cold-call-assist roster into a tab-delimited file that is correctly

formatted to be reloaded into the system later. She is confident that the exported file will not
overwrite an existing file.

2. The instructor loads the tab-delimited file into Excel, adds some phonetic spellings based on
what she learned from students in class, and exports from Excel into a tab-delimited file.

3. She issues a command to import the file into cold-call-assist. The system warns her that there is
already data in the system and, before overwriting the data in the system, lists the students
whose data will be changed in any manner (such as dropped from the roster, added to the
roster, or any other change at all).

Postconditions: The instructor is ready for the next day of class, with current data.

D. At the end of the term, the instructor reviews a summary of class participation
Preconditions: The instructor wants to review a summary of each student’s performance across all
of the times that each student was cold-called during the term.
1. The instructor opens the summary performance file and reviews its contents.
2. She sees the heading at the top of the file indicating that this is the summary performance file

for the cold-call-assist program, and headings for the “columns” in the tab-delimited file.
3. She sees a list of students with performance data after each student, each line formatted as:  

<total times called> <number of flags> <first name> <last name> <UO ID> <email address>
<phonetic spelling> <reveal code><list of dates> with a tab between each field, and a Unix
linefeed at the end of the line. The list of dates includes all the days the student was cold-
called, are formatted as YY/MM/DD, and are in chronological order.

4. The instructor imports the data into a spreadsheet and figures out an Excel formula that uses
the two numbers at the start of each line to compute a cold-call participation score for each
student. Now there are three numbers related to cold calls for each student.

5. The instructor imports all three numbers into Canvas so the students can see their cold-call
performance for the term.

Postconditions: The instructor is done using the system for the term. Students have received
feedback, the rewards of their preparation for being called-on in class.
E. Preparation at the start of the term.
Preconditions: The instructor, working in her office, prepares for the first day of class.
1. The instructor logs on to Duckweb.
2. The instructor downloads the student roster and reformats it into a tab-delimited file with a

separate field for first name, last name, UO ID, and email address.

!4

3. The instructor opens up the student photo book for the class, and drags each photo to a
“Photos” folder on her Macintosh. As she drags each photo, she replaces each filename with
the student’s UO ID number, such as “950123456.jpg”.

4. The instructor starts up the cold-call-assist program and does an initial import of the data into
the system.

5. The instructor reviews the data in the system for accuracy, reviewing students in alphabetical
order by last name, either by flipping through them one at a time or by reviewing a photo roster
that lists many students per page.

Postconditions: The instructor is ready for the first day of class.

———————————————————————————————————————
4. Instructor-System Interactions

4.1. Call on students and remove them from the “on deck” list.

There are two possibilities here. One or both could be implemented. Option A is preferred because
it is expected to require less time looking at the computer to find the keys 1 through 4.
Option A. Arrow Key Input (preferred).

The instructor can call on any student in the visible queue, and remove that student from the queue
by pressing the left and right arrow keys. As soon as the first arrow key is pressed, some sort of
simple highlighting will appear such as by simply inverting the text (to white on black).

If the left arrow key is pressed, the highlighting starts at position 1.
If the right arrow key is pressed, the highlighting starts at position 4.

For example, if the following students are currently visible in the queue, and the left arrow key is
pressed, the highlighting starts like this:

Maria Diego Anna Cavendish Yunfeng Zhang Aniyah Jackson
Pressing the right-arrow key moves the highlighting to the right, and it does not cycle back around
to position 1. Pressing the down arrow key removes highlighted name from the list, and pushing
the up arrow key removes it and sets a flag for that removal instance.
 All of the names on the list shift to the left, and a new name appears at position 4.

Option B. Numeric Key Input

The instructor can call on any student in the visible queue, and remove that student from the queue
by pressing a key that corresponds to that position on the list. For example, if the following
students are currently visible in the queue:

Maria Diego Anna Cavendish Yunfeng Zhang Aniyah Jackson
and Anna raises her hand and answers a question, the instructor can press the 2 key to removed
from the list. Yunfeng will move to the second position, and a new name will appear in the fourth
position.

If a <flag key> is pressed within one second of pressing a button to remove a student from the front
of the queue, the entry in the daily log file for this flag is annotated in the daily log file as described
in Use Case B, above. This will facilitate, for example, the instructor sending email a student after
class.

<flag key> includes all of the following keys: <Q> <W> <E> <R>

!5

Any time a button is pressed to remove a student from the queue, that removal triggers the addition
of an entry into the daily log file as described in Use Case B, above, and the term log file as
described in Use Case D, above.

4.2. PowerPoint is the active application but the Cold Call window is the foreground window.

In order for the instructor to have full control over course presentations (PowerPoint, Firefox, etc.),
the Cold Call system must sit in the background. However, for its window to be seen, it must sit in
the foreground of these other applications. Through all of this, Cold call also needs to be listening
for the keystrokes specified above, even though it is the background application.

4.3. Display
A compact horizontal list of names that appears on the screen above lecture materials.
The very top of the window showing the student names should be configured as follows:
 Next students: <first> <last> <first> <last> <first> <last> <first> <last>
This way, provided that the very top of the display is visible to students, everyone can see who is
up next and who is “on deck”.

4.4. Roster Input and Output
The system will have a command to import a file, and a command to output a file. The system will
confirm that the file is in the format specified below and, if it is not, the system will (a) not read in
the file and (b) output a useful error message explaining exactly what the problem is, and what the
user needs to do to fix the format.

4.5. Change-related requirements
It should be possible to change the system’s use of tab-delimited files to a use of comma-delimited
files by modifying only one line of source code, and by converting each tab to a comma in each
data file.

All numerical parameters, and all keystroke assignments, discussed in the specification must be set
at the top of a source code file, and easily changeable by a programmer during development and
maintenance of the code.
There should an easy way to change all key mappings. At the very least, they should be clearly
specified in one location near the top of a source code file. Perhaps an even more flexible solution
would be to have the key mappings read-in from a text or CommonMark file that includes a
comment at the top of the file explaining the purpose of the file. (The system should still run if this
file is missing.)

———————————————————————————————————————
5. Data Constraints

5.1. The Ordering of Students in the Queue

The ordering of the students will be randomized.

After a student is called on, that student will be removed from the front of the queue, and re-
inserted into the queue, but not in the n % of the list that at the front of the queue, to delay the next
on-deck appearance. The n parameter will be set in a single location at the top of a source code file,
and will be set such that many runs of the program will result in an equal distribution of cold-calls
across all students.

!6

The queue may be maintained across different runnings of the program (that is, after the program is
quit and restarted). The queue should therefore be saved and reloaded. Optionally, at startup, the
front n% of the queue could be re-randomized, separately from the back 1-n% of the queue.

Every student in the roster should always be somewhere in the queue, though usually only the front
of the queue will be visible on the display.
The system will run without crashing with any number of students in the roster.
Student ID numbers should never be displayed on the screen.

5.3. Realistic Sample Data

The developers must provide sample data (such as initial roster files to read into the system, and
properly-sized photos) to simulate actual usage of the system. The data should be realistic based on
characteristics of classes at the University of Oregon. The system must ship with realistic sample
data to test the system.

5.4. The user names will reside in a roster file with the following format:

<first_name> <tab> <last_name> <tab> <UO ID> <tab> <email_address> <tab>
<phonetic_spelling> <tab> <reveal_code> <LF>

The UO ID will be nine digits.
The <reveal_code> will be used to indicate details about this entry, such as if the photo will be

displayed to other students in the classroom.
<LF> is a Unix line feed character.
The spaces around the <tab> and <LF> characters should not be added to the file.

The first line of the file, up until the first <LF>, will be a comment that is not modified by the
system, both when reading from and writing to the file.

5.5. The UO ID must not be used as a key to the student's data.

The reason for this requirement is so that the system can be modified to remove UO IDs from the
system without breaking it. In general, a system should only hold confidential information if the
system actually needs that data. It is not clear at this point in time whether including the UO ID
will be necessary for this system to interact with other campus systems (such as Canvas).

5.6. Random Distribution Verification Mode

There should be a straightforward but perhaps slightly hidden way to test the randomness of the
system, such as a keystroke combination that is specified in the system documentation, that
automatically restarts the program 100 times, and issues 100 random cold calls each time the
program is running. The data should be pooled in the output data file, to be analyzed to evaluate
system performance. The user should be given the option of quitting out of the test before starting
it (with a warning that the output data file would be overwritten, if that would be the case).

———————————————————————————————————————
6. System Startup and Shutdown

6.1. System Startup

!7

It must be possible to start the system by double-clicking on an application that has a unique
application name. That is, it cannot require the opening of a Terminal window and the typing of a
command at the command line.

The system must start up within one second of double-clicking on the icon.

At startup, and while using the system, the system should not generate any error messages that
interfere with the running of the program, such as by putting a “modal” dialog box that requires
user input to proceed. The system will always forge ahead as best as it can.
For example:
(a) If, during execution, the program can suddenly no longer read from disk, the program will

work with a copy of the roster that was already loaded into memory.
(b) If, during execution, the program can suddenly no longer write to disk, such as if the disk is

full, the program will still provide a continuous random list of names for cold-calling but not
write any logging information to disk.

(c) If the program cannot find an file that is expected to exist, such as to append data to that file,
the program will create a new file with an appropriate name and use that file, but will never
overwrite an existing disk file.

At system startup, the random number generator will be re-seeded with a different seed.

6.2. Exiting the System
Though no data should ever be lost, or overwritten on disk, the system should never interrupt the
closing of the program after the user issues a command to quit the program. This could be
accomplished in part by always saving to file after every keystroke.
———————————————————————————————————————
7. Optional Secondary System: A Photo-Based Name-Learning System
This is a separate, minor add-on project that could also be completed.

The basic idea is to provide a system that assists in using student photos to learn students’ names.

The display would show many (or all) student photos, and provide an easy way to look at a photo,
not see the name, say the name, and then see the name with as little hand movement as possible;
this could even be accomplished by having the name in a small (user settable) typeface that would
require an eye movement in order to read the name. It is okay to rely on the user’s self-discipline
when the user is using the program.

There should also be a means of separating photos of names that have been learned, from photos of
names that have not been learned, so the user can focus his or her attention on the names still to be
learned. Such as how you remove cards from a stack of study cards as you learn the content of each
card.

Associating names with photos could be done simply by using file names that are <FirstName>
<Lastname>.jpg.

7.1. Name and Photo Learning Mode

The system could also have another means of assisting the instructor in learning the names of
students based on their photos. This could be in the form a “flash card” game that proceeds as
follows:
1. A randomly-chosen student’s photo is displayed.

!8

2. The instructor says aloud the name of the student.
3. She presses a button to display the name and phonetic spelling.
4. She decides if she was right, and presses one buttons if yes, and another if no.
5. If she was right, that name and photo are removed for the remainder of the game.
6. The game ends when the instructor has pressed the “correct” button for every student.

The ability to recall a name from a photo could be enhanced by showing small photos next to the
names of students who are in the queue.

7.2. Photo Files

The system should accommodate a photo size that is easy to modify in the software settings, and is
initially set to a fixed height, set in pixels, and accommodates a photo with a width that is between
50% and 100% that of the height

The default size of the photo that is input will initially be set to 200 pixels.

If the system includes photos, these will be read from a single directory, which could be anywhere
on the disk.

There will be a means to view the photos in alphabetical order, or re-arranged randomly.

———————————————————————————————————————
8. Build-Related Constraints

8.1. Target Platform
The system must run on Macintosh OSX 10.13 (High Sierra) or 10.14 (Mojave).

8.2. System Document File Formats
All system-related and system-development-related documents that are intended for human reading
must be in either plain text or PDF. For example, Microsoft Word, Microsoft Excel, or markdown
language documents must be converted into plain text or PDF.

8.3. Programming Constraints
• The system may be built in C/C++, the C++ standard library, Cocoa, and no other components.

(Note that an XCode command line tool could fulfill many of the requirements.)
• The system may be built using Python 3 along with The Python Standard Library https://

docs.python.org/3/library/index.html, but no other imports except for pyHook.
• The system may be built using Java along with Java Standard Edition modules https://

docs.oracle.com/en/java/javase/12/docs/api/index.html, but no other imports.
• C++ code must comply with C++11.
• Python code must run in Python 3.7 through 3.10.
• Java code must run in Java 7 or 8.
• Instructions must be provided for how to compile the code.
• No server connections may be required for either installing or running the software.
• No virtual environments may be used.
• No gaming engines such as Unity may be used.

8.4. Installation
• There can be at most 20 user actions to compile the code and run the program.

!9

• An experienced computer programmer should not require more than 30 minutes working alone
with the submitted materials to compile and run the code.

———————————————————————————————————————
9. References

Dallimore et al. (2006). Nonvoluntary Class Participation in Graduate Discussion Courses: Effects
of Grading and Cold Calling. Journal of Management Education, 30(2), 354-377, https://
journals.sagepub.com/doi/abs/10.1177/1052562905277031.

Sharp, E. A., Norman, M. K., Spagnoletti, C. L., & Miller, B. G. (2021). Optimizing synchronous
online teaching sessions: a guide to the “new normal” in medical education. Academic
Pediatrics, 21(1), 11-15, https://www.sciencedirect.com/science/article/pii/S1876285920305854.

!10

https://journals.sagepub.com/doi/abs/10.1177/1052562905277031
https://journals.sagepub.com/doi/abs/10.1177/1052562905277031
https://www.sciencedirect.com/science/article/pii/S1876285920305854

