
East Central North America
Regional Contest 2016

ECNA 2016

October 29

Problems
A Bubbly Troubly
B Foosball Dynasty
C The Key to Cryptography
D Lost in Translation
E Red Rover
F Removal Game
G That’s One Hanoi-ed Teacher
H Vin Diagrams
I Waif Until Dark
J Yes, Yes, It’s Nonograms

Do not open before the contest has started.

This page is intentionally left blank.

ACM International Collegiate Contest
2016 East Central Regional Programminc Contest

Grand Valley State University
University of Cincinnati
University of Windsor

Youngstown State University
October 29, 2016

Sponsored by IBM

Rules:

1. There are ten problems to be completed in five hours.

2. All questions require you to read the test data from standard input and write results to standard
output. You cannot use files for input or output. Additional input and output specifications
can be found in the General Information Sheet.

3. When displaying results, follow the format in the Sample Output for each problem. Unless
otherwise stated, all whitespace in the Sample Output consists of exactly one blank character.

4. The allowed programming languages are C, C++, Java, Python 2 and Python 3.

5. All programs will be re-compiled prior to testing with the judges’ data.

6. Non-standard libraries cannot be used in your solutions. The Standard Template Library
(STL) and C++ string libraries are allowed. The standard Java API is available, except for
those packages that are deemed dangerous by contestant officials (e.g., that might generate a
security violation).

7. Programs will be run against multiple input files, each file containing a single test case.

8. Programming style is not considered in this contest. You are free to code in whatever style
you prefer. Documentation is not required.

9. All communication with the judges will be handled by the Kattis environment.

10. Judges’ decisions are to be considered final. No cheating will be tolerated.

Problem A
Bubbly Troubly

You may have seen a champagne tower at a wedding or an exclusive Hollywood A-list party. In a
typical three-level tower, the first (lowest) level contains 9 glasses touching in a square pattern. The
second level contains 4 glasses touching in a square pattern centered above the first level, and the
third level contains 1 glass centered above the other levels. Figure A.1 shows a a top-down view of
this tower.

Figure A.1

Champagne is always poured directly into the top glass. In this example, once the top glass fills
and starts to overflow, it immediately begins filling the 4 glasses below (i.e., assume overflowing
champagne travels instantaneously to any glasses below). Once the 4 glasses on the second level fill,
they begin overflowing to the 9 on the bottom level. Note that in this example the 4 on the second
level finish filling at the same time, but the 9 on the lowest level finish filling at different times. This
means that there will be some amount of spilled champagne before the tower has finished filling –
this is an acceptable price to pay for such a beautiful sight.

The new fad is to make interesting patterns or imagery out of champagne glasses. These new-fangled
“towers" needn’t appear structurally sound; they can be held in place with complex support systems
designed so as not to interfere with the overflowing champagne. Each of these new towers will
always have a single highest glass into which all champagne is directly poured.

If two glass rims coincide vertically (i.e., have the same center and radius), then no accumulation
occurs into the lower glass from the upper glass (though the overflow champagne from the upper
glass may still be collected by other lower glasses). Additionally, a single point of champagne
overflow causes no measurable accumulation. In other words, measurable accumulation only occurs
when a non-point arc of champagne overflows to the interior of a glass.

Your task is to determine whether a proposed champagne tower will fill to completion, and if so,
how long it will take.

Input

The input begins with a single integer n representing the number of champagne glasses in the tower
(1 ≤ n ≤ 20). The next n lines each describe a champagne glass. Each glass description consists of
5 values x y z r v with (x, y, z) representing the center of the glass’s rim (0 ≤ x, y ≤ 1000; 1 ≤
z ≤ 1000), r representing its radius (1 ≤ r ≤ 1000), and v representing its volume measured in
milliliters (1 ≤ v ≤ 1000). All input values are integers, and the top glass is filled at a constant 100
milliliters per second.

ECNA 2016 Problem A: Bubbly Troubly 1

Output

Display the number of seconds after which the tower will be completely filled, or Invalid if
the proposed champagne tower will never fill completely. Round answers to the hundredths place.
Always print answers to two decimal places and include the leading 0 on answers between 0 and
1. Output values will always be ≤ 106 seconds (or 11 days, 13 hours, 46 minutes and 40 seconds,
whichever you prefer).

Sample Input 1 Sample Output 1

14
0 0 1 1 400
0 2 1 1 400
0 4 1 1 400
2 0 1 1 400
2 2 1 1 400
2 4 1 1 400
4 0 1 1 400
4 2 1 1 400
4 4 1 1 400
1 1 2 1 400
1 3 2 1 400
3 1 2 1 400
3 3 2 1 400
2 2 3 1 400

84.00

Sample Input 2 Sample Output 2

2
2 1 2 2 10
0 0 1 1 10

0.78

Sample Input 3 Sample Output 3

2
0 0 1 1 100
10 10 2 1 100

Invalid

ECNA 2016 Problem A: Bubbly Troubly 2

Problem B
Foosball Dynasty

Balaji and his coworkers like to play Foosball on their lunch break. Foosball is a game typically
played by 2 players (individual matchup) or 4 players (team play). However, due to the increasing
interest and availability of coworkers, Balaji has created a new variation that supports 5 or more
players. Each individual point is played by four players: two on the White team and two on the
Black team.

Figure B.1

The remaining players wait in line for their turn to play. On each point, the players on the scoring
team switch positions (e.g., if White scores the point, then the White Offense player becomes the
White Defense player, and vice versa). The Offense player of the team that lost the point becomes
the Defense player of the same team, while the Defense player of the team that lost the point goes
to the back of the line and waits for their next chance to play. The person at the front of the line
becomes the new Offense player of the team that lost the point.

Based on these rules, a team that continues scoring consecutive points gets to keep playing together
(swapping positions with each other after each point) until the other team breaks the streak. Each
such streak of points creates a dynasty for the winning team. Dynasties can be short-lived (a single
point) or long-lived, but they are always broken when the opposing team scores a point. The
“winners" of this variation of foosball are the players that can create the longest dynasty.

ECNA 2016 Problem B: Foosball Dynasty 3

Input

Input begins with a line containing an integer n representing the number of players (5 ≤ n ≤ 10).
The next line contains the n names of all participating players. The first four are the names of the
four players who initially arrive at the table (in that order): the first person to arrive starts at White
Offense, the second starts at Black Offense, the third starts at White Defense, and the fourth starts at
Black Defense. The remaining players get in line to wait for their turn. The final input line contains
a non-empty string indicating which side scored each point, with a White team point represented by
‘W’ and a Black team point represented by ‘B’. The maximum length of this string will be 1000.

Output

Display the team that has achieved the longest dynasty. If more than one team ties for the record,
then display each of these teams in chronological order, one team per line. When displaying a team,
names should be displayed in the order in which the players arrived at the table for that team. Note
that it is possible for the same team to appear more than once in the output, potentially with the
player names in a different order.

Sample Input 1 Sample Output 1

6
Balaji David Alex Scott Andrew Ravi
WWBWBBWBW

Balaji Alex
Andrew David

Sample Input 2 Sample Output 2

6
Amy Jinu Kasey Sarah Sheetal Julia
BBBBB

Jinu Sarah

ECNA 2016 Problem B: Foosball Dynasty 4

Problem C
The Key to Cryptography

Suppose you need to encrypt a top secret message like “SEND MORE MONKEYS". You could
use a simple substitution cipher, where each letter in the alphabet is replaced with a different letter.
However, these ciphers are easily broken by using the fact that certain letters of the alphabet (like
‘E’, ‘S’, and ‘A’) appear more frequently than others (like ‘Q’, ‘Z’, and ‘X’). A better encryption
scheme would vary the substitutions used for each letter. One such system is the autokey cipher.

To encrypt a message, you first select a secret word – say “ACM" – and prepend it to the front of the
message. This longer string is truncated to the length of the message and called the key, and the nth

letter of the key is used to encrypt the nth letter of the original message. This encryption is done
by treating each letter in the key as a cyclic shift value for the corresponding letter in the message,
where ‘A’ indicates a shift of 0, ‘B’ a shift of 1, and so on. Using “ACM" as the secret word, we
would encrypt our message as follows:

SENDMOREMONKEYS (message)
ACMSENDMOREMONK (key)
SGZVQBUQAFRWSLC (ciphertext)

Note that the letter ‘E’ in the message was encrypted as ‘G’ the first time it was encountered (since
the corresponding letter in the key was ‘C’ indicating a shift of 2), but then as ‘Q’ and ‘S’ the next
two times.

Your task is simple: given a ciphertext and the secret word, you must determine the original message.

Input

Input consists of two lines. The first contains the ciphertext and the second contains the secret word.
Both lines contain only uppercase alphabetic letters.

Output

Display the original message that generated the given ciphertext using the given secret word.

Sample Input 1 Sample Output 1

SGZVQBUQAFRWSLC
ACM

SENDMOREMONKEYS

ECNA 2016 Problem C: The Key to Cryptography 5

This page is intentionally left blank.

Problem D
Lost in Translation

The word is out that you’ve just finished writing a book entitled How to Ensure Victory at a
Programming Contest and requests are flying in. Not surprisingly, many of these requests are
from foreign countries, and while you are versed in many programming languages, most spoken
languages are Greek to you. You’ve done some investigating and have found several people who
can translate between languages, but at various costs. In some cases multiple translations might
be needed. For example, if you can’t find a person who can translate your book from English to
Swedish, but have one person who can translate from English to French and another from French to
Swedish, then you’re set. While minimizing the total cost of all these translations is important to you,
the most important condition is to minimize each target language’s distance (in translations) from
English, since this cuts down on the errors that typically crop up during any translation. Fortunately,
the method to solve this problem is in Chapter 7 of your new book, so you should have no problem
in solving this, right?

Input

Input starts with a line containing two integers n m indicating the number of target languages and
the number of translators at your disposal (1 ≤ n ≤ 100, 1 ≤ m ≤ 4500). The second line will
contain n strings specifying the n target languages. After this line are m lines of the form l1 l2 c
where l1 and l2 are two different languages and c is a positive integer specifying the cost to translate
between them (in either direction). The languages l1 and l2 are always either English or one of the
target languages, and any pair of languages will appear at most once in the input. The initial book is
always written in English.

Output

Display the minimum cost to translate your book to all of the target languages, subject to the
constraints described above, or Impossible if it is not possible.

Sample Input 1 Sample Output 1

4 6
Pashto French Amheric Swedish
English Pashto 1
English French 1
English Amheric 5
Pashto Amheric 1
Amheric Swedish 5
French Swedish 1

8

ECNA 2016 Problem D: Lost in Translation 7

Sample Input 2 Sample Output 2

2 1
A B
English B 1

Impossible

ECNA 2016 Problem D: Lost in Translation 8

Problem E
Red Rover

One of our older Mars Rovers has nearly completed its tour of duty and is awaiting instructions
for one last mission to explore the Martian surface. The survey team has picked a route and has
entrusted you with the job of transmitting the final set of instructions to the rover. This route
is simply a sequence of moves in the cardinal directions: North, South, East, and West. These
instructions can be sent using a string of corresponding characters: N, S, E, and W. However,
receiving the signal drains the rover’s power supply, which is already dangerously low. Fortunately,
the rover’s creators built in the ability for you to optionally define a single “macro" that can be used
if the route has a lot of repetition. More concretely, to send a message with a macro, two strings are
sent. The first is over the characters {N,S,E,W,M} and the second is over {N,S,E,W}. The first
string represents a sequence of moves and calls to a macro (M), while the second string determines
what the macro expands out to. For example:

WNMWMME
EEN

is an encoding of

WNEENWEENEENE

Notice that the version with macros requires only 10 characters, whereas the original requires 13.

Given a route, determine the minimum number of characters needed to transmit it to the rover.

Input

Input consists of a single line containing a string made up of the letters N, S, E, and W representing
the route to transmit to the rover. The maximum length of the string is 100.

Input

Display the minimum number of characters needed to encode the route.

Sample Input 1 Sample Output 1

WNEENWEENEENE 10

Sample Input 2 Sample Output 2

NSEW 4

ECNA 2016 Problem E: Red Rover 9

Sample Input 3 Sample Output 3

EEEEEEEEE 6

ECNA 2016 Problem E: Red Rover 10

Problem F
Removal Game

Bobby Roberts is totally bored in his algorithms class, so he’s developed a little solitaire game. He
writes down a sequence of positive integers and then begins removing them one at a time. The cost
of each removal is equal to the greatest common divisor (gcd) of the two surrounding numbers
(wrapping around either end if necessary). For example, if the sequence of numbers was 2, 3, 4, 5
he could remove the 3 at a cost of 2 (= gcd(2,4)) or he could remove the 4 at a cost of 1 (= gcd(3,5)).
The cost of removing 2 would be 1 and the removal of 5 would cost 2. Note that if the 4 is removed
first, the removal of the 3 afterwards now has a cost of only 1.

Bobby keeps a running total of each removal cost. When he ends up with just two numbers
remaining he takes their gcd, adds that cost to the running total, and ends the game by removing
them both. The object of the game is to remove all of the numbers at the minimum total cost.
Unfortunately, he spent so much time in class on this game, he didn’t pay attention to several
important lectures which would lead him to an algorithm to solve this problem. Since none of
you have ever wasted time in your algorithm classes, I’m sure you’ll have no problem finding the
minimum cost given any sequence of numbers.

Input

Input contains multiple test cases. Each test case consists of a single line starting with an integer n
which indicates the number of values in the sequence (2 ≤ n ≤ 100). This is followed by n positive
integers which make up the sequence of values in the game. All of these integers will be ≤ 1000.
Input terminates with a line containing a single 0. There are at most 1000 test cases.

Output

For each test case, display the minimum cost of removing all of the numbers.

Sample Input 1 Sample Output 1

4 2 3 4 5
5 14 2 4 6 8
0

3
8

ECNA 2016 Problem F: Removal Game 11

This page is intentionally left blank.

Problem G
That’s One Hanoi-ed Teacher

Roberta Roberts (the older sister of Bobby in Problem F) teaches math at a small college, and has
just introduced the Tower of Hanoi to the students in her Discrete Math class. In case you’ve been
in a Tibetan monastery for the past several years and have never heard of the Tower of Hanoi puzzle
(doubtful for several reasons), here’s a brief description. The puzzle consists of three pegs, and n
disks with radii of 1, 2, . . . , n. The initial set up has all the disks on a start peg in increasing order
of their size from top to bottom, forming a pyramid. The object of the puzzle is to move all of these
disks to a destination peg using the following rules:

1. You can move only one disk at a time

2. At no point may a larger disk lie on top of a smaller disk

It’s well known that the optimal (i.e., shortest) solution for a Tower of Hanoi puzzle with n disks
involves 2n − 1 moves. The optimal solution for n = 3 is shown below (where the start peg is the
leftmost peg and the destination peg is the rightmost peg):

Figure G.1

As part of an in-class lab, Roberta will hand out Tower of Hanoi sets to her students and let them try
to solve the problem on their own. As she goes around the room, she realizes that for the larger size
sets, she has trouble looking at a current layout of the disks and determining whether the student is
on the right track or not. In other words, she wishes to know whether or not a given configuration of
the puzzle is one of the 2n configurations in the optimal solution sequence. She would also like
to be able to tell her students how close they are to the final configuration (i.e., all the disks in
increasing sizes, top to bottom, on the destination peg). Needless to say, this has caused her a bit of
consternation, so she has come to you for help.

Input

Input consists of three lines, each line representing one peg of a Tower of Hanoi configuration.
Each of these lines starts with a non-negative integer m indicating the number of disks on that peg,

ECNA 2016 Problem G: That’s One Hanoi-ed Teacher 13

followed by m integers indicating the disks, starting with the disk on the bottom of the peg. The
first line refers to the start peg and the last line refers to the destination peg. Disks are numbered
consecutively starting at 1 with each number indicating the disk’s radius. All disk numbers used
form a consecutive sequence. The maximum number of disks in any test case is 50.

Output

Display No if the given configuration is not in the optimal solution sequence; otherwise display the
minimum number of remaining moves required to get to the final configuration.

ECNA 2016 Problem G: That’s One Hanoi-ed Teacher 14

Sample Input 1 Sample Output 1

1 3
2 2 1
0

4

Sample Input 2 Sample Output 2

1 3
0
2 2 1

No

ECNA 2016 Problem G: That’s One Hanoi-ed Teacher 15

This page is intentionally left blank.

Problem H
Vin Diagrams

Venn diagrams were invented by the great logician John Venn as a way of categorizing elements
belonging to different sets. Given two sets A and B, two overlapping circles are drawn – a circle
representing the elements of A, and another representing the elements of B. The overlapping region
of the circles represents element that belong to both A and B, i.e., the intersection of the two sets
A ∩B. A classic Venn diagram might look like this:

Figure H.1

One of John’s biggest fans was his grandson, Vin Vaughn Venn. Vin was inspired by his grandfather’s
diagrams, but Vin was a very creative individual. Simple overlapping circles struck Vin as too
boring of a way to visualize the sometimes messy intersections of categories, so he set out to make
his grandfather’s diagrams more interesting. Just like Venn diagrams, Vin diagrams are used as a
way of categorizing elements belonging to different sets A and B, but the representation of each
set is not required to be a circle. In fact, each set can have any shape as long as there is single
overlapping section for elements in the intersection of A and B.

In this problem, Vin diagrams will be laid out on a grid. Each set representation is a loop of ‘X’
characters, with one ‘X’ in each loop replaced by an ‘A’ or ‘B’ to identify the loop. All empty
positions (both inside and outside of the loops) are represented by period (‘.’) characters, and the
set of positions inside a loop is contiguous. Each loop character touches exactly two other loop
characters either vertically or horizontally. Loops do not self-intersect, and other than the allowed
horizontal/vertical paths and right angle connections, different parts of the loop do not touch (see
Figures H.2 and H.3 below).

Figure H.2: Two legal loops Figure H.3: Two illegal loops

Loops A and B intersect at exactly two points. Loop intersection points always follow the pattern
shown in Figure H.4 (including the four ‘.’ positions around the intersection). No loop makes a
right angle turn at an intersection point but always flows straight through the intersection, either
vertically or horizontally. An example of legally intersecting loops is shown in Figure H.5.

ECNA 2016 Problem H: Vin Diagrams 17

Figure H.4: Intersection point and Figure H.5: Legally intersecting loops

surrounding positions

ECNA 2016 Problem H: Vin Diagrams 18

Input

The input starts with two integers r c describing the number of rows and columns in the Vin diagram
(7 ≤ r, c ≤ 100). The following r rows each contain a string of c characters. All positions that are
not part of loop A or loop B are marked with a period (‘.’) character. The loop labels ‘A’ and ‘B’
are placed somewhere around the loops’ perimeters at non-intersection positions and are never on
the same loop.

Output

Display, in order, the area of the Vin diagram exclusive to set A, the area exclusive to set B, and the
area of the intersection. Given the representation of Vin diagrams, the area of a section is defined as
the number of periods (‘.’) it encloses.

Sample Input 1 Sample Output 1

7 7
AXXXX..
X...X..
X.XXXXX
X.X.X.X
XXXXX.X
..X...X
..XXXXB

5 5 1

Sample Input 2 Sample Output 2

11 13
XXXXXXA......
X.....X......
X..XXXXXXXXX.
X..X..X....X.
X..X..XXX..XX
X..B....X...X
X..X.XXXX...X
X..X.X......X
XX.XXXXXX...X
.X...X..X.XXX
.XXXXX..XXX..

21 22 10

ECNA 2016 Problem H: Vin Diagrams 19

This page is intentionally left blank.

Problem I
Waif Until Dark

“Waif Until Dark" is a daycare center specializing in children of households where both parents work
during the day. In order to keep the little monsters ... that is, darlings ... occupied, the center has a
set of toys that the kiddies can play with. Some of these toys belong to one of several categories
– sports toys, musical toys, dolls, etc. In order to save wear and tear on these types of toys, the
teachers allow only certain numbers of toys of each category to be used during playtime. Of course,
kids being kids, not all of the toys are liked by everyone, so sometimes it’s difficult to make sure
every kid has a toy they like. Given all of these constraints, the CEO of Waif has come to you to
write a little program to determine the maximum number of these monsters (let’s be honest here)
who can be satisfied.

Input

Input starts with a line containing three integers nm p indicating the number of children, the number
of toys and the number of toy categories (1 ≤ n,m ≤ 100, 0 ≤ p ≤ m). Both children and toys are
numbered starting at 1. After this line are n lines of the form k i1 i2 ... ik (1 ≤ k, i1, i2, . . . ik ≤ m);
the jth of these lines indicates that child j is willing to play with toys i1 through ik. Next are p lines
of the form l t1 t2 ... tl r (1 ≤ r ≤ l ≤ m, 1 ≤ t1, t2, . . . tl ≤ m); the jth of these lines indicates
that toys t1 through tl are in category j and that at most r of these toys can be used. Toys can be in
at most one category and any toy not listed in these p lines is not in any toy category and all of them
can be used. No toy number appears more than once on any line.

Output

Display the maximum number of children that can be satisfied with a toy that they like.

Sample Input 1 Sample Output 1

4 3 1
2 1 2
2 1 2
1 3
1 3
2 1 2 1

2

ECNA 2016 Problem I: Waif Until Dark 21

This page is intentionally left blank.

Problem J
Yes, Yes, It’s Nonograms

Nonograms (also known as Paint by Numbers or Hanjie) is a logic puzzle which encodes a black-
and-white picture using sequences of numbers. The object of the puzzle is to recreate the picture
from the numbers. The puzzle initially consists of a blank n×m grid, with a sequence of numbers
associated with each row and each column. These numbers indicate the lengths of runs of black
squares in a row (from left to right) or column (from top to bottom). For example, if the numbers for
a row are 4 5 1 it indicates that somewhere in the row there is a run of 4 consecutive black squares
followed later by a run of 5 consecutive black squares which is in turn followed by a run of a single
black square. There must be 1 or more white spaces between each black run, and there can be 0 or
more white squares before the first or after the last black run. In our example, if the length of a row
is 13, then there are four possible layouts of black and white squares:

Figure J.1

Note that in all four of the possible layouts certain squares are always black, as shown in Figure J.2,
while others can be either white or black (indicated by ‘?’)

Figure J.2

In fact, this is a major technique in solving Nonograms, since they not only help in filling black
squares in a particular row (as above), but the black squares then constrain the possible layouts in
the intersecting columns. This helps in filling in black squares in the columns, which in turn lead to
more constraints on black squares in the rows, and so on. Similarly, we may sometimes deduce that
certain tiles must be white, based solely on the sequence of runs for a given row or column and the
colors of tiles in that row or column that were determined previously. For many puzzle instances,
applying this approach repeatedly suffices to find a solution. In more complicated Nonograms, other
methods need to be used as well, but for the purposes of this problem we will not only ignore these
methods but insist that you use no technique other than the one described above.

Input

Input starts with a line containing two integers n m, where n is the number of rows in the grid and
m is the number of columns (1 ≤ n,m ≤ 100). Following this are n lines each giving the sequence

ECNA 2016 Problem J: Yes, Yes, It’s Nonograms 23

of numbers for a row, starting with the uppermost row. Each of these lines has the form p v1 v2 ...
vp, where p is the number of values in the sequence, and v1 ... vp is the sequence. After these n
lines are m lines which describe the columns in a similar way, starting with the leftmost column.
The Nonogram puzzle is guaranteed to have at least one arrangement of black and white squares
consistent with all the sequences, which may or may not be fully discoverable with the technique
described above.

Output

Display the most complete picture that can be constructed using only the technique described above.
Your output should consist of n lines containing m characters each. Use an ‘X’ for a black square, a
‘.’ for a white square, and a ‘?’ for a square that cannot be determined.

Sample Input 1 Sample Output 1

3 7
3 2 1 1
1 3
2 2 2
1 1
2 1 1
1 1
1 2
1 1
1 2
2 1 1

XX.X..X
...XXX.
.XX..XX

Sample Input 2 Sample Output 2

5 5
1 3
1 3
1 3
1 1
1 1
1 3
1 3
1 3
1 1
1 1

??X??
??X??
XXX..
??.??
??.??

ECNA 2016 Problem J: Yes, Yes, It’s Nonograms 24

