
COOPERATING
SEQUENTIAL PROCESSES

EDSGER W. DIJKSTRA

(1965)

INTRODUCTION

1

This chapter is intended for all those who expect that in their future activities

they will become seriously involved in the problems that arise in either the

design or the more advanced applications of digital information processing

equipment; they are furt her intended for all those who are just interested in

information processing.

The applications are those in which the activity of a computer must

include the proper reaction to a possibly great variety of messages that can

be sent to it at unpredictable moments, a situation which occurs in pracess

contral, traffic control, stock control, banking applications, automatization

of information fiow in large organizations, centralized computer service, and,

finally, all information systems in which a number of computers are coupled

to each other.

The desire to apply computers in the ways sketched above has often a

strong economic motivation, but in this chapter the not unimportant ques-

tion of efficiency will not be stressed too much. Logical problems which

arise, for example, when speed ratios are unknown, communication possibil-

ities restricted, etc., will be dealt with much more. This will be done in order

to create a clearer insight into the origin of the difficulties one meets and

into the nature of solutions. Deciding whether under given circumstances

E. W. Dijkstra, Cooperating sequential processes. Technological University, Eindhoven,

The Netherlands, September 1965. Reprinted in Frogmmming Languages, F. Genuys, Ed.,

Academic Press, New York, 1968,43-112. Copyright © 1968, Academic Press. Reprinted

by permission.

65

P. B. Hansen (ed.), The Origin of Concurrent Programming
© Springer Science+Business Media New York 2002

66 EDSGER W. DIJKSTRA

the application of our techniques is economically attractive falls outside the
scope of this chapter.

There will not be a fully worked out theory, complete with Greek letter
formulae, so to speak. The only thing that can be done under the present
circumstances is to offer a variety of problems, together with solutions. And
in discussing these we can only hope to bring as much system into it as we
possibly can, to find which concepts are relevant, as we go along.

1 ON THE NATURE OF SEQUENTIAL PROCESSES

Our problem field proper is the co-operation between two or more sequential
processes. Before we can enter this field, however, we have to know quite
clearly what we call "a sequential process". To this preliminary quest ion the
present section is devoted.

To begin, he re is a comparison of two machines to do the same example
job, the one a non-sequential machine, the other a sequential one.

Let us assume that of each of four quantities, named a [1J, a [2J, a [3J ,
and a [4J respectively, the value is given. Our machine has to process these
values in such a way that, as its reaction, it "teIls" us which of the four
quantities has the largest value. E.g. in the case:

a[1] = 7, a[2] = 12, a[3] = 2, a[4] = 9

the answer to be produced is a [2J (or only 2, giving the index value pointing
to the maximum element).

Note that the desired answer would become incompletely defined if the
set of values were-in order-7, 12, 2, 12, for then there is no unique
largest element, and the answer a [2J would have been as good (or as bad)
as a [4J. This is remedied by the further assumption that of the four values
given, no two are equal.

Remark 1. If the required answer would have been the maximum value
occurring among the given ones, the last restriction would have been super-
fluous, for the answer corresponding to the value set 7, 12, 2, 12 would
then have been 12.

Remark 2. Our restriction "Of the four values no two are equal" is
still somewhat loosely formulated, for what do we mean by "equal"? In
the processes to be constructed pairs of values will be compared with one
another, and what is really meant is that every two values will be sufficiently
different, so that the comparator will unambiguously decide which of the two

COOPERATING SEQUENTIAL PROCESSES 67

is the larger one. In other words, the difference between any two must be
large compared with "the resolving power" of our comparators.

We shall first construct our non-sequential machine. When we ass urne
our given values to be represented by currents we can imagine a compara-
tor consisting of a two-way switch, the position of which is schematically
controlled by the currents in the coils of electromagnets, as in Figs. 1 and 2.

y A x y x

l®J lQQ) (W
B fC BI C

Fig. 1. x<y

Fig. 2. y<x

When current y is larger than current x, the left electromagnet pulls
harder than the right one and the switch switches to the left (Fig. 1) and
the input A is connected to output B; if current x is the larger one we shall
get the situation (Fig. 2), where the input A is connected to output C.

In our diagrams we shall omit the coils and shall represent such a com-
parator by a small box

A
I

y<x?

I I
B C

only representing at the top side the input and at the bot tom side the two
outputs. The currents to be led through the coils are identified in the ques-
tion written inside the box, and the convention is that the input will be
connected to the right-hand side output when the answer to the question is
"Yes", to the left-hand side output when the answer is "No".

Now we can construct our machine as indicated in Fig. 3. At the output
side we have drawn four indicator lamps, one, and only one, of which will

68 EDSGER W. DIJKSTRA

light up to indicate the answer.

a(1) < a(3)? a(2)<a(3)?

+ + + +
Fig.3

In Fig. 4 we indicate the position of the switches when the value set 7,
12, 2, 9 is applied to it. In the boxes the positions of the switches are
indicated, wires not connected to the input are drawn dotted.

Iz
I
I
I
11

, ,
r->'",s: I

, I
, I

'3 14
I I

Fig.4

We draw the reader's attention to the fact that now only the positions
of the three switches that connect output 2 to the input matter; the reader
is invited to convince himself that the position of the other three switches is
indeed immaterial.

It is also worthwhile to give a moment's attention to see what happens in
time when our machine of Fig. 3 is fed with four "value currents". Obviously
it cannot be expected to give the correct answer before the four value currents
start going through the coils. But one cannot even expect it to indicate the
correct answer as so on as the currents are applied, for the switches must get

COOPERATING SEQUENTIAL PROCESSES 69

into their correct position, and this may take so me time. In other words,
as soon as the currents are applied (simultaneously or the one after the
other) we must wait aperiod of time -characteristic for the machine-and
only after that the correct answer will be shown at the output side. What
happens during this waiting time is immaterial, provided that the interval
is long enough for all switches to find their final position. They may start
switching simultaneously, the exact order in which they attain their final
position is immaterial, and therefore we shall no longer pay any attention to
it.

From the logical point of view the switching time can be regarded as a
marker on the time axis: before it the input data have to be supplied, after
it the answer is available.

In the use of our machine the progress of time is only refiected in the 0 b-
vious "before-after" relation, which teIls us that we cannot expect an answer
before the quest ion has been properly put. This sequence relation is so obvi-
ous (and fundamental) that it cannot be regarded as a characteristic property
of our machine. And our machine is therefore called a "non-sequential ma-
chine" to distinguish it from the kind of equipment-or processes that can
be performed by it-to be described now.

Up till now we have interpreted the diagram of Fig. 3 as the (schematic)
picture of a machine to be built in space. But we can interpret this same
diagram in a very different manner if we place ourselves in the mind of the
electron entering at the top input and wondering where to go. First, it finds
itself faced with the quest ion whether a [1] < a [2] holds. Having found
the answer to this question, it can proceed. Depending on the previous
answer, it will enter one of the two boxes a[1J < a[3] or a[2] < a[3], i.e.
it will only know what to investigate next, after the first question has been
answered. Having found the answer to the question selected from the second
line, it will know which quest ion to ask from the third line and, having found
this last answer, it will now know which bulb should start to glow. Instead
of regarding the diagram of Fig. 3 as that of a machine, the parts of which
are spread out in space, we have regarded it as rules of behaviour, to be
followed in time.

With respect to our earlier interpretation two differences are highly sig-
nificant. In the first interpretation all six comparators started working si-
multaneously, although finally only three switch positions were relevant. In
the se co nd interpretation only three comparisons are actually evaluated-
the wondering electron asks itself three questions-but the price of this gain

70 EDSGER W. DIJKSTRA

is that they have to be performed the one after the other, as the outcome

of the previous one decides what to ask next. In the second interpretation

three quest ions have to be asked in sequence, the one after the other. The

existence of such an order relation is the distinctive feature of the second

interpretation, which in contrast to the first one is therefore called "a se�

quential process". We should like to make two remarks.

Remark 3. In actual fact, the three comparisons will each take a finite

amount of time ("switching time", "decision time", or, in the jargon, "ex�

ecution time"), and as a result the total time taken will at least be equal

to the sum of these three execution times. We stress once more that for

many investigations these executions can be regarded as ordered markers on

a scaleless time axis and that it is only the relative ordering that matters

from this (logical) point of view.

Remark 4. As a small side line we note that the two interpretations

(call them "simultaneous comparisons" and "sequential comparisons") are

onlyextremes. There is a way of, again, only performing three comparisons,

in wh ich two of them can be done independently from one another, i.e.

simultaneously; the third one, however, can be done only after the other two

have been completed. It can be represented with the aid of a box in which

two questions are put and which, as a result, has four possible exits, as in

Fig.5.

all] < a[2]?

a[3] < a[4]?

NY

YN

a[2] < a[3]?

1 2

3 4

Fig.5

The total time taken will be at least the sum of the comparison execution

times. The process is of the first kind in the sense that the first two com�

parisons can be performed simultaneously, it is of sequential nature, as the

third comparison can be selected from the second line only when the first

two have both been completed.

CO OPERATING SEQUENTIAL PROCESSES 71

We return to our purely sequential interpretation. Knowing that the di-
agram is meant for purely sequential interpretations, we can take advantage
of this circumstance to make the description of the "rules of behaviour" more
compact. The idea is that the two questions on the second line only one of
wh ich will be actually asked are highly similar: the questions on the same
line differ only in the subscript value of the left operand of the comparison.
And we may ask ourselves: "Can we map the questions on the same line of
Fig. 3 on to a single question 7"

This can be done, but it implies that the part that varies along a line-i.e.
the subscript value in the left operand- must be regarded as a parameter,
the task of which is to determine which of the quest ions mapped on each
other is meant, when its turn to be executed has come. Obviously the value
of this parameter must be defined by the past history of the process.

Such parameters, in which past history can be condensed for future use,
are called "variables". To indicate that a new value has to be assigned to
it we use the so-called assignment operator := (read: "becomes"), a kind of
directed equality sign which defines the value of the left-hand side in terms
of the value of the right-hand side.

We hope that the previous paragraph is sufficient for the reader to recog-
nize also in the diagram of Fig. 6 a set of "rules of behaviour". Our variable
is called i; and the reader may wonder why the first question, which is in-
variably a [lJ < a [2J ? is not written that way, but with patience he will
understand.

When we have followed the rules of Fig. 6 as intended from top till
bottom, the final value of i will identify the maximum value, viz. a [iJ .

The transition from the scheme of Fig. 3 to the one of Fig. 6 is a drastic
change, for the latter's "rules of behaviour" can only be interpreted sequen-
tially. And this is due to the introduction of the variable i: having only
a [lJ , a [2J , a [3J , and a [4J available as values to be compared, the question
a [iJ < a [2J ? is meaningless, unless it is known for which value of i this
comparison has to be made.

Remark 5. It is somewhat unfortunate that the jargon of the trade
calls the thing denoted by i a variable, because in normal mathematics
the concept of a variable is a completely timeless concept. Time has not hing
to do with the x in the relation

sin(2 * x) = 2 * sin(x) * cos(x)

if such a variable ever denotes a value it denotes "any value" .

72 EDSGER W. DIJKSTRA

Fig.6

Each time, however, that a variable in a sequential process is
as i in a [iJ denotes a very specific value, viz. the last value assigned
to it, and nothing else! As long as no new value is assigned to a variable, it
denotes a constant value!

Remark 6. One may well ask what we are actually doing when we intro�
duce a variable without specifying, for instance, a domain for it, i.e. a set of
values which is guaranteed to comprise all its future actual values. We shall
not pursue this quest ion here.

Now we are going to subject our scheme to a next transformation. In
Fig. 3 we have "wrapped up" the lines, now we are .going to wrap up the
scheme of Fig. 6 in the vertical direction, an operation to which we are
invited by the repetitive nature of it and which can be performed at the
price of a next variable, j say.

The change is a dramatic one, for the fact that the original problem was
to identify the maximum value among Jour given values is no longer reflected
in the "topology" of the rules of behaviour: in Fig. 7 we only find the number
4 mentioned once. By introducing another variable, say n, and replacing the
4 in Fig. 7 by n we have suddenIy the rules of behaviour to identify the
maximum occurring among the n elements a [lJ, a [2J, ... , a [nJ, and
this practically only for the price that before application the variable n must

COOPERATING SEQUENTIAL PROCESSES 73

be given its proper value.

t
i:= 1;

j:= 1;

j =4?

j:=j+l;

a[i] < a[j]?

I i:=j
I

Fig.7

The change is dramatic, for now we have not only given rules of behaviour
which must be interpreted sequentially this was already the case with Fig. 6
but we have devised a single mechanism for identifying the maximum value
among any number of given elements, whereas our original non-sequential
machine could only be built for a previously well-defined number of elements.
We have mapped our comparisons in time instead of in space, and if we wish
to compare the two methods it is as if the sequential machine "extends itself"
in terms of Fig. 3 as the need arises. It is our last transition which displays
the sequential processes in their full glory.

The technical term for what we have called "rules of behaviour" is an al-
gorithm or a program. (It is not customary to call it "a sequential program" ,
although this name would be fully correct.) Equipment able to follow such
rules, "to execute such a program" is called "a general-purpose sequential
computer" or "computer" for short; what happens during such a program
execution is called "a sequential process" .

There is a commonly accepted technique of writing algorithms without
the need of pictures such as we have used, viz. ALGOL 60 ("ALGOL" being
short for Algorithmic Language). For a detailed discussion of ALGOL 60 I
must refer the reader to the existing literature. We shall use it in future,
whenever convenient for our purposes.

For the sake of illustration we shall describe the algorithm of Fig. 7 (but
for n instead of 4) by a sequence of ALGOL statements:

74 EDSGER W. DIJKSTRA

i:= 1; j:= 1;
back: if j <> n then

begin j:= j + 1;

end

if a[i] < a[j] then i:= j;
goto back;

The first two statements: i : = 1; j: = 1 are-one hopes-self-
explanatory. Then comes back:, a so-called label, used to identify this
place in the program. Then comes if j <> n then, a so-called conditional
dause. If the condition expressed by it is satisfied the following statement
will be performed, otherwise it will be skipped. (Another example of it
can be found two lines lower.) When the extent of the program which may
have to be skipped presents itself primarily as a sequence of more than one
statement, then one puts the so-called statement brackets begin and end
around this sequence, thereby making it into a single statement as far as
its surroundings are concerned. (This is entirely analogous to the effect of
parentheses in algebraic formulae, such as a * eb + c) where the parenthe-
sis pair indicates that the whole expression contained within it is to be taken
as factor.) The last statement goto back means that the process should be
continued at the point thus labelled; it does exactly the same thing for us
as the upward-pointing line of Fig. 7.

2 LOOSELY CONNECTED PROCESSES

The subject matter of this chapter is the co-operation between loosely con-
nected sequential processes, and this section will be devoted to a thorough
discussion of a simple, but representative problem, in order to give the reader
so me feeling for the problems in this area.

In the previous section we have described the nature of a single sequential
process, performing its sequence of actions autonomously, Le. independent
of its surroundings as so on as it has been started.

When two or more of such processes have to co-operate with each other
they must be connected, i.e. they must be able to communicate with each
other in order to exchange information. As we shall see below, the properties
of these means of intercommunication playavital role.

Furthermore, we have stipulated that the processes should be connected
loosely; by this we me an that apart from the (rare) moments of explicit
intercommunication, the individual processes themselves are to be regarded
as completely independent of each other. In particular, we disallow any
assumption about the relative speeds of the different processes. (Such an

CO OPERATING SEQUENTIAL PROCESSES 75

assumption-say, "processes geared to the same clock"-could be regarded
as implicit intercommunication.) This independence of speed ratios is in
strict accordance with our appreciation of the single sequential process: its
only essential feature is that its elementary steps are performed in sequence
If we prefer to observe the performance with a chronometer in our hand
we may do so, but the process itself remains remarkably unaffected by this
observation.

The consistent refusal to make any assumptions about the speed ratios
will at first sight appear to the reader as a mean trick to make things more
difficult than they already are. I feel, however, fully justified in my refusal.
First, we may have to cope with situations in which, indeed, very little is
known about the speeds. Far instance, part of the system may be a manu-
ally operated input station, another part of the system might be such that
it can be stopped externally for any period of time, thus reducing its speed
temporarily to zero. Secondly-and this is much more important-when we
think that we can rely upon certain speed ratios we shall discover that we
have been "penny wise and pound foolish". It is true that certain mecha-
nisms can be made simpler under the assumption of speed-ratio restrictions.
The verification, however, that such an assumption is always justified is,
in general, extremely tricky and the task to make, in a reliable manner, a
well-behaved structure out of many interlinked components is seriously ag-
gravated when such "analogue interferences" have to be taken into account
as weIl. (For one thing: it will make the proper working a rather unstable
equilibrium, sensitive to any change in the different speeds, as may easily
arise by replacement of a component by another-say, replacement of a line
printer by a faster model-or reprogramming of a certain portion.)

2.1 A Simple Example

In considering two sequential processes, process 1 and process 2, they
can for our purposes be regarded as cyclic. In each cycle a so-called "critical
section" occurs, critical in the sense that at any moment at most one of the
two processes is allowed to be engaged in its critical section. In order to
effectuate this mutual exclusion, the two processes have access to a number
of common variables. We postulate that inspecting the present value of such
a common variable and assigning a new value to such a common variable
are to be regarded as indivisible, non-interfering actions, Le. when the two
processes assign a new value to the same common variable "simultaneously",
then the assignments are to be regarded as done the one after the other, the

76 EDSGER W. DIJKSTRA

final value of the variable will be one of the two values assigned, but never
a "mixt ure" of the two. Similarly, when one process inspects the value of a
common variable "simultaneously" with the assignment to it by the other
one, then the former process will find either the old or the new value, but
never a mixture.

For our purposes ALGOL 60 as it stands is not suited, as ALGOL 60
has been designed to describe one single sequential process. We therefore
propose the following extension to enable us to describe parallelism of execu-
tion. When a sequence of statements-separated by semicolons as usual in
ALGOL 60-is surrounded by the special statement bracket pair parbegin
and par end this is to be interpreted as parallel execution of the constituent
statements. The whole construction-let us call it "a parallel compound"-
can be regarded as a statement. Initiation of a parallel compound implies
simultaneous initiation of all its constituent statements, its execution is com-
pleted after the completion of the execution of all its constituent statements.
E.g.:

begin 81; parbegin 82; 83; 84 parend; 85 end

(in which 81, 82, 83, 84, and 85 are used to indicate statements) means that
after the completion of 81, the statements 82, 83, and 84 will be executed in
parallel, and only when they are all finished will the execution of statement
85 be initiated.

With the above conventions we can describe our first solution:

begin integer turn; turn:= 1;
parbegin

end

process 1: begin L1: if turn = 2 then goto L1;
critical section 1;
turn:= 2;
remainder of cycle 1, goto L1

end;
process 2: begin L2: if turn = 1 then goto L2;

critical section 2;
turn:= 1;
remainder of cycle 2; goto L2

end;
par end

(Note for the inexperienced ALGOL 60 reader. After begin in the first
line we find the so-called declaration integer turn, thereby sticking to the
rule of ALGOL 60 that program text is not allowed to refer to variables

COOPERATING SEQUENTIAL PROCESSES 77

without having introduced them with the aid of a declaration. As this dec�
laration occurs after the begin of the outermost statement bracket pair, it
means that for the whole duration of the program a variable has been intro�
duced that will only take on integer values and to which the program text
can refer by means of the name turn.)

The two processes communicate with each other via the common integer
turn, the value of which indicates which of the two processes is the first to
perform (or rather: to finish) its critical section. From the program it is
clear that after the first assignment the only possible values of the variable
turn are 1 and 2. The condition for process 2 to enter its critical section is
that it finds at so me moment turn <> 1, i.e. turn = 2. But the only way
in wh ich the variable turn can get this value is by the assignment turn: = 2
in process 1. As process 1 performs this assignment only at the completion
of its critical section, process 2 can only initiate its critical section after
the completion of critical section 1. And critical section 1 could indeed
be initiated, because the initial condition turn = 1 implied turn <> 2, so
that the potential wait cycle, labelled Ll, was initially inactive. After the
assignment turn: = 2 the roles of the two processes are interchanged. (N.B.
It is assumed that the only references to the variable turn are the ones
explicitly shown in the program.)

Our solution, though correct, is, however, unnecessarily restrictive: after
the completion of critical section 1 the value of the variable turn becomes
2, and it must be = 1 again, before the next entrance into critical section 1.

As a result, the only admissible succession of critical seetions is the
strictly alternating one 1, 2, 1, 2, 1, 2, 1, ... ; in other words, the
two processes are synchronized In order to stress explicitly that this is not
the kind of solution we wanted, we impose the furt her condition: "If one of
the processes is stopped weIl outside its critical section, this is not allowed
to lead to potential blocking of the other process." This makes our previous
solution unacceptable, and we have to look for another.

Our second effort works with two integers cl and c2, where cl, c2 =

0/1 respectively will indicate that the corresponding process is inside/outside
its critical section respectively. We may try the following construction:

78 EDSGER W. DIJKSTRA

begin integer ci, c2;

ci: = 1; c2: = 1;

parbegin

end

processi: begin Li: if c2 = 0 then goto Li;

c1:= 0;

end;

critical section 1;

c1:= 1;

remainder of cycle 1; goto Li

process2: begin L2: if ci = 0 then goto L2;

c2:= 0;

end

par end

critical section 2;

c2:= 1;

remainder of cycle 2; goto L2

The first assignments set both c's = 1, in accordance with the fact that

the processes are started outside their critical sections. During the entire

execution of critical section 1 the relation cl = 0 holds, and the first li ne

of process 2 is effectively a wait: "Wait as long as process 1 is in its critical

section." The trial solution gives indeed some protection against simultane�

ity of critical section execution, but is, alas, too simple, because it is wrong.

Let first process 1 find that c2 = 1; let process 2 inspect cl immediately af�

terwards, then it will (still) find cl = 1. Both processes, each having found

that the other is not in its critical section, will conclude that they can enter

their own critical seetion safely!

We have been too optimistic, we must playa safer game. Let us invert,

at the beginning of the parallel processes, the inspection of the c of the other

and the setting of the own c. We then get the construction:

begin integer ci, c2;

c1:= 1; c2:= 1;

parbegin

process 1: begin Al: cl:= 0;

end;

Li: if c2 = 0 then goto Li;

critical section 1;

ci:= 1;
remainder of cycle 1; goto Ai

process 2: begin A2: c2:= 0;

end

L2: if ci = 0 then goto L2;

critical section 2;

c2:= 1;

remainder of cycle 2; goto A2

COOPERATING SEQUENTIAL PROCESSES 79

parend
end

It is worthwhile to verify that this solution is at least completely safe.
Let us focus our attention on the moment that process 1 finds c2 = 1

and therefore decides to enter its critical section. At this moment we can
conclude:

(1) that the relation cl = 0 already holds and will continue to hold until
process 1 has completed the execution of its critical section;

(2) that, since c2 = 1 holds, process 2 is weIl outside its critical section,
which it cannot enter while cl = 0 holds, i.e. while process 1 is still
engaged in its critical section.

Thus the mutual exclusion is indeed guaranteed.
But this solution, alas, must also be rejected: in its safety measures it

has been too drastic, for it contains the danger of definite mutual blocking.
When after the assignment cl: = 0 but yet before the inspection of c2 (both
by process 1) process 2 performs the assignment c2: = 0, then both processes
have arrived at label L1 or L2 respectively and both relations cl = 0 and
c2 = 0 hold, with the result that both processes will wait for each other to
eternity. Therefore this solution, too, must be rejected.

It was aIl right to set one's own c before inspecting the c of the other,
but it was wrong to stick to one's own c-setting and just to wait. This is
(somewhat) remedied in the following construction:

begin integer cl, c2;
cl:= 1; c2: = 1;
parbegin
process 1: begin Ll: cl:= 0;

end

end;

if c2 = 0 then
begin cl:= 1; goto Ll end;

critical section 1;
ci:= 1;
remainder of cycle 1; goto Ll

process 2: begin L2: c2:= 0;

end
par end

if cl = 0 then
begin c2:= 1; goto L2 end;

critical section 2;
c2:= 1;
remainder of cycle 2; goto L2

80 EDSGER W. DIJKSTRA

This construction is as safe as the previous one, and when the assignments
ci: = 0 and c2: = 0 are performed "simultaneously" it will not necessarily
lead to mutual blocking ad infinitum, because both processes will reset their
own c back to 1 before restarting the entry rites, thereby enabling the other
process to catch the opportunity. But our principles force us to reject this
solution also, for the refusal to make any assumptions about the speed ratio
implies that we have to cater for all speeds, and the last solution admits
the speeds to be so carefully adjusted that the processes inspect the other's
c only in those periods of time that its value is = O. To make clear that
we reject such solutions that only work with some luck, we state our next
requirement: "If the two processes are ab out to enter their critical sections,
it must be impossible to devise for them such finite speeds, that the decision
which one of the two is the first to enter its critical section is postponed to
eternity."

In passing we note that the solution just rejected is quite acceptable in
everyday life, e.g. when two people are talking over the telephone and they
are suddenly disconnected, as a rule both try to re-establish the connection.
They both dial and if they get the signal "Number Engaged" they put down
the receiver and, if not already caIled, they try "some" seconds later. Of
course, this may coincide with the next effort of the other party, but as a
rule the connection is re-established successfully after very few trials. In
our mechanical circumstances, however, we cannot accept this pattern of
behaviour: our parties might very weIl be identical!

Quite a collection of trial solutions have been shown to be incorrect, and
at some moment people that had played with the problem started to doubt
whether it could be solved at all. To the Dutch mathematician Th. J. Dekker
the credit is due for the first correct solution. It is, in fact, mixture of our
previous efforts: it uses the "safe sluice" of our last constructions, together
with the integer turn of the first one, but only to resolve the indeterminacy
when neither of the two immediately succeeds. The initial value of turn
could have been 2 as weIl.

COOPERATING SEQUENTIAL PROCESSES

begin integer c1, c2, turn;
c1:= 1; c2:= 1; turn:= 1;
parbegin

end

process 1: begin A1: c1:= 0;

process 2:

par end

L1: if c2 = 0 then

end;
beg in A2:

L2:

end

begin if turn 1 then goto L1;
c1:= 1;

B1: if turn 2 then goto B1;
goto A1

end;
critical section l' ,
turn:= 2' , c1 := l' ,
remainder of cycle l' , goto A1

c2:= O· ,
if c1 = o then

begin if turn 2 then goto L2;
c2:= 1 ;

B2: if turn 1 then goto B2;
goto A2

end;
critical section 2;
turn:= l' , c2:= l' ,
remainder of cycle 2' , goto A2

81

We shall now prove the correctness of this solution. Our first observation
is that each process only oper at es on its own c. As a result, process 1 inspects
c2 only while ci = 0, it will only enter its critical section provided it finds
c2 = 1; for process 2 the analogous observation can be made.

In short, we recognize the safe sluice of our last constructions, and the
solution is therefore safe in the sense that the two processes can never be in
their critical sections simultaneously. The second part of the proof has to
show that in case of doubt the decision which of the two will be the first to
enter cannot be postponed until eternity. Now we should pay some attention
to the integer turn: we note that assignment to this variable occurs only
at the end or, if you wish, as part of critical sections, and therefore we can
regard the variable turn as a constant during the decision process. Suppose
that turn = 1. Then process 1 can only cycle via L1, that is with ci = 0
and only as long as it finds c2 = O. But if turn = 1, then process 2 can only
cycle via B2, but this state implies c2 = 1, so that process 1 cannot cycle
and is bound to enter its critical section. For turn 2 the mirrored reasoning
applies. As third and final part of the proof we observe that stopping, say,

82 EDSGER W. DIJKSTRA

process 1 in "remainder of cycle I" will not restrict process 2: the relation cl
= 1 will then hold, and process 2 can merrily enter its critical section, quite
independently of the current value of turn. And this completes the proof of
the correctness of Dekker's solution. Those readers that fail to appreciate
its ingenuity are kindly asked to realize that for them I have prepared the
ground by means of a carefully selected set of rejected constructions.

2.2 The Generalized Mutual Exclusion Problem

The problem of Section 2.1 has a natural generalization: given N cyclic
processes, each with a critical section, can we construct them in such a way
that at any moment at most one of them is engaged in its critical section?
We assume the same means of intercommunication to be available, i.e. a set
of commonly accessible variables. Furthermore, our solution has to satisfy
the same requirements, viz. that stopping one process weIl outside its critical
section may in no way restrict the freedom of the others, and that if more
than one process is about to enter its critical section it must be impossible
to devise for them such finite speeds that the decision which one of them is
to be first to enter its critical section can be postponed to eternity.

In order to be able to describe the solution in ALGOL 60, we need the
concept of the array. In Section 2.1 we had to introduce a c for each of the
two processes and we did so by declaring

integer cl, c2

Instead of enumerating the quantities, we can declare-under the assumption
that N has a well-defined positive value-

integer array c[l : N]

which means, that at one stroke we have introduced N integers, accessible
under the names

c[subscript]

where subscript might take the values 1, 2, ... N.
The next ALGOL 60 feature we introduce is the so-called "for clause",

which we shall use in the following form:

for j:= 1 step 1 until N do statement S

and wh ich enables us to express repetition of statement S quite conve-
niently. In principle, the for clause implies that statement S will be exe-
cuted N times, with j in succession = 1, = 2, ... = N. (We have added "in

CO OPERATING SEQUENTIAL PROCESSES 83

prineiple", for via a goto statement as eonstituent part of statement Sand
leading out of it, the repetition ean be ended earlier.)

Finally, we need the logical operator that in this monograph is denoted
by and. We have met the eonditional clause in the form:

if condition then statement

We shall now meet:

if condition 1 and condition 2 then statement

meaning that statement S will be exeeuted only if condi tion 1 and
condition 2 are both satisfied. (Onee more we should like to stress that
this monograph is not an ALGOL 60 programming manual: the

of parts of ALGOL 60 have been introdueed only to
make this monograph as self-contained as possible.)

With the notational aids just sketched we can describe our solution for
fixed N as folIows.

The overall structure is:

begin integer array b, c[O : N];
integer turn;

end

for turn:= 0 step 1 until N do
begin b[turn]:= 1; c[turn)':= 1 end;

turn:= 0;
parbegin
process 1: begin end;
process 2: begin end;

process N: begin ... end;
par end

The first declaration intro duces two arrays with N + 1 elements each,
the next declaration introduces a single integer turn. In the following for
clause this variable turn is used to take on the successive values 1, 2, 3, ...
N, so that the two arrays are initialized with all elements 1. Then turn is
set = 0 (Le. none of the processes, numbered from 1 onwards,· is privileged).
After this the N processes are started simultaneously.

The N processes are all similar. The structure of the i th process is as
follows (1 :::; i :::; N):

84 EDSGER W. DIJKSTRA

process i: begin integer j;
Ai: b[i]:= 0;
Li: if turn <> i then

begin c[i]: = 1;

end

if b[turn] = 1 then turn:= i;
goto Li

end;
c[i]:= 0;
for j:= 1 step 1 until N do

begin if j <> i and c[j] = 0 then goto Li
end;

critical section i;
turn:= 0; c[i]:= 1; b[i]:= 1;
remainder of cycle i; goto Ai

Remark. The description of the N individual processes starts with a
declaration integer j. According to the rules of ALGOL 60 this means
that each process introduces its own, private, integer j (a so-called "local
quantity").

We leave the proof to the reader. It has to showagain:

(1) that at any moment at most one of the processes is engaged in its
critical section;

(2) that the decision which of the processes is the first to enter its critical
section cannot be postponed to eternity;

(3) that stopping a process in its "remainder of cycle" has no effect upon
the others.

Of these parts, the second one is the more difficult one. (Hint: As so on
as one of the processes has performed the assignment turn: = i, no new
processes can decide to assign their number to turn before a critical section
has been completed. Mind that two processes can decide "simultaneously"
to assign their i-value to turn!)

(Remark that can be skipped at first reading)

The program just described inspects the value of b [turn] where both
the array band the integer turn are in common store. We have stated that
inspecting a single variable is an indivisible action and inspecting b [turn]
can therefore only mean: inspect the value of turn, and if this happens to
be = 5, weH, then inspect b [5]. Or, in more explicit ALGOL:

COOPERATING SEQUENTIAL PROCESSES 85

process i: begin integer j, k;

k:= turn; if b[k] = 1 then ...

implying that by the time that b [k] is inspected, turn may already have a
value different from the current one of k.

Without the stated limitations in communicating with the common store,
a possible interpretation of "the value of b [turn]" would have been "the
value of the element of the array b as indicated by the current value of
turn". In so-called uniprogramming i.e. a single sequential process oper-
ating on quantities local to it the two interpretations are equivalent. In
multiprogramming, where other active processes may access and change the
same common information, the two interpretations make a great difference!
In particular, for the reader with extensive experience in uniprogramming
this remark has been inserted as an indication of the subtleties of the games
we are playing.

2.3 A Linguistic Interlude

In Section 2.2 we described the co-operation of N processes; in the overall
structure we used a vertical sequence of dots between the brackets parbegin
and parend. This is not hing but a loose formalism, suggesting to the human
reader how to compose in our notation a set of N co-operating sequential
processes, under the condition that the value of N has been fixed beforehand.
It is a suggestion for the construction of 3, 4, or 5071 co-operating processes,
it does not give a formal description of N such co-operating processes in
which N occurs as a parameter, i.e. it is not a description valid for any value
of N.

It is the purpose of this section to show that the concept of the so-called
"recursive procedure" of ALGOL 60 caters for this. This concept will be
sketched briefty.

We have seen how after begin declarations could occur in order to intro-
duce and to name either single variables (by enumeration of their names) or
whole ordered sets of variables (viz. in the array declaration). With the so-
called "procedure declaration" we can define and name a certain action; such
an action may then be invoked by using its name as astatement, thereby
supplying the parameters to which the action should be applied.

As an illustration we consider the following ALGOL 60 program:

86 EDSGER W. DIJKSTRA

begin integer a, b;

procedure square(u, v); integer u, v;

begin u:= v * v end;

L: square(a, 3); square(b, a); square(a, b)

end

In the first line the integers named a and bare declared. The next li ne

declares the procedure named square" operating on two parameters, wh ich

are specified to be single integers (and not, say, complete arrays). This li ne is

called "the procedure heading". The immediately following statement-the

so-called "procedure body" -describes by definition the action named: in

the third line-in which the bracket pair begin ... end is superfiuous-

it is told that the action of square is to assign to the first parameter the

square of the value of the second one. Then, labelled L, comes the first

statement. Before its execution the values of both a and bare undefined,

after its execution a = 9. After the execution of the next statement the

value of b is therefore = 81, after the execution of the last statement the

value of a is = 6561, the value of b is still = 8I.

In the previous example the procedure mechanism was essentially intro-

duced as a means for abbreviation, a means for avoiding to have to write

down the "body" three times, although we could have done so quite easily:

begin integer a, b;

L: a:= 3 * 3; b:= a * a; a:= b * b

end

When the body is much more complicated than in this example a program

along the latter lines tends to be much lengthier indeed.

This technique of "substituting for the call the appropriate version of the

body" is, however, no longer possible as so on as the procedure is a so-called

recursive one, i.e. may call itself. It is then that the procedure really extends

the expressive power of the programming language.

A simple example might illustrate the recursive procedure. The greatest

common divisor of two given natural numbers is:

(1) if they have the same value equal to this value;

(2) if they have different values equal to the greatest common divisor of

the sm aller of the two and their difference.

In other words, if the greatest common divisor is not trivial (first case) the

problem is replaced by finding the greatest common divisor of two numbers

with a sm aller maximum value.

COOPERATING SEQUENTIAL PROCESSES 87

(In the following program the insertion value v, w; can be skipped by
the reader as being irrelevant for our present purposes; it indicates that for
the parameters listed the body is only interested in the numerical value of
the actual parameter, as supplied by the call.)

begin integer a;

end

procedure GCD(u, v, w); value v, w; integer u, v, w;
if v = w then u:= v

else
begin if v < w then GCD(u, v, w - v)

else GCD(u, v - w, w)
end;

GCD(a, 12, 33)

(In this example the more elaborate form of the conditional statement is
used, viz.:

if condition then statement 1 else statement 2,

meaning that if condi tion is satisfied, statement 1 will be executed
and statement 2 will be skipped, and that if condi t ion is not satisfied
statement 1 will be skipped and statement 2 will be executed.)

The reader is invited to follow the pattern of calls of GCD and to see
how the variable a becomes = 3; he is also invited to convince himself of the
fact that the (dynamic) pattern of calls depends on the parameters supplied
and that the substitution technique-replace call by body-as applied in the
previous example would lead to difficulties here.

We shall now write a program to perform a matrix * vector multiplication
in which:

(1) the order in which the M scalar * scalar products are to be calculated
is indeed prescribed (the rows of the matrix will be scanned from left
to right);

(2) the N rows of the matrix can be processed in parallel.

(Where we do not wish to impose the restriction of purely integer values,
we have used the declarator real instead of the declarator integer; furt her-
more, we have introduced an array with two subscripts in what we hope is
an obvious manner.)

It is assumed that, upon entry of this block of program, the integers M
and N have positive values.

88 EDSGER W. DIJKSTRA

begin real array matrix[1 : N, 1 : M];
real array vector[1 : M];

end

real array product[1 : N];
procedure rowmult(k); value k; integer k;

begin if k > 0 then

end

parbegin
begin real s; integer j;

s:= 0;

end;

for j:= 1 step 1 until M do
s:= s + matrix[k, j] * vectorU];

product[k]:= s

rowmult (k - 1)
par end

rowmult(N);

3 THE MUTUAL EXCLUSION PROBLEM REVISITED

We return to the problem of mutual exclusion in time of critical sections, as
introduced in Section 2.1 and generalized in Section 2.2. This section deals
with a more efficient technique for solving this problem; only after having
done so we have adequate means for the description of examples, with which
I hope to convince the reader of the rather fundamental importance of the
mutual exclusion problem, in other words, I must appeal to the patience
of the wondering reader (suffering, as I am, from the sequential nature of
human communication!).

3.1 The Need for a More Realistic Solution

The solution given in Section 2.2 is interesting in as far as it shows that the
restricted means of communication provided are, from a theoretical point of
view, sufficient to solve the problem. From other points of view, which are
just as dear to my heart, it is hopelessly inadequate.

To start with, it gives rise to a rather cumbersome description of the
individual processes, in which it is anything but transparent that the overall
behaviour is in accordance with the (conceptually so simple) requirement of
the mutual exclusion. In other words, in so me way or another this solution

COOPERATING SEQUENTIAL PROCESSES 89

is a tremendous mystification. Let us try to isolate in which respect this
solution represents indeed a mystification, for this investigation could give
the clue to improvement.

Let us consider the period of time during which one of the processes is in
its critical section. We all know, that during that period no other processes
can enter their critical section and that, if they want to do so, they have
to wait until the current critical section execution has been completed. For
the remainder of that period hardly any activity is required from them: they
have to wait anyhow, and as far as we are concerned "they could go to sleep" .

Our solution does not reflect this at all: we keep the processes busy
setting and inspecting common variables all the time, as if no price has
to be paid for this activity. But if our the ways in
which or the means by which these processes are carried such that
"sleeping" is a less-expensive activity than this busy way of waiting, then
we are fully justified (now also from an economic point of view) to call our
solution misleading.

In present-day computers there are at least two ways in which this active
way of waiting can be very expensive. Let me sketch them briefly. These
computers have two distinct parts, usually called "the processor" and "the
store". The processor is the active part, in wh ich the arithmetic and logical
operations are performed, it is "active and small"; in the store, which is
"passive and large" , there resides at any moment the information which is not
being processed at that very moment but only kept there for future reference.
In the total computational process information is transported from store to
processor as soon as it has to play an active role, the information in store
can be changed by transportation in the inverse direction.

Such a computer is a very flexible tool for the implementation of sequen-
tial processes. Even a computer with only one single processor can be used
to implement a number of concurrent sequential processes. From a macro-
scopic point of view it will seem as though all these processes are being
carried out simultaneously, a closer inspection will reveal, however, that at
any "microscopic" moment the processor serves only one single program at
a time, and the overall picture only results because at wen-chosen moments
the processor will switch from one process to another. In such an implemen-
tation the different processes share the same processor, and activity (i.e. a
non-zero speed) of any single process will imply zero speed for the others;
it is then undesirable that precious processor time is consumed by processes
wh ich cannot go on anyhow.

90

EDSGER W. DIJKSTRA

Apart from processor sharing, the store sharing could make the unneces-

sary activity of a waiting process undesirable. Let us assurne that inspection

of or assignment to a "common variable" implies the access to an informa-

tion unit a so-called "word" in a ferrite-core store. Access to a word in a

core store takes a non-zero time, and for technical reasons only one word can

be accessed at a time. When more than one active process may wish access

to words of the same core store the usual arrangement is that in the case of

imminent coincidence the storage access requests from the different active

processes are granted according to a built-in priority rule: the lower prior-

ity process is automatically held up. (The literat ure refers to this situation

when it describes "a communication channel stealing a memory cycle from

the processor" .) The result is that frequent inspection of common variables

may slow down any processes which share the same core storage for their

local quantities.

3.2 The Synchronizing Primitices

The origin of the complications, which lead to such intricate solutions as

the one described in Section 2.2, is the fact that the indivisible accesses to

common variables are always "one-way information traffic": an individual

process can either assign a new value or inspect a current value. Such an

inspection itself, however, leaves no trace for the other processes, and the

consequence is that, when a process wants to react to the current value of a

common variable, that variable's value may have been changed by the other

processes between the moment of its inspection and the following effectuation

of the reaction to it. In other words: the previous set of communication

facilities must be regarded as inadequate for the problem at hand, and we

should look for more appropriate alternatives.

Such an alternative is provided by introducing:

(a) among the common variables special-purpose integers, wh ich we shall

call "semaphores";

(b) among the repertoire of actions, from which the individual processes

have to be constructed, two new primitives, which we call the "P-

operation" and the "V-operation" respectively.

The latter operations always operate on a semaphore and represent the only

way in which the concurrent processes may access the semaphores.

COOPERATING SEQUENTIAL PROCESSES 91

The semaphores are essentially non-negative integers; when used only to
solve the mutual exclusion problem the range of their values will even be
restricted to 0 and 1. It is the merit of the Dutch physicist and computer
designer C. S. Scholten to have shown a considerable field of applicability for
semaphores that can also take on larger values. When there is a need for dis-
tinction we shall talk about "binary semaphores" and "general semaphores"
respectively. The definition of the P- and V-operation that I shall give now
holds regardless of this distinction.

Definition. The V-operation is an operation with one argument, which
must be the identification of a semaphore. (If Si and S2 denote semaphores
we can write V(S1) and V(S2).) Its function is to increase the value of its
argument semaphore by 1; this increase is to be regarded as an indivisible
operation.

Note that this last sentence makes V(Sl) inequivalent to Sl:= Si + 1.
For suppose that two processes A and B both contain the statement V(Sl)
and that both should like to perform this statement at a moment when,
say, Si = 6. Excluding interference with Si from other processes, A and B
will perform their V-operations in an unspecified order-at least: outside our
control-and after the completion of the second V-operation the final value of
Si will be = 8. If Si had not been a semaphore but just an ordinary common
integer, and if processes A and B had contained the statement Si: = Si +
instead of the V-operation on Si, then the following could happen. Process A
evaluates Si + 1 and computes 7; before effecting, however, the assignment
of this new value, process B has reached the same stage and also evaluates
Si + 1, computing 7. Thereafter both processes assign the value 7 to Si,
and one of the desired incrementations has been lost. The requirement of
the "indivisible operation" is meant to exclude this occurrence when the
V-operation is used.

Definition. The P-operation is an operation with one argument, which
must be the identification of a semaphore. (If Si and S2 denote semaphores
we can write P(S1) and P(S2).) Its function is to decrease the value of
its argument semaphore by 1 as so on as the resulting value would be non-
negative. The completion of the P-operation-i.e. the decision that this
is the appropriate moment to effectuate the decrease and the subsequent
decrease itself-is to be regarded as an indivisible operation.

It is the P-operation which represents the potential delay, viz. when a
process initiates a P-operation on a semaphore, that at that moment is = 0,
in that case this P-operation cannot be completed until another process has

92 EDSGER W. DIJKSTRA

performed a V-operation on the same semaphore and has given it the value
1. At that moment more than one process may have initiated a P-operation
on that very same semaphore. The clause that completion of P-operation
is an indivisible action means that when the semaphore has got the value
1 only one of the initiated P-operations on it is allowed to be completed.
Which one, again, is left unspecified, i.e. at least outside our control.

At this stage we shall take the implementability of the P- and V-
operations for granted.

3.3 The Synchronizing Primitives Applied to the Mutual Exclusion
Problem

The construction of the N processes, each with a critical section, the exe-
cutions of which must exclude one another in time (see Section 2.2) is now
trivial. It can be done with the aid of a single binary semaphore, say free.
The value of free equals the number of processes allowed to enter their
critical section now, or;

free = 1 means: none of the processes is engaged in its critical section
free = 0 means: one of the processes is engaged in its critical section.

The overall structure of the solution becomes:

begin integer free; free:= 1;
parbegin
process 1: begin end;
process 2: begin ... end;

process N: begin ... end;
par end

end

with the i th process of the form:

process i: begin
Li: P(free); critical section i; V(free);

remainder of cycle i; goto Li
end

4 THE GENERAL SEMAPHORE

4.1 Typical Uses of the General Semaphore

We consider two processes, which are called the "producer" and the "con-
sumer" respectively. The producer is a cyclic process, and each time it goes

COOPERATING SEQUENTIAL PROCESSES 93

through its cycle it produces a certain portion of information that has to be
processed by the consumer. The consumer is also a cyclic process, and each
time it goes through its cycle it can process the next portion of information,
as produced by the producer. A simple example is given by a computing
process, producing as "portions of information" punched-card images to be
punched out by a card punch, which plays the role of the consumer.

The producer-consumer relation implies a one-way communication chan-
nel between the two processes, along which the portions of information can
be transmitted. We assurne the two processes to be connected for this pur-
pose via a buffer with unbounded capacity, Le. the portions produced need
not be consumed immediately, but they may queue in the buffer. The fact
that no upper bound has been given for the capacity of the buffer makes this
example slightly unrealistic, but this should not trouble us too much now.

(The reason for the name "buffer" becomes understandable when we in-
vestigate the consequences of its absence, viz. when the producer can only
offer its next portion after the previous portion has been actually consumed.
In the computer-card punch example, we mayassume that the card punch
can punch cards at a constant speed, say 4 cards per second. Let us assurne
that this output speed is weIl matched with the production speed, i.e. that
the computer can perform the card image production process with the same
average speed. If the connection between computing process and card punch
is unbuffered, then the couple will only work continuously at full speed when
the card-production process pro duces a card every quarter of a second. If,
however, the nature of the computing process is such that after one or two
seconds vigorous computing it produces 4 to 8 card images in a single burst,
then unbuffered connection will result in aperiod of time during which the
punch will be idle (for lack of information), followed by aperiod in which
the computing process has to be idle, because it cannot get rid of the next
card image before the preceding one has been actually punched. Such irreg-
ularities in production speed, however, can be smoothed out by a buffer of
sufficient size and that is why such a queuing device is called "a buffer".)

In this section we shall not deal with the various techniques of implement-
ing a buffer. It must be able to contain successive portions of information,
it must therefore be a suitable storage medium, accessible to both processes.
Furthermore, it must not only contain the portions themselves, it must also
represent their linear ordering. (In the literat ure two weIl-known techniques
are known as "cyclic buffering" and "chaining" respectively.) When the pro-
ducer has prepared its next portion to be added to the buffer we shall denote

94 EDSGER W. DIJKSTRA

this action simply by add portion to buffer, without going into furt her
details; similarly, the take portion from buffer describes the consumer's
behaviour, where the oldest portion still in the buffer is understood. (An-
other name of a buffer is a "First-In-First-Out-Memory".)

Omitting in the outermost block all declarations for the buffer, we can
now construct the two processes with the aid of a single general semaphore,
called number of queuing portions.

begin integer number of queuing portions;
number of queuing portions:= 0;
parbegin

end

producer: begin
again 1: produce the next portion;

add portion to buffer;
V(number of queuing portions);
goto again 1

end;
consumer: begin

parend

again 2: P(number of queuing portions);
take portion from buffer;
process portion taken;
goto again 2

end

The first line of the producer represents the co ding of the process wh ich
forms the next portion of information; it has a meaning quite independent of
the buffer for which this portion is intended; when it has been executed the
next portion has been successfully completed, the completion of its construc-
tion can no longer be dependent on other (unmentioned) conditions. The
second li ne of co ding represents the actions which define the finished portion
as the next one in the buffer; after its execution the new portion has been
added completely to the buffer, apart from the fact that the consumer does
not know it yet. The V-operation finally confirms its presence, i.e. signals
it to the consumer. Note that it is absolutely essential that the V-operation
is preceded by the complete addition of the portion. About the structure of
the consumer analogous remarks can be made.

Particularly in the case of buffer implementation by means of chaining the
operations add portion to buffer and take portion from buffer-
operating as they are on the same clerical status information of the buffer-
may interfere with each other in a most undesirable fashion, unless we see to
it, that they exclude each other in time. This can be catered for by a binary
semaphore, called buffer manipulation, the values of which mean:

CO OPERATING SEQUENTIAL PROCESSES

= 0: either adding to or taking from the buffer is taking place
= 1: neither adding to nor taking from the buffer is taking place.

The program is as follows:

begin integer number of queuing portions,

end

buffer manipulation;
number of queuing portions:= 0;
buffer manipulation:= 1;
parbegin
producer: begin

again 1: produce next portion;

end;
consumer: begin

P(buffer manipulation);
add portion to buffer;
V(buffer manipulation);
V(number of queuing portions);
goto again 1

again 2: P(number of queuing portions);
P(buffer manipulation);

end
par end

take portion from buffer;
V(buffer manipulation);
process portion taken;
goto again 2

The reader is requested to convince himself that:

(a) the order of the two V-operations in the producer is immaterial;

(b) the order of the two P-operations in the consumer is essential.

95

Remark. The presence of the binary semaphore buffer manipulation
has another consequence. We have given the program for one producer
and one consumer, but now the extension to more producers and/or more
consumers is straightforward: the same semaphore sees to it that two or more
additions of new portions will never get mixed up, and the same applies to
two or more takings of a portion by different consumers. The reader is
requested to verify that the order of the two V-operations in the producer
is still immaterial.

4.2 The Superfluity of the General Semaphore

In this section we shall show the superfluity of the general semaphore and we
shall do so by rewriting the last program of the previous section, using binary

96

EDSGER W. DIJKSTRA

semaphores only. (Intentionally I have written "we shall show" and not "we

shall prove". We do not have at our disposal the mathematical apparatus

that would be needed to give such a proof, and I do not feel inclined to

develop such mathematical apparatus now. Nevertheless, I hope that my

show will be convincing!) We shall first give a solution and postpone the

discussion till afterwards.

begin integer numqueupor, buffer manipulation,

end

consumer delay;

numqueupor:= 0; buffer manipulation:= 1;

consumer delay:= 0;

parbegin

producer: begin

again 1: produce next portion;

P(buffer manipulation);

end;

add portion to buffer;

numqueupor:= numqueupor + 1;

if numqueupor = 1 then

V(consumer delay);

V(buffer manipulation);

goto again 1

consumer: begin integer oldnumqueupor;

wait: P(consumer delay);

par end

go on: P(buffer manipulation);

end

take portion from buffer;

numqueupor:= numqueupor - 1;
oldnumqueupor:= numqueupor;

V(buffer manipulation);

process portion taken;

if oldnumqueupor = 0 then goto wait

else goto go on

Relevant in the dynamic behaviour of this program are the periods of

time during which the buffer is empty. (As long as the buffer is not empty,

the consumer can go on happily at its maximum speed.) Such aperiod can

only be initiated by the consumer (by taking the last portion present from

the buffer), it can only be terminated by the producer (by adding a por-

tion to an empty buffer). These two events can be detected unambiguously,

thanks to the binary semaphore buffer manipulation, that guarantees the

mutual exclusion necessary for this detection. Each such period is accom-

panied by a P- and a V-operation on the new binary semaphore consumer

delay. Finally, we draw attention to the local variable oldnumqueupor of the

consumer: its value is set during the taking of the portion and fixes whether

CO OPERATING SEQUENTIAL PROCESSES 97

it was the last portion then present. (The more expert ALGOL readers will
be aware that we only need to store a single bit of information, viz. whether
the decrease of numqueupor resulted in a value = 0; we could have used a
local variable of type Boolean for this purpose.) When the consumer decides
to go to wait, i.e. finds oldnumqueupor = 0, at that moment numqueupor
itself could already be greater than zero again!

In the previous program the relevant occurrence was the period with
empty buffer. One can remark that emptiness is, in itself, rather irrelevant: it
only matters, when the consumer should like to take a next portion, which is
still absent. We shall program this version as weIl. In its dynamic behaviour
we may expect less P- and V-operations on consumer delay: they will not
occur when the buffer has been empty for a short while, but is filled again
in time to make delay of the consumer unnecessary. Again we shall first give
the program and then its discussion.

begin integer numqueupor, buffer manipulation,
consumer delay;

end

numqueupor:= 0; buffer manipulation:= 1;
consumer delay:= 0;
parbegin
producer: begin

again 1: produce next portion;
P(buffer manipulation);
add portion to buffer;
numqueupor:= numqueupor + 1;
if numqueupor = 0 then

begin V(buffer manipulation);
V(consumer delay) end

else
V(buffer manipulation);

goto again 1
end;

consumer: begin

par end

again 2: P(buffer manipulation);
numqueupor:= numqueupor - 1;
if numqueupor = -1 then

end

begin V(buffer manipulation);
P(consumer delay);
P(buffer manipulation) end;

take portion from buffer;
V(buffer manipulation),
process portion taken;
goto again 2

98 EDSGER W. DIJKSTRA

Again, the semaphore buffer manipulation caters for the mutual

exclu- sion of critical sections. The last six lines of the producer could have

been formulated as follows:

if numqueupor = 0 then V(consumer delay);

V(buffer manipulation); goto again 1

In not doing so I have followed a personal taste, VIZ. to avoid P- and

V- operations within critical sections; a personal taste to wh ich the reader

should not pay too much attention.

The range of possible values of numqueupor has been extended with the

value -1, meaning (outside critical section execution) "the buffer is not only

empty, but its emptiness has already been detected by the consumer, wh ich

has decided to wait". This fact can be detected by the producer when, after

the addition of one, numqueupor = 0 holds.

Note how, in the case of numqueupor = -1, the critical section of the

consumer is dynamically broken into two parts: this is most essential, for

otherwise the producer would never get the opportunity to add the portion

that is already so much wanted by the consumer.

(The program just described is known as "The Sleeping Barber". There

is a barbershop with aseparate waiting room. The waiting room has an entry

and next to it an exit to the room with the barber's chair, entry and exit

sharing the same sliding door, which always closes one of them; furthermore,

the entry is so sm all that only one customer can enter it at a time, thus fixing

their order of entry. The mutual exclusions are thus guaranteed.

t I Barber's Chair

jv-----C+

Waiting room

\,.

I
When the barber has finished a haircut he opens the door to the waiting

room and inspects it. If the waiting room is not empty he invites the next

customer, otherwise he goes to sleep in one of the chairs in the waiting room.

The complementary behaviour of the customers is as follows: when they find

zero or more customers in the waiting room they just wait their turn, when

they find, however, the Sleeping Barber-numqueupor = -l-they wake hirn

up.)

The two programs given present a strong indication that the general

semaphore is, indeed, superfiuous. Nevertheless, we shall not try to abolish

COOPERATING SEQUENTIAL PROCESSES 99

the general semaphore: the one-sided synchronization restrietion expressible
by it is very common, and comparison of the solutions with and without
the general semaphore shows convincingly that it should be regarded as an
adequate tool.

4.3 The Bounded Buffer

I shall give a last simple example to illustrate the use of the general
semaphore. In Seetion 4.1 we have studied a producer and a consumer
coupled via a buffer with unbounded capacity. This is a typically one-sided
restriction: the producer can be arbitrarily far ahead of the consumer; on the
other hand, the consumer can never be ahead of the producer. The relation
becomes symmetrie when the two are coupled via a buffer of finite size, say
of N portions. We give the program without discussion; we ask the reader
to convince himself of the complete symmetry. ("The consumer pro duces
and the producer consumes empty positions in the buffer.") The value N,
as weIl as the buffer, is supposed to be defined in the surrounding universe
into which the following program should be embedded.

begin integer number of queuing portions,
number of empty positions,
buffer manipulation;

end

number of queuing portions:= 0;
number of empty positions:= N;
buffer manipulation:= 1;
parbegin
producer: begin

again 1: produce next portion;

end;
consumer: begin

P(number of empty positions);
P(buffer manipulation);
add portion to buffer;
V(buffer manipulation);
V(number of queuing portions);
goto again 1

again 2: P(number of queuing portions) ;
P(buffer manipulation);

end
parend

take portion from buffer;
V(buffer manipulation);
V(number of empty positions);
process portion taken;
goto again 2

100 EDSGER W. DIJKSTRA

5 CO-OPERATION VIA STATUS VARIABLES

In Sections 4.1 and 4.3 we have illustrated the use of the general semaphore.
It proved an adequate tool, be it as implement at ion of a rather trivial form
of interaction. The rules for the consumer are very simple: if there is some-
thing in the buffer, consume it. They are of the same simplicity as the
behaviour of the wage-earner who spends all his money as soon as he has
been paid and is broke until the next pay day.

In other words: when a group of co-operating sequential processes have
to be constructed and the overall behaviour of these processes combined has
to satisfy more elaborate community, formed by them,
has, as a whole, to be weIl behaved in some can only expect to
be able to achieve this if the individual processes themselves and the ways
in wh ich they can interact will get more refined. We can no longer expect
a ready-made solution, such as the general semaphore, to do the job. In
general, we shall need such fiexibility as can be expressed in a program for
a general-purpose computer.

We now have the raw material, we can define the individual processes,
they can communicate with each other via the common variables, and finally,
we have the synchronizing primitives. How we can compose from it what we
might want is, however, by no means obvious. We must now train ourselves
to use the tools, we must develop a style of programming, a style of "parallel
programming". Two points should be stressed.

We shall be faced with a great amount of freedom. Interaction may imply
decisions bearing upon more than one process, and it is not always obvious
which of the processes should then take the decisions. If we cannot find
a guiding principle (e.g. efficiency considerations), then we must have the
courage to impose some rule for the sake of clarity.

Secondly, if we are interested in systems that really work we should
be able to convince ourselves (and anybody else who takes the trouble of
doubting) of the correctness of our constructions. In uniprogramming one
is already faced with the task of program verification a task the difficulty of
which is often underestimated but there one can hope to debug by testing
of the actual program. In our case the system will often have to work under
irreproducible circumstances, and we can hardly expect any serious help
from field tests. The duty of verification should concern us right from the
start.

We shall attack a more complicated example in the hope that this will
give us some of the experience which might be used as guiding principle.

COOPERATING SEQUENTIAL PROCESSES 101

5.1 An Example of a Priority Rule

In Section 4.3 we have used the general semaphore to couple a producer and
a consumer via a bounded buffer. The solution given there is extendable to
more producers and/or more consumers; it is applicable when the "portion"
is at the same time a convenient unit of information, i.e. when we can regard
the different portions as all being of the same size.

In the present problem we consider producers that offer portions of dif-
ferent sizes; we assume the size of these portions to be expressed in portions
units. The consumers, again, will process the successive portions from the
buffer, and will therefore have to be able to process portions the size of which
is not given apriori. A maximum portion size will, however, be known.

The size of the portions is given in information units, we assume also
that the maximum capacity of the buffer is given in information units: the
quest ion whether the buffer will be able to accommodate the next portion
will therefore depend on the size of the portion offered. The requirement
that "adding a portion to" and "taking a portion from the buffer" are still
conceivable operations implies that the size of the buffer is not less than the
maximum portion size.

We have a bounded buffer, and therefore a producer may have to wait
before it can offer a portion. With fixed-sizeportions this would only occur
when the buffer was full to the brim, now it can also happen because free
space in the buffer, although present, is insucient for the portion concerned.

Furthermore, when we have more than one producer and one of them is
waiting, then the other ones may go on and reach the state that they wish to
offer a portion. Such a portion from a next producer may also be too large,
or it may be sm aller and it may fit in the available free space of the buffer.

Somewhat arbitrarily, we impose on our solution the requirement that
the producer wishing to offer the larger portion gets priority over the pro-
ducer wishing to offer the sm aller portion to the buffer. (When two or more
producers are offering portions that happen to be of the same size we just
don't care.)

When a producer has to wait because the buffer cannot accommodate
its portion, no other producers can therefore add their portions until furt her
notice: they cannot do so if the new portion is larger (for then it will not fit
either) , they are not allowed to if the new portion is smaller, for then they
have a lower priority and must leave the buffer for the earlier request.

Suppose a moment at which there is a completely filled buffer and three
producers, waiting to offer portions of 1, 2, and 3 units respectively. When

102 EDSGER W. DIJKSTRA

a consumer now comsumes a five-unit portion the priority rule implies that
the producers with the 2-unit portion and the 3-unit portion will get the
opportunity to go on and not the one offering the l-unit portion. It is not

meant to imply that in that case the 3-unit portion will actually be offered
before the 2-unit portion!

We shall now try to introduce so-called "status variables" for the different
components of the system, with the aid of which we can characterize the state
of the system at any moment. Let us try.

For each producer we introduce a variable named desire; this variable
will denote the number of buffer units needed for the portion it could not add
to the buffer. As this number is always positive, we can attach to desire = 0
the meaning that no request from this producer is pending. Furthermore,
we shall introduce for each producer a private binary producer semaphore.

For the buffer we introduce the binary semaphore bufman, wh ich takes
care of the mutual exclusion of buffer manipulations in the widest sense
(i.e. not only the adding to and taking from the buffer but also inspection
and modification of the status variables concerned).

Next we need a mechanism to signal the presence of a next portion to the
consumers. As soon as a next portion is in the buffer, it can be consumed and
as we do not care which of the consumers takes it, we can hope that a general
semaphore number of queuing portions will do the job. (Note that it
counts portions queuing in the buffer and not number of filled information
units in the buffer.)

Vacated buffer space must be signalled back to the producers, but the
possible consequences of vacating buffer space are more intricate, and we
cannot expect that a general semaphore will be adequate. Tentatively we
introduce an integer status variable number of free buffer uni ts. Note
that this variable counts units, not portions.

Remark. The value of number of free buffer uni ts will at most be
equal to the size of the buffer diminished by the total size of the portions
counted in number of queuing portions, but it may be less! I refer to the
program given in section 4.3; there the sum

number of queuing portions + number of empty positions

is initially (and usually) = N, but it may be = N - 1, because the P-
operation on one of the semaphores always precedes the V-operation on the
other. (Verify that in the program of section 4.3 the sum can even be =
N - 2 and that this value could even be lower had we had more produc-
ers and/or consumers.) Here we may expect the same phenomenon: the

CO OPERATING SEQUENTIAL PROCESSES 103

semaphore number of queuing portions will count the portions'actually
and completely filled and still unnoticed will count the completely free, un-
allocated units in the buffer. But the units which have been reserved for
filling, which have been granted to a (waiting) producer, without already
being filled, will not be counted in either of them.

Finally, we introduce the integer buffer blocking, the value of which
equals the number of quantities desire that are positive. Obviously, this
variable is superfluous; it has been introduced as a recognition of one of our
earlier remarks, that as so on as one of the desires is positive, no further
additions to the buffer can be made, until furt her notice. At the same time
this variable may act as a warning to the consumers, that such a "further
notice" is wanted.

We now propose the following program, written for N producers and M
consumers. (N, M, Buffer size, and all that concerns the buffer is assumed
to be declared in the surroundings of this program.)

begin integer array desire, producer semaphore[l N];
integer number of queuing portions,

number of free buffer units,
buffer blocking, bufman, loop;

for loop:= 1 step 1 until N do
begin des ire [loop] := 0;

producer semaphore [loop] := 0
end

number of queuing portions:= 0 ;
number of free buffer units:= Buffer size;
buffer blocking:= 0; bufman:= 1;
parbegin
producer 1:

begin end;

producer n:
begin integer portion size;
again n: produce next portion and set portion size;

P(bufman);
if buffer blocking = 0 and

number of free buffer units >= portion size
then

number of free buffer units:=
number of free buffer units - portion size

else
begin buffer blocking:= buffer blocking + 1;

desire[n]:= portion size; V(bufman);
P(producer semaphore[n]); P(bufman) end;

add portion to buffer; V(bufman);

104

end

EDSGER W. DIJKSTRA

V(number of queuing portions); goto again n

end;

producer

N:

begin end;

consumer 1:

begin end;

consumer m:

begin integer portion size, n, max, nmax;

again m: P(number of queuing portions); P(bufman);

take portion from buffer and set portion size;

number of free buffer units:=

number of free buffer units + portion size;

test: if buffer blocking > 0 then

end;

consumer M:

begin max:= 0,

end;

for n:= 1 step 1 until N do

begin if max < desire[n] then

begin max:= desire[n]; nmax:= n

end end;

if max <=

number of free buffer units then

begin number of free buffer units:=

number of free buffer units

- max;

end

desire[nmax] := 0;

buffer blocking:=

buffer blocking - 1;

V(producer semaphore[nmax]);

goto test

V(bufman); process portion taken;

goto again m

begin end

par end

In the outermost block the common variables are declared and initialized.

This part of the program hopefully presents no difficulties to the reader who

has followed me until here.

COOPERATING SEQUENTIAL PROCESSES 105

Let us first try to understand the behaviour of the producer. When it
wishes to add a new portion to the buffer there are essentially two cases:
either it can do so immediately or not. It can add immediately under the
combined condition:

buffer blocking = 0 and
number of free buffer units >= portion size;

if so, it will decrease number of free buffer uni ts and-dynamically
speaking in the same critical seetion-it will add the portion to the buffer.
The two following V-operations (the order of which is immaterial) close the
critical section and signal the presence of the next portion to the combined
consumers. If it cannot add immediately, i.e. if (either)

buffer blocking > 0 or
number of free buffer units < portion size

(or both), then the producer decides to wait, "to go to sleep", and delegates
to the combined consumers the task to wake it up again in due time. The faet
that it is waiting is coded by desire [n] > 0, buffer blocking is increased
by 1 accordingly. After all clerical operations on the common variables have
been carried out the critical seetion is left (by V (bufman)) and the producer
initiates a P-operation on its private semaphore. When it has completed
this P-operation it re-enters the critical seetion, merges dynamically with
the first case and adds the portion to the buffer. (See also the consumer in
the second program of section 4.2, where we have already met the cutting
open of a critical section.) Note that in the waiting case the producer has
skipped the decrease of number of free buffer uni ts. Note also that the
producer initiates the P-operation on its private semaphore at a moment
that the latter may already be = 1, i.e. this P-operation, again, is only a
potential delay.

Let us now inspect whether the combined consumers fulfil the tasks del-
egated to them. The presence of a next portion is correctly signalIed to
them via the general semaphore number of queuing portions and, as the
P-operation on it occurs outside any critical seetion, there is no danger of
consumers not initiating it. After this P-operation the consumer enters its
critical seetion, takes a portion, and increases the number of free buffer
units. If buffer blocking = 0 holds, the following compound statement is
skipped completely and the critical seetion is left immediately; this is cor-
reet, for buffer blocking = 0 means that none of the quantities desire is
positive, i.e. that none of the producers is waiting for the free space just cre-
ated in the buffer. If, however, it finds buffer blocking > 0 it knows that

106 EDSGER W. DIJKSTRA

at least one of the producers has gone to sleep and it will inspect, whether

one or more producers have to be woken up. It looks for the maximum value

of desire. If this is not too large it decides that the corresponding producer

has to go on. This decision has three effects:

(a) The number of free buifer units is decreased by the number of

units desired. Thus we guarantee that the same free space in the

buffer cannot be granted to more than one producer. Furthermore,

this decrease is in accordance with the producer behaviour.

(b) Desire of the producer in question is set to zero; this is correct, for

its request has now been granted; buffer blocking is decreased by 1

accordingly.

(c) A V-operation on the producer semaphore concerned wakes the sleep-

ing producer.

After that, control of the consumer returns to test to inspect whether

more sleeping producers should be woken up. The inspection process can

end in one of two ways: either there are no sleeping producers left (buifer

blocking = 0) or there are still sleeping processes, but the free space is

insufficient to accommodate the maximum desire. The final value of buifer

blocking is correct in both cases. After the waking up of the producers is

done the critical section is left.

5.2 An Example of Conversations

In this section we shall discuss a more complicated example, in which one of

the co-operating processes is not a machine but a human being, the "oper-

ator".

The operator is connected with the processes via a so-called "semi-duplex

channel" (say "telex connection"). It is called a duplex channel because it

conveys information in either direction: the operator can use a keyboard to

type in a message for the processes, the processes can use the teleprinter

to type out a message for the operator. It is called a semi-duplex channel,

because it can only transmit information in one direction at a time.

Let us now consider the requirements of the total construction, admit-

tedly somewhat simplified yet hopefully sufficiently complicated to pose to

us a real problem, yet sufficiently simple so as not to drown the basic pattern

of our solution in a host of inessential details.

COOPERATING SEQUENTIAL PROCESSES 107

We have N identical processes (numbered from 1 through N), and essen-
tially they can each ask a single question, called Q i, meaning "How shall I
go on 7", to which the operator may give one of two possible answers, called
Ai and A2. We assurne that the operator must know which of the processes
is asking the question since his answer might depend on this knowledge and
we therefore specify that the i th process identifies itself when posing the
question; we indicate this by saying that it transmits the quest ion Q1(i). In
a sense this is a consequence of the fact that all N processes use the same
communication channel.

A next consequence of this channel sharing between the different pro-
cesses is that no two processes can ask their question simultaneously: be-
hind the scenes so me form of mutual exclusion must see to this. If only
Q1-questions are mutually exclusive the operator may meet the following
situation: a question-say Q1(3)-is posed, but before he has decided how
to answer it a next question-say, Qi (7)-is put to hirn. Then the single
answer Ai is no longer sufficient, because now it is no longer clear whether
this ans wer is intended for process 7 or for process 3. This could be over-
come by adding to the answers the identification of the process concerned,
say, A1(i) and A2 (i) with the appropriate value of i.

Eut this is only one way of doing it: an alternative solution is to make the
question, followed by its answer, together a critical occurrence: it relieves
the operator from the duty to identify the process, and we therefore select
the latter arrangement. So we stick to the answers Ai and A2. We have
two kinds of conversations Q1(i) , Ai and Q1(i), A2 with the rule that
a next conversation can be initiated only when the previous one has been
completed.

We shall now complicate the requirements in three respects.
First, the individual processes may wish to use the communication chan-

nel for single-shot messages M (i) say which do not require any answer from
the operator.

Secondly, we wish to give the operator the possibility to postpone an
answer. Of course, he can do so by just not answering, but this would have
the undesirable effect that the communication channel remains blocked for
the other N - 1 processes. We introduce a next answer A3, meaning: "The
channel becomes free again, but the conversation with the process concerned
remains unfinished." Obviously, the operator must have the opportunity to
reopen the conversation again. He can do so via A4(i) or A5(i), where
i runs from 1 through N and identifies the process concerned, where A4

108 EDSGER W. DIJKSTRA

indicates that the process should continue in the same way as after Al, while

A5 prescribes the reaction as to A2. Possible forms of conversation are now:

(a) Ql (i) ,

Al

(b) Ql Ci) ,

A2

(c)

Ql(i), A3 - -

- A4(i)

(d) Ql (i) ,

A3

- A5 (i)

As far as process i is concerned (a) is equivalent with (c) and (b) is equivalent

with (d).

The second-requirement has a profound infiuence: without it-i.e. only

Al and A2 permissible answers-the process of incoming message interpreta-

tion can always be subordinate to one of the N processes, viz. the one that

has put the question, this can wait for an answer and can act accordingly.

We do not know beforehand, however, when the message A4(i) or A5(i) will

arrive, and we cannot delegate its interpretation to the ith process, because

the discovery that this incoming message is concerned with the i th process

is part of the message interpretation itself!

Thirdly, A4- and A5-messages must have priority over Ql- and M- mes-

sages, i.e. while the communication channel is occupied (in a Ql- or M-

message), processes might reach the state that they want to use the channel,

but the operator too might co me to this conclusion at the same time. As

soon as the channel becomes available, we wish that the operator can use

it and that, if he so desires, it won't be snatched away by one of the pro-

cesses. This implies that the operator has a means to express this desire a

rudimentary form of input even if the channel itself is engaged in output.

We assurne that the operator

(a) can give externally a

V(incoming message)

which he can use to announce a message (Al, A2, A3, A4, or A5);

(b) can detect by the machine's reaction, whether his intervention is ac-

cepted or ignored.

Remark. The situation is not unlike the school teacher shouting, "Now

children, listen!" If this is regarded as a normal message it is nonsensical:

CO OPERATING SEQUENTIAL PROCESSES 109

either the children are listening and it is therefore superfluous, or they are
not listening and therefore they do not hear it. It is, in fact, a kind of "meta-
message" , which only teIls that a normal message is coming and which should
even penetrate if the children are not listening (talking, for instance).

This priority rule may cause the communication channel to be reserved
for an announced A4-or A5 message. By the time the operator gets the
opportunity to give it the situation or his mood may have changed, and
therefore we extend the list of answers with A6-the dummy opening-which
enables the operator to withhold, on second thoughts, the A4 or A5.

A final feature of the message interpreter is the applicability test. The
operator is a human being, and we may be sure that he will make mistakes.
The states of the message interpreter are such that at any moment not all
incoming messages are applicable; when a message has been rejected as non-
applicable the interpreter should return to such astate that the operator
can then give the correct version.

Our attack will be along the following lines:

(1) Besides the N processes we introduce another process, called message
interpreter; this,is done because it is difficult to make the interpre-
tation of the messages A4, A5, and A6 sub ordinate to one of the N
processes.

(2) Interpretation of a message always implies, besides the message itself,
astate of the interpreter. (In the trivial case this is a constant state,
viz. the willingness to understand the message.) We have seen that not
all incoming messages are acceptable at all times, so our message in-
terpreter will have to have different states. We shall code them via the
(common) state variable comvar. The private semaphore, which can
delay the action of the message interpreter, is the semaphore incoming
message, already mentioned.

(3) For the N processes we shall introduce an array procsem of private
semaphores and an array procvar of state variables, through which
the different processes can communicate with each other, with the
message interpreter, and vice versa.

(4) Finally, we introduce a single binary semaphore mutex which caters
for the mutual exclusion during inspection and/or modification of the
common variables.

110 EDSGER W. DIJKSTRA

(5) We shall use the binary semaphore mutex only for the purpose just
described, and never, say, will mutex = 0 be used to code that the
channel is occupied. Such a convention would be a dead alley in the
sense that the technique used would fall into pieces as soon as the
N processes would have two channels (and two operators) at their
disposal. We aim to make the critical sections, governed by mutex,
rather short, and we won't shed a tear if some critical section is shorter
than necessary.

The above five points are helpful, and in view of our previous experiences
they seem a set of reasonable principles. One facet of this subject has been
to present a solution along the lines just given and show that it is correct. I
would do a better job if I could show as weIl how such a solution is found.
Admittedly any such solution is found by trial and error, but even so, we
could try to make the then prevailing guiding principle (in mathematics
usually called "The feeling of the genius") somewhat more explicit. For we
are still faced with problems:

(a) what structure should we give to the N +1 processes?

(b) what states should we introduce (Le. how many possible values should
the state variables have and what should be their meanings)?

The problem (both in constructing and in presenting the solution) is
that the two points just mentioned are interdependent. For the values of
the state variables have only an unambiguous, interpretable meaning, when
mutex = 1 holds, i.e. when none of the processes is inside a critical section,
in which these values are subject to change. In other words, the conditions
under which the meaning of the state variable values should be applicable
is only known when the programs have been constructed, but we can only
construct the programs after we know what inspections of and operations on
the state variables are to be performed. In my experience, one starts with a
rough picture of both programs and state variables, then starts to enumerate
the different states and finally tries to build the programs. Then two things
may happen: either one finds that one has introduced too many states or
one finds overlooked a need for cutting a critical section into

has not introduced enough of them. One modi fies the states
and then the program, and with luck and care the design process converges.
Usually I found myself content with a working solution and did not bother
to minimize the number of states introduced.

CO OPERATING SEQUENTIAL PROCESSES 111

In my experience it is easier to conceive first the states (these being
statically interpretable) and then the programs. In conceiving the states we
have to bear three points in mind.

(a) State variables should have a meaning when mutex is = 1; on the other
hand, a process must leave the critical section before it starts to wait
for a private semaphore. We must be very keen on all those points
where a process may have to wait for something more complicated
than permission to complete P (mutex) .

(b) The combined state variables specify the total state of the system.
Nevertheless, it helps a great deal if we can regard so me state variables
as "belonging to that and that process". If some aspect of the total
state increases linearly with N it is easier to conceive that part as
equally divided among the N processes.

(c) If a process decides to wait on account of a certain (partial) state each
process that makes the system leave this partial state should inspect
whether on ac count of this change so me waiting process should go on.
(This is only a generalization of the principle already illustrated in The
Sleeping Barber.)

The first two points are mainly helpful in the conception of the different
states, the last one is an aid to make the programs correct.

Let us now try to find a set of appropriate states. We start with the
element procvar [i], describing the state of process i.

procvar[i] = 0

This we call "the horne position". It will indicate that none of the fol-
lowing situations applies, that process i does not require any special service
from either the message interpreter or one of the other processes.

procvar [i] = 1

"On account of non-availability of the communication channel, process
i has decided to wait on its private semaphore." This decision can be taken
independently in each process, it is therefore reasonable to represent it in
the state of the process. Up till now there is no obvious reason to distinguish
between waiting upon availability for aM-message and for a Ql-question,
so let us try to do without this distinction.

112

EDSGER W. DIJKSTRA

procvar[i] = 2

"Question Ql Ci) has been answered by A3, viz. with respect to process

i the operator has postponed his final decision." The fact of the post-

ponement must be represented because it can hold for an indefinitely long

period of time (observation a); it should be regarded as astate variable of

the process in question, as it can hold in N-fold (observation b). Moreover,

procvar [i] = 2 will act as applicability criterion for the operator messages

A4 [i] and A5 [i] .

procvar[i] = 3

"Ql [i] has been answered by Al or by A3 - - - A4 [i]."

procvar[i] = 4

"Ql [i] has been answered by A2 or by A3 - - - A5 [i]."

First of all we remark that it is of no concern to the individual process

whether the operator has postponed his final answer or not. The reader may

wonder, however, that the answer given is coded in procvar, while only one

answer is given at a time. The reason is that we do not know how long it

will take the individual process to react to this answer: before it has done

so, a next process may have received its final answer to the Q1-question.

Let us now try to list the possible states of the communication organi-

sation. We introduce a single variable, called comvar to distinguish between

these states. We have to bear in mind three different aspects:

(1) availability of the communication possibility for M-messages, Q1-

quest ions , and the spontaneous message of the operator;

(2) acceptability-more general: interpretability-of the incoming mes-

sages.

(3) operator priority for incoming messages.

In order not to complicate matters too much at once, we shall start by

ignoring the third point. Without operator priority we can see the following

states.

comvar 0

COOPERATING SEQUENTIAL PROCESSES 113

"The communication facility is idle", i.e. equally available for both pro-
cesses and operator. For the processes comvar = 0 me ans that the commu-
nication facility is available, for the message interpreter it means that an
incoming message need not be ignored, but must be of type A4, A5, or A6.

comvar = 1

"The communication facility is used for aM-message or a Ql-question."
In this period of time the value of comvar must be i= 0, because the commu-
nication facility is not available for the processes; for the message interpreter
it me ans that incoming messages have to be ignored.

comvar = 2

"The communication facility is reserved for an Al-, A2-, or A3-answer."
When the M-message has been finished the communication facility becomes
available again; after a Ql-question, however, it must remain reserved. Dur-
ing this period, characterized by comvar = 2, the message interpreter must
know to which process the operator answer applies. At the end of the answer
the communication facility becomes again available.

Let us now take the third requirement into consideration. This will lead
to a duplication of (certain) states. When comvar = 0 holds, an incom-
ing message is accepted, when comvar = 1, an incoming message must be
ignored. This occurrence must be noted down, because at the end of this
occupation of the communication facility the operator must get his priority.
We can introduce a new state:

comvar = 3

"As comvar = 1 with operator priority requested."
When the transition to comvar = 3 occurred during aM-message the

operator could get his opportunity immediately at the end of it; if, however,
the transition to comvar = 3 took place during a Ql-question the prior-
ity can only be given to the operator after the answer to the Ql-question.
Therefore, also state 2 is duplicated:

comvar = 4

"As comvar = 2, with operator priority requested."
Finally, we have the state:

comvar = 5

114 EDSGER W. DIJKSTRA

"The communication facility is reserved for, or used upon, instigation of
the operator." For the processes this means non-availability, for the message
interpreter the acceptability of the incoming messages of type A4, A5, and
A6. UsuaIly, these messages will be announced to the message interpreter
while comvar is = O. If we do not wish that the entire collection and interpre-
tation of these messages is done within the same critical section the message
interpreter can break it open. It is then necessary that comvar is # o. We
may try to use the same value 5 for this purpose: for the processes it just
means non-availability, while the control of the message interpreter knows
very weIl whether it is waiting for a spontaneous operator message (i.e. "re-
served for ... ") or interpreting such a message (i.e. "used upon instigation
of ... ").

Before starting to try to make the program we must bear in mind point
c: remembering that availability of the communication facility is the great
(and only) bottleneck, we must see to it that every process that ceases to
occupy the communication facility decides upon its future usage. This occurs
in the processes at the end of the M-message (and not so much at the end
of the Ql-question, for then the communication facility remains reserved
for the answer) and in the message interpreter at the end of each message
interpretation.

The proof of the pudding is the eating: let us try whether we can make the
program. (In the program the sequence of characters starting with comment
and up to and including the first semicolon are inserted for explanatory
purpose only. In ALGOL 60 such a comment is admitted only immediately
after begin, but I do not promise to respect this (superfluous) restriction.
The following program should be interpreted to be embedded in a uni verse in
which the operator, the communication facility, and the semaphore incoming
message-initially = O-are defined.)

begin integer mutex, comvar, asknum, loop;
comment The integer "asknum" is astate variable of the
message interpreter, primarily during interpretation of
the answers A1, A2, and A3. It is a common variable, as
its value is set by the asking process;
integer array procvar, procsem[1 : N];
for loop:= 1 step 1 until N do
begin procvar[loop]:= 0; procsem[loop]:= 0 end;
comvar:= 0; mutex:= 1;
parbegin

process 1: begin ... end;

COOPERATING SEQUENTIAL PROCESSES

process n: begin integer i; comment The integer "i" is a
local variable, very much like "loop";

M message: P(mutex);
if comvar = 0 then
begin comment When the communication

facility is available, it is taken;
comvar:= 1; V(mutex) end

else
begin comment Otherwise the process re cords

itself as dormant and goes to sleep;
procvar[n]:= 1; V(mutex);
P(procsem[n])

end;

comment At the completion of this
P-operation, "procsem[n]" will again
be = 0, but comvar - still untouched
by this process - will be = 1 or = 3;

send M message;
comment Now the process has to analyse
whether the operator (first) or one of the
other pro ces ses should get the communication
facility; P(mutex);
if comvar = 3 then comvar:= 5

else
begin comment Otherwise "comvar = 1" will

hold and process n has to look whether
one of the other processes is waiting.
Note that "procvar[n] = 0" holds;
for i:= 1 step 1 until N do
begin if procvar[i] = 1 then

end;

begin procvar[i] := 0;
V(procsem[i]); goto ready

end

comvar:= 0
end

ready: V(mutex);

Q1 Question: P(mutex);
if comvar = 0 then
begin comvar:= 1; V(mutex) end

else
begin procvar[n]:= 1; V(mutex);

P(procsem[n])
end;

115

116

end;

EDSGER W. DIJKSTRA

comment This entry is identical to that of
the M message. Note that we are out of the
critical section, nevertheless this process
will set "asknum". It can do so safely, for
neither another process nor the message
interpreter will access "asknum" as long as
"comvar = 1" holds;
asknum:= n, send question Ql(n);
P(mutex);
comment "comvar" will be = 1 or 3;
if comvar = 1 then comvar:= 2

else comvar:= 4;
V(mutex); P(procsem[n]);
comment After completion of this
P-operation, procvar[n] will be = 3 or = 4.
This process can now inspect and reset its
procvar, although we are outside a critical
section;
if procvar[n] = 3 then Reaction 1

else Reaction 2;
procvar[n]:= 0;
comment This last assignment is
superfluous;

process N: begin ... end;
message interpreter:

begin integer i;
wait: P(incoming message);

P(mutex);
if comvar = 1 then comvar:= 3;
if comvar = 3 then
begin comment The message interpreter

ignores the incoming message, but in
due time the operator will get the
opportunity;
V(mutex); goto wait end;

if comvar = 2 or comvar = 4 then
begin comment Only Al, A2 and A3 are

admissible. The interpretation of the
message need not be done inside a
critical section;
V(mutex);
interpretation of the message coming
in;
if message = Al then

COOPERATING SEQUENTIAL PROCESSES

begin procvar[asknum] := 3;
V(procsem[asknum]);
goto after correct answer end;

if message = A2 then
begin procvar[asknum]:= 4;

V(procsem[asknum]);
goto after correct answer end;

if message = A3 then
begin procvar[asknum]: = 2;

goto after correct answer end;
comment The operator has given an
erroneous answer and should repeat the
message; goto wait;

after correct answer: P(mutex);
if comvar = 4 then
begin comment The operator should now

get his opportunity;
comvar:= 5; V(mutex); goto wait

end;
perhaps comvar to zero:for i:= 1 step 1 until N do

begin if procvar[i] = 1 then
begin procvar[i] := 0;

end
end;
comvar:= 0;

comvar:= 1;
V(procsem[i]); goto ready

ready: V(mutex); goto wait
end;
comment The cases "comvar 0" and
"comvar = 5" remain.
Messages A4, A5, and A6 are admissible;
if comvar = 0 then comvar:= 5;
comment See Remark 1 after the program;
V(mutex);
interpretation of the message coming in;
P(mutex);
if message = A4[process number] then
begin i:= process number given in the

end;

message;
if procvar[i] = 2 then
begin procvar[i]:= 3; V(procsem[i]);

goto perhaps comvar to zero end;
comment Otherwise process not waiting
for postponed answer;
goto wrong message

if message = A5[process number] then
begin i:= process number given in the

message;
if procvar[i] = 2 then

117

118 EDSGER W. DIJKSTRA

end;

begin procvar[il:= 4; V(procsem[i]);
goto perhaps comvar to zero end;

comment Otherwise process not waiting
for postponed answer;
goto wrong message

if message = A6 then
goto perhaps comvar to zero;

wrong message: comment "comvar = 5" holds, giving priority
to the operator to repeat his message;
V(mutex); goto wait

end

end
par end

Remark 1. If the operator, while comvar = 0 or comvar = 5 originally
holds, gives an uninterpretable (or inappropriate) message the communica-
tion facility will remain reserved for his next trial.

Remark 2. The final interpretation of the A4 and A5 messages is done
within the critical section, as their admissibility depends on the state of the
process concerned. If we have only one communication channel and one
operator this precaution is rather superfiuous.

Remark 3. The for-loops in the program scan the processes in order,
starting at process 1; by scanning them cyclically, starting at an arbitrary
process (selected by means of a (pseudo) random number generator), we
could have made the solution more symmetrical in the N processes.

Remark 4. In this section we have first presented a rather thorough
exploration of the possible states and then the program. The reader might
be interested to know that this is the true picture-"a live recording" - of
the birth of this solution. When I started to write this section the problem
posed was as new to me as it was to the reader: the program given is my
first version, constructed on account of the considerations and explorations
given. I hope that this section may thus give a hint as to how one may find
such solutions.

5.2.1 Improvements of the Previous Program

In Section 5.2 we have given a first version of the program; this version has
been included in the text, not because we are satisfied with it but because
its inclusion completes the picture of the birth of a solution. Let us now
try to embellish, in the name of greater conciseness, clarity, and, may be,
efficiency. Let us try to discover in what respects we have made a mess of
it.

COOPERATING SEQUENTIAL PROCESSES 119

Let us compare the information flows from a process to the message
interpreter, and vi ce versa. In the one direction we have the common variable
asknum to tell the message interpreter which process is asking the question.
The setting and the inspection of asknum can safely take place outside the
critical sections, governed by mutex, because at any moment at most one of
the N + 1 processes will try to access asknum. In the inverse information
flow, where the message interpreter has to signal back to the ith process the
nature of the final operator answer, this answer is coded in procvar. This
is mixing things up, as is shown:

(a) by the procvar-inspection (whether procvar is = 3 or = 4), which is
suddenly allowed to take place outside a critical section;

(b) by the superfluity of its being reset to zero.

The suggestion is to introduce a new

integer array operanswer[1 : NJ

the elements of which will be used in a similar fashion as asknum. (An
attractive consequence is that the number of possible values of procvar-
the more fundamental quantity (see below) will no longer increase with the
number of possible answers to the quest ion Ql.)

I should like to investigate whether we can achieve a greater clarity
by separating the common variables into two (or perhaps more?) distinct
groups, in order to reflect an observable hierarchy in the way in which they
are used. Let us try to order them in terms of "basicness".

The semaphore incoming message seems at first sight a fairly basic one,
being defined by the surrounding universe. This is, however, an illusion:
within the parallel compound we should have programmed (as the N + 2nd
process) the operator himself, and the semaphore incoming message is the
private semaphore for the message interpreter just as procsem [i] is for the
ith process.

Thus the most basic quantity is the semaphore mutex taking care of the
mutual exclusion of the critical sections.

Then co me the state variables comvar and procvar, which are inspected
and can be modified within the critical sections.

The quantities just mentioned share the property that their values must
be set before entering the parallel compound. This property is also shared
by the semaphores procsem (and incoming message, see above) if we stick

120

EDSGER W. DIJKSTRA

to the rules that parallel statements will access common semaphores via P-

and V-operations exclusively.

(Without this restrietion, re quest for the communication facility by

process n could start with:

P(mutex);

if comvar = 0 then

begin comvar:= 1; V(mutex) end

else

begin procvar[n]:= 1; procsem[n]:= 0;

V(mutex); P(procsem[n]) end

We reject this solution on the furt her observation that the assignment

procsem [n] is void, except for the first time that it is executed; the ini-

tialization of procsem's outside the parallel compound seems therefore ap-

propriate.)

For the common variables listed thus far I should like to reserve the name

"status variables" , to distinguish them from the remaining ones, asknum and

operanswer, which I should like to call "transmission variables".

The latter are called "transmission variables" because, whenever one of

the processes assigns a value to such a variable, the information just stored

is destinated for a well-known "receiving party". They are used to transmit

information between well-known parties.

Let us now turn our attention from the common variables towards the

programs. Within the programs we have learnt to distinguish the so-called

"critical sections" for which the semaphores mutex caters for the mutual

exclusion. Besides these, we can distinguish regions in which relevant actions

occur, such as:

In the ith Process

Region 1:

Region 2:

Region 3:

sending an M-message

sending a Q1(i)-question

reacting to operanswer[i] (This region

is somewhat openended).

In the Message Interpreter

Region 4:

Region 5:

Region 6:

ignoring incoming messages

expecting Al, A2, or A3

expecting A4(i), A5(i), or A6.

We come now to the following picture. In the programs we have critical

sections, mutually excluded by the semaphore mutex. The purpose of the

COOPERATING SEQUENTIAL PROCESSES 121

critical sections is to resolve any ambiguity in the inspection and modification
of the remaining state variables, inspection and modification performed for
the purpose of more intricate "sequencing patterns" of the regions. These
sequencing patterns make the unambiguous use of the transmission variables
possible. (If one process has to transmit information to another it can now do
so via a transmission variable, provided that the execution of the assigning
region is always followed by that of the inspecting region before that of the
next assigning region.)

In the embellished version of the program we shall stick to the rule that
the true state variables will only be accessed in critical sections (if they are
not semaphores) or via P- and V-operations (if they are semaphores), while
the transmission variables will only be accessed in the regions. (In more
complicated examples this rule might prove too rigid, and duplication might
be avoided by allowing transmission variables to be inspected at least within
the critical section. In this example, however, we shall observe the rule.)

The remaining program improvements are less fundamental.
Co ding will be smoothed if we represent the fact of requested operator

priority not by additional values of comvar but by an additional two-valued
state variable:

Boolean operator priority

(Quantities of type Boolean can take on the two values denoted by true and
false respectively, viz. they have the same domain as "conditions" such as
we have met in the if-clause.)

Furthermore we shall introduce two procedures; they are declared outside
the compound and therefore at the disposal of the different constituents of
the parallel compound.

We shall first give a short description of the new meanings of the values
of the state variables procvar and comvar:

procvar [i]
procvar[i]

procvar[i]
comvar 0
comvar = 1
comvar 2
comvar 3

o horne position
1 waiting for availability of the communication

facility for M or Q1(i)
2 waiting for the answer A4 (i) or A5 (i) .

horne position (communication facility free)
communication facility for M or Q1
communication facility for Al, A2, or A3
communication facility for A4, A5, or A6.

We give the program without comments, and shall do so in two stages:

122 EDSGER W. DIJKSTRA

first the program outside the parallel compound and then the constituents
of the parallel compound.

begin integer mutex, comvar, asknum, loop;
Boolean operator priority;

end

integer array procvar, procsem, operanswer[l: N];
procedure M or Q entry(u); value u; integer u;
begin P(mutex);

end;

if comvar = 0 then
begin comvar:= 1; V(mutex) end

else
begin procvar[u]:= 1; V(mutex); P(procsem[u]) end

procedure select new comvar value;
begin integer i;

if operator priority then
begin operator priority:= false; comvar:= 3 end

else
begin for i:= 1 step 1 until N do

begin if procvar[i] = 1 then

end;

begin procvar[i]:= 0; comvar:= 1;
V(procsem[i]); goto ready end

comvar:= 0;
ready: end

end;
for loop:= 1 step 1 until N do

beg in procvar[loop] := 0; procsem[loop]:= 0 end,
comvar:= 0; mutex:= 1; operator priority:= false;
parbegin
process 1: begin ... end;

process N: begin end;
message interpreter:

begin ... end
par end

Here the nth process will be of the form

process n:

M message:
Region 1:

begin

M or Q entry(n);
send M message;
P(mutex); select new comvar value; V(mutex);

COOPERATING SEQUENTIAL PROCESSES

Q1 question: M or Q entry(n);
Region 2: asknum:= n;

send Q1(n);
P(mutex); comvar:= 2; V(mutex); P(procsem[n])

Region 3: if operanswer[n] = 1 then Reaction 1
else Reaction 2;

end

123

When the message interpreter decides to enter Region 6 it copies, before
doing so, the array procvar: if an answer A4(i) should be acceptable, then
procvar [i] = 2 should already hold at the moment of announcement of the
answer.

Message Interpreter:

begin integer i; integer array pvcopy[l: N];
wait: P(incoming message); P(mutex);

if comvar = 1 then
Region 4:
leave:

Region 5:

signal to
preleave:
Region 6:

end

begin operator priority:= true;
V(mutex); goto wait end;

if comvar <> 2 then goto Region 6;
V(mutex); collect message;
if message <> A1 and message <> A2
and message <> A3 then goto wait;
i:= asknum;
if message A1 then operanswer[i]:= 1 else
if message = A2 then operanswer[i]:= 2;
P(mutex);
if message = A3 then procvar[i]:= 2 else
i: V(procsem[i]);
select new comvar value; goto leave;
if comvar = 0 then comvar:= 3;
for i:= 1 step 1 until N do pvcopy[i]:= procvar[i];
V(mutex); collect message;
if message = A6 then
begin P(mutex); goto preleave end;
if message <> A4(process number)
and message <> A5(process number) then goto wait;
i:= process number given in the message;
if pvcopy[i] <> 2 then goto wait;
operanswer[i]:= if message = A4 then 1 else 2;
P(mutex); procvar[i]:= 0; goto signal to i

As an exercise we leave to the reader the version in which pending re-
quests for Q1-questions have priority over those for M-messages. As a next
extension we suggest a two-console configuration with the additional re-
striction that an A4- or A5-message is only acceptable via the console over

124 EDSGER W. DIJKSTRA

which the conversation has been initiated. (Otherwise we have to exclude
simultaneous, contradictory messages A4 Ci) and A5 Ci) via the two different
consoles. The solution without this restriction is left to the really fascinated
reader.)

5.2.2 Proving the Correctness

In this section title I have used the word "proving" in an informal way.
I have not defined what formal conditions must be satisfied by a "legal
proof", and I do not intend to do so. When I can find a way to discuss the
program of Section 5.2.1, by which I can convince myself of-and hopefully
anybody else that takes the trouble of doubting!-the correctness of the
overall performance of this aggregate of processes I am satisfied.

In the following "state picture" we make a diagram of all the states
in which a process may find itself "for any considerable length of time",
i.e. outside sections critical to mutex. The arrows describe the transitions
taking place within the critical sections; accompanying these arrows, we give
the modifications of comvar or the conditions under which the transition from
one state to another is made.

Calling the neutral region of a process before entry into a Region 1 or
Region 2, Region 0, we can give the state picture

Region 0
procvar = 0

comvar 0-+ 1 comvar i= 0

Region 1 or 2
procvar = 0

Leaving Region 1 can be pictured as:

COOPERATING SEQUENTIAL PROCESSES

I Region 1, procvar = 0 I
comvar 1 -+ 3

operator
priority

procvar
1-+0

1-+0

all procvar i= 0

l Region 0, procvar = 0 I

125

Leaving Region 2, with the possibility of a delayed answer, can be pic-
tured as:

I

I
A1,A2
comvar2 -+

I
I

Region 2, procvar = 0 J
1-+2

waiting for answer, procvar = 0 I
A3

3, 1,0 comvar 2 -+ 3,1,0

I waiting for answer, procvar = 2 J
comvar 0,3 -+ 0,1
A4, A5

Region 3, procvar = 0 I
reaction to the answer ,
Region 0, procvar = ° I

We can try to do the same for the message interpreter. Here we indicate
along the arrows the relevant occurrences, such as changes of a procvar and
the kind of message. We use WIM as abbreviation for "Waiting for Incoming
Message".

126

EDSGER W. DIJKSTRA

Regionl-..

ReBlon 0

end of ReBlon 2

an procvar #: 1

These diagrams, of course, tell us nothing new, but they may be a pow�

erful aid to program inspection.

We verify first that comvar = 0 represents indeed the horne position

of the communication facility, i.e. its availability either for entrance into

Region 1 or Region 2 (by one of the processes) or for entrance into Region 6

(by the message interpreter, as result of an incoming message for which it is

waiting).

If comvar = 0 and one of the processes wants to enter Region 1 or Re�

gion 2, or a message comes from the operator, Region 1, 2, or 6 is en�

teredj furthermore, this entrance is accompanied by either comvar: = 1 or

comvar : = 3, and in this way care is taken of the mutual exclusion of the

Regions 1, 2, and 6.

The mutual exclusion implies that processes may fail to enter Region 1

or 2 immediately, or that an incoming message must be rejected when

it comes at an inacceptable moment. In the first case the process sets

procvar: = 1, in the second case (in Region 4) the message interpreter sets

COOPERATING SEQUENTIAL PROCESSES 127

operator priority:= true.
These assignments are performed only under the condition comvar <> 0;

furthermore, the assignment comvar: = O-only occurring in the procedure
select new comvar value-is only performed provided "non-operator pr i-
ority and all procvar i- 1". From these two observations and the initial
values we can conclude:

comvar = 0 excludes operator priori ty as weIl as the occurrence of
one or more procvar = 1.

Since all ways of ceasing to occupy the communication facility (i.e. the
end of Region 1, 5, and 6) call select new comvar value, we have estab-
lished:

(a) that entrance into the Region 1, 2, and 6 is only delayed if necessary;

(b) that such a delay is guaranteed to end at the earliest opportunity.

The structure of the message interpreter shows clearly that:

(a) it can execute Region 5 only if comvar 2

(b) it can only execute Region 5 if comvar 2

(c) execution of Region 5 is the only way to make comvar again i- 2.

The only assignment comvar: = 2 occurs at the end of Region 2. As a
result, each Region 2 can be followed only by a Region 5 and, conversely,
each Region 5 must be preceded by a Region 2. This sequencing allows us to
use the transmission variable asknum, which is set in Region 2 and inspected
in Region 5.

For the uses of the transmission variables oper ans wer an analogous anal-
ysis can be made. Region 2 will be followed by Region 5 (see above); if
here the final answer (Al or A2) is interpreted, operanswer Ei] is set before
V (procsem Ei]), so that the transmission variable has been set properly be-
fore the process can (and will) enter Region 3, where its operanswer will be
inspected. If in Region 5 the answer A3 is detected, the message interpreter
sets procvar Ei] : = 2 for this process, thus allowing the answer A4 or A5 for
this process exactly once in Region 6. Again V (procsem [i]) is performed
only after the assignment to operanswer. Thus we have verified that:

(a) operanswer is only set on ce by the message interpreter after arequest
in Region 2;

128

EDSGER W. DIJKSTRA

(b) this operanswer will only be inspected in the following Region 3 after

the request to set it has been fulfilled (in Region 5 or Region 6).

This completes the analysis of the soundness of the use of the transmis-

sion variables operanswer .

Inspection of the message interpreter (particularly the scheme of its

states) shows:

(a) that a rejected message (Region 4) so on er or later is bound to give rise

to Region 6;

(b) that wrong messages are ignored, giving the operator the opportunity

of correction.

By the above analysis we hope to have created sufficient confidence in

the correctness of our construction. The analysis followed the steps already

hinted at in section 5.2.1: after creation of the critical sections (with the aid

of mutex) the latter are used to sequence Regions properly, thanks to which

sequencing the transmission variables can be used unambiguously.

6 THE PROBLEM OF THE DEADLY EMBRACE

In the introductory part of this section I shall draw attention to a rather

logical problem that arises in the co-operation between various processes

when they have to share the same facilities. We have selected this problem

for various reasons. First, it arises by a straightforward extension of the

sound principle that no two persons should use a single compartment of a

revolving door simultaneously. Secondly, its solution, which I regard as non-

trivial and which will be given in Section 6.1, gives us a nice example of

more subtle co-operation rules than we have met before. Thirdly, it gives us

the opportunity to illustrate (in Section 6.2) a programming technique by

which a furt her gain in clarity can be achieved.

Let me first give an example of the kind of facility-sharing I have in mind.

As "processes" we might take "programs" , describing so me computa-

tional process to be performed by a computer. Execution of such a com-

putational process takes time, during which information must be stored in

the computer. We restrict ourselves to those processes of which is known in

advance:

(1) that their demand on storage space will not exceed a certain limit, and

CO OPERATING SEQUENTIAL PROCESSES 129

(2) that each computational process will end, provided that storage space
requested by the process will be put at its disposal. The ending of the
computational process will imply that its demand on storage space will
reduce to zero.

We ass urne that the available store has been subdivided into fixed-size
"pages" which, from the point of view of the programs, can be regarded as
equivalent.

The actual demand on storage space needed by a process may be a func-
tion varying in time as the process proceeds-subject, of course, to the a

priori known upper bound. We assurne that the individual processes request
from and return to "available store" in single page units. By "equivalence"
(see the last word of.the previous paragraph) is meant that a process requir-
ing a new page only asks for "a new page" but never for a special one nor
one out of a special group.

We now request that a process, once initiated, will-sooner or later-get
the opportunity to complete its action and reject any organization in which
it may happen that a process may have to be killed half-way through its
activity, thereby throwing away the computation time already invested in it.

If the computer has to perform the different processes one after the other
the only condition that must be satisfied by a process is that its maximum
demand does not exceed the total storage capacity.

If, however, the computer can serve more than one process simultaneously
one can adhere to the rule that one only admits pro grams as long as the sum
of their maximum demands does not exceed the total storage capacity. This
rule, safe though it is, is unnecessarily restrictive, for it means that each
process effectively occupies its maximum demand during the complete time
of its execution. When we consider the following table (in which we regard
the processes as "borrowing" pages from available store)

Process
PI
P2

Maximum demand
80
60

Present Ioan
40
20 +

A vailable store = 100 - 60 = 40

Further claim
40
40

(a total store of 100 pages is assumed), we have a situation in which is still
not hing wrong. If, however, both processes request their next page, and if
they should both get it, we should get the following situation:

130

Process
PI
P2

EDSGER W. DIJKSTRA

Maximum demand
80
60

Present loan
41
21 +

Available store = 100 - 62 = 38

Further claim
39
39

This is an unsafe situation, for both processes might want to realize their
full further claim before returning a single page to available store. So each
of them may first need a further 39 pages, while there are only 38 available.

This situation, when one process can continue only provided the other
one is killed first, is called "The Deadly Embrace". The problem to be
solved is: how can we avoid the danger of the Deadly Embrace without
being unnecessarily restrictive.

6.1 The Banker's Algorithm

A banker has a finite capital expressed in florins. He is willing to accept
customers, that may borrow florins from hirn on the following conditions:

1. The customer makes the loan for a transaction that will be completed
in a finite period of time.

2. The customer must specify in advance his maximum "need" for florins
for this transaction.

3. As long as the "loan" does not exceed the "need" stated in advance,
the customer can increase or decrease his loan florin by florin.

4. A customer when asking for an increase in his current loan undertakes
to accept without complaint the answer "If I gave you the florin you
ask for you would not exceed your stated need, and therefore you
are entitled to a next florin. At present, however, it is somewhat
inconvenient for me to pay you, but I promise you the florin in due
time."

5. His guarantee that this moment will indeed arrive is founded on the
banker's cautiousness and the fact that his co-customers are subject
to the same condition as he: that as so on as a customer has got the
florin he asked for he will proceed with his transactions at a non-zero
speed, i.e. within a finite period of time he will ask for a next florin
or will return a florin or will finish the transaction, which implies that
his complete loan has been returned (florin by florin).

CO OPERATING SEQUENTIAL PROCESSES 131

The primary questions are:

(a) under which conditions can the banker enter into contract with a new
customer?

(b) under which conditions can the banker pay a (next) florin to a request-
ing customer without running into the danger of the Deadly Embrace?

The answer to question (a) is simple: he can accept any customer, whose
stated need does not exceed the banker's capital.

In order to answer question (b), we introduce the following terminology.
The banker has a fixed capi tal at his disposal; each new customer states

in advance his maximum need and for each customer will hold

need[i] ::; capital (for an i).

The current situation for each customer is characterized by his loan.
Each loan is initially = 0 and shall satisfy at any instant

0::; loan[i] ::; need[i] (for an i).

A useful quantity to be derived from this is the maximum further claim,
given by

claim[i] = need[i] - loan[i] (for an i).

Finally, the banker notes the amount in cash, given by

cash = capital - sum of the loans

Obviously

o ::; cash::; capi tal

has to hold.
In order to decide whether a requested florin can be paid to the customer,

the banker essentially inspects the situation that would arise if he had paid
it. If this situation is "safe", then he pays the florin, if the situation is not
"safe" he has to say: "Sorry, but you have to wait."

Inspection whether a situation is safe amounts to inspecting whether all
customer transactions can be guaranteed to be able to finish. The algorithm
starts to investigate whether at least one customer has a claim not exceed-
ing cash. If so, this customer can complete his transactions, and therefore
the algorithm investigates the remaining customers as if the first one had

132

EDSGER W. DIJKSTRA

finished and returned its complete loan. Safety of the situation means that

all transactions can be finished, i.e. that the banker sees a way of getting all

his money back.

If the customers are numbered from 1 through N the routine inspecting

a situation can be written as follows:

integer free money; Boolean safe;

Boolean array finish doubtful[l : N];

free money:= cash;

for i:= 1 step 1 until N do finish doubtful[i]:= true;

L: for i:= 1 step 1 until N do

begin if finish doubtful[i] and claim[i] <= free money

then

begin finish doubtful[il:= false;

free money:= free money + loan[i]; goto L

end

end;

if free money = capital then safe:= true else safe:= false

The above routine inspects any situation. An improvement of the Al�

gorithm has been given by L. Zwanenburg, who takes into account that

the only situations to be investigated are those, where, starting from a safe

situation, a florin has been tentatively given to customer [i]. As soon as

finish doubtful[i] : = false can be executed the algorithm can decide

directly on safety of the situation, for then clearly this attempted payment

was reversible. This short cut will be implemented in the program in the

next section.

6.2 The Banker's Algorithm Applied

In this example also the florins are processes. (Each florin, say, represents

the use of a magnetic tape deck; the loan of a florin is then the permission

to use one of the tape decks.)

We assurne that the customers are numbered from 1 through N and that

the florins are numbered from 1 through M. Each customer has a variable

florin number in which, after each granting of a florin, it can find the num�

ber of the florin it has just borrowed; also each florin has a variable customer

number in which it can find by which customer it has been borrowed.

Each customer has astate variable cusvar, where cusvar = 1 me ans

"I am anxious to borrow." (otherwise cusvar = 0); each florin has astate

variable flovar, where flovar = 1 me ans "I am anxious to get borrowed,

i.e. I am in cash." (otherwise flovar = 0). Each customer has a binary

COOPERATING SEQUENTIAL PROCESSES 133

semaphore cussem, each florin has a binary semaphore flosem, which will
be used in the usual manner.

We assurne that each florin is borrowed and returned upon customer
indication, but that he cannot return a borrowed florin immediately. After
the customer has indicated that he has no further use for this florin the
florin may not be instantaneously available for subsequent use. It is as if
the customer can say to a borrowed florin "run horne to the banker". The
actual loan will only be ended after the florin has indeed returned to cash:
it will signal its return into the banker's cash to the customer from which
it came via a customer semaphore florin returned. A P-operation on
this semaphore should guard the customer against an inadvertent overdraft.
Before each florin re quest the customer will perform a P-operation on its
florin returned; the initial value of florin returned will be = need.

We assurne that the constant integers N and M (= capi tal) and the
constant integer array need are declared and defined in the universe in which
the following program is embedded.

The procedure try to gi ve to is made into a Boolean procedure, the
value of which indicates whether a delayed request for a florin has been
granted. In the florin program it is exploited that returning a florin may at
most give rise to a single delayed request to be granted now. (If more than
one type of facility is shared under control of the banker this will no Ion ger
hold. Jumping out of the for loop to the statement labelled leave at the
end of the florin program is then not permissible.)

begin integer array loan, claim, cussem, cusvar,
florin number, florin returned[1 : N],
flosem, flovar, customer number[1 : M];

integer mut ex , cash, k;
Boolean procedure try to give to (j); value j;
integer j;
begin if cusvar[j] = 1 then

begin integer i, free money;
Boolean array finish doubtful[1 N];
free money:= cash - 1;
claim[j]:= - 1;
loan[j] := loan[j] + 1;
for i:= 1 step 1 until N do

finish doubtful[i]:= true;
LO: for i:= 1 step 1 until N do

begin if finish doubtful[i]
and claim[i] <= free money then
begin if i <> j then

begin
finish doubtful[i] := false;

134

end;

EDSGER W. DIJKSTRA

end
end;

free money:=
free money + loan[i] ;

goto LO
end

else
begin comment Here more

sophisticated ways for
selecting a free florin
may be implemented;
i:= 0;

L1: i:= i + 1;

end

if flovar[i] = 0 then
goto L1;
florin number[j]:= i;
customer number[i]:= j;
cusvar[j]:= 0;
flovar[i]:= 0;
cash:= cash - 1;
try to give to:= true;
V(cussem[j]) ;
V (flosem Ci]) ;
goto L2

claim[j]:= claim[j] + 1;
loan[j]:= loan[j] - 1

try to give to:= false;
L2: end,

mutex:= 1; cash:= M;
for k:= 1 step 1 until N do
begin loan[k] := 0; cussem[k]:= 0; cusvar[k]:= 0;

claim[k] := need[k]; florin returned[k] := need[k]
end;
for k:= 1 step 1 until M do
begin flosem[k] := 0; flovar[k]:= 1 end;
parbegin

customer 1: begin ... end;

customer N: begin end;
florin 1: beg in end;

florin M: begin ... end
par end

end

COOPERATING SEQUENTIAL PROCESSES 135

In customer n the request for a new florin consists of the following se-
quence of statements:

P(florin returned[n]);
P(mutex);
cusvar[n]:= 1; try to give to (n);
V(mutex);
P(cussem[n]);

after completion of the last statement florin number [n] gives the identity
of the florin just borrowed, the customer has the opportunity to use it and
the duty to return it in due time to the banker.

The structure of a florin is as follows:

florin m:
begin integer h;
start: P(flosem[m]);

comment Now customer number[m] identifies the
customer that has borrowed it. The florin can serve
that customer until it has finished the task required
from it during this loan. To return itself to the
cash, the florin proceeds as follows;
P(mutex);
claim[customer number[m]] :=

claim[customer number[m]] + 1;
loan[customer number[m]] :=

loan[customer number[m]] - 1;
flovar[m]:= 1; cash:= cash + 1;
V(florin returned[customer number[m]]);
for h:= 1 step 1 until N do

begin if try to give to(h) then goto leave end;
leave: V(mutex);

goto start
end

Remark. Roughly speaking, a successful loan can take place only when
two conditions are satisfied: the florin must be requested and the florin must
be available. In this program the mechanism of cusvar and cussem is also
used (by the customer) when the requested florin is immediately available,
likewise the mechanism of flovar and flosem is also used (by the florin) if,
after its return to cash, it can immediately be borrowed again by a waiting
customer. This programming technique has been suggested by C. Ligtmans
and P.A. Voorhoeve, and I mention it because in the case of more intricate
rules of co-operation it has given rise to a simplification that proved to be
indispensable. The underlying cause of this increase in simplicity is that
the dynamic way through the topological structure of the program no longer

136 EDSGER W. DIJKSTRA

distinguishes between an actual delay or not, just as in the case of the P-
operation itself.

7 CONCLUDING REMARKS

In the literat ure one sometimes finds a sharp distinction between "con-
current programming" -more than one central processor operating on the
same job-and "multi-programming" -a single processor dividing its time
between different jobs. I have always feIt that this distinction was rather
artificial and therefore confusing. In both cases we have, macroscopicaIly
speaking, a number of sequential processes that have to co-operate with each
other, and our discussions on this co-operation apply equaIly weIl to "concur-
rent programming" as to "multi-programming" or any mixture of the two.
What in concurrent programming is spread out in space (e.q. equipment)
is in multi-programming spread out in time: the two present themselves
as different implement at ions of the same logical structure, and I regard the
development of a tool to describe and form such structures themselves, i.e. in-
dependent of these implementational differences, as one of the major contri-
butions of the work from which this monograph has been born. As a specific
example of this unifying train of thought I should like to mention-for those
that are only meekly interested in multi-processors, multi-programming, and
the like-the complete symmetry between anormal sequential computer, on
the one hand, and its peripheral gear, on the other (as displayed, for instance,
in Section 4.3: "The Bounded Buffer").

Finally, I should like to express, on ce more, my concern about the cor-
rectness of programs, because I am not too sure whether all of it is duly
refiected in what I have written.

If I suggest methods by which we could try to attain a greater security,
then this is, of course, more psychology than, say, mathematics. I have the
feeling that for the human mi nd it is just terribly hard to think in terms of
processing evolving in time and that our greatest aid in controlling them is
by attaching meanings to the values of identified quantities. For instance, in
the program section

i:= 10;
LO: x:= sqrt(x); i:= i-i;

if i > 0 then goto LO

we conclude that the operation x: = sqrt (x) is repeated ten times, but I
have the impression that we can do so by attaching to i the meaning of

COOPERATING SEQUENTIAL PRO CES SES 137

"the number of times that the operation x: = sqrt (x) still has to be re-
peated". But we should be aware of the fact that such a timeless meaning (a
statement of fact or relation) is not permanently correct: immediately after
the execution of x: = sqrt (x) but before that of the sub se quent i: = i - 1

the value of i is "one more than the number of times that the operation
x: = sqrt (x) still has to be repeated". In other words, we have to specify
at what stages of the process such a meaning is applicable and, of course,
it must be applicable in every situation where we rely on this meaning in
the reasoning that convinces us of the desired overall performance of the
program.

In purely sequential programming, as in the above example, the regions
of applicability of such meanings are usually closely connected with places in
the program text (if not, we have just a tricky and probably messy program).
In multi-programming we have seen in particular in Section 5.2.1 that it
is a worth-while effort to create such regions of applicability of meaning
very consciously. The recognition of the hierarchical difference between the
presence of a message and the message itself, here forced upon us, might
give a clue even to clearer uniprogramming.

For example, if I am married to one out of ten wives, numbered from
1 through 10, this fact may be represented by the value of a variable wife
number associated with me. If I may also be sIngle it is a commonly used pro-
grammer's device to code the state of the bachelor as an eleventh value, say
wife number = O. The meaning of the value of this variable then becomes
"If my wife nu mb er is = 0, then I am single, otherwise it gives the number of
my wife". The moral is that the introduction of aseparate Boolean variable
married might have been more honest.

We know that the von Neumann-type machine derives its power and
flexibility from the fact that it treats all words in store on the same footing.
It is often insufficiently realized that, thereby, it gives the user the duty to
impose structure wherever recognizable.

Sometimes it iso It has often been quoted as The Great Feature of the
von Neumann-type machine that it can modify its own instructions, but
most modern algorithmic translators, however, create an object program
that remains in its entire execution phase just as constant as the original
source text. Instead of chaotically modifying its own instructions just be-
fore or after their execution, creation of instructions and execution of these
instructions now occur in different sequenced regions: the translation phase
and the execution phase. And this for the benefit of us all.

138

EDSGER W. DIJKSTRA

It is my firm belief that in each process of any complexity the variables

occurring in it admit analogous hierarchical orderings, and that when these

hierarchies are clearly recognizable in the program text the gain in clarity of

the program and in effiiciency of the implementation will be considerable. If
this chapter gives any reader a clearer indication of what kind of hierarchi�

cal ordering can be expected to be relevant I have reached one of my goals.

And may we not hope that a confrontation with the intricacies of Multipro�

gramming gives us a clearer understanding of what Uniprogramming is all

about?

