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INTRODUCTION 

1 

This chapter is intended for all those who expect that in their future activities 

they will become seriously involved in the problems that arise in either the 

design or the more advanced applications of digital information processing 

equipment; they are furt her intended for all those who are just interested in 

information processing. 

The applications are those in which the activity of a computer must 

include the proper reaction to a possibly great variety of messages that can 

be sent to it at unpredictable moments, a situation which occurs in pracess 

contral, traffic control, stock control, banking applications, automatization 

of information fiow in large organizations, centralized computer service, and, 

finally, all information systems in which a number of computers are coupled 

to each other. 

The desire to apply computers in the ways sketched above has often a 

strong economic motivation, but in this chapter the not unimportant ques-

tion of efficiency will not be stressed too much. Logical problems which 

arise, for example, when speed ratios are unknown, communication possibil-

ities restricted, etc., will be dealt with much more. This will be done in order 

to create a clearer insight into the origin of the difficulties one meets and 

into the nature of solutions. Deciding whether under given circumstances 
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the application of our techniques is economically attractive falls outside the 
scope of this chapter. 

There will not be a fully worked out theory, complete with Greek letter 
formulae, so to speak. The only thing that can be done under the present 
circumstances is to offer a variety of problems, together with solutions. And 
in discussing these we can only hope to bring as much system into it as we 
possibly can, to find which concepts are relevant, as we go along. 

1 ON THE NATURE OF SEQUENTIAL PROCESSES 

Our problem field proper is the co-operation between two or more sequential 
processes. Before we can enter this field, however, we have to know quite 
clearly what we call "a sequential process". To this preliminary quest ion the 
present section is devoted. 

To begin, he re is a comparison of two machines to do the same example 
job, the one a non-sequential machine, the other a sequential one. 

Let us assume that of each of four quantities, named a [1J, a [2J, a [3J , 
and a [4J respectively, the value is given. Our machine has to process these 
values in such a way that, as its reaction, it "teIls" us which of the four 
quantities has the largest value. E.g. in the case: 

a[1] = 7, a[2] = 12, a[3] = 2, a[4] = 9 

the answer to be produced is a [2J (or only 2, giving the index value pointing 
to the maximum element). 

Note that the desired answer would become incompletely defined if the 
set of values were-in order-7, 12, 2, 12, for then there is no unique 
largest element, and the answer a [2J would have been as good (or as bad) 
as a [4J. This is remedied by the further assumption that of the four values 
given, no two are equal. 

Remark 1. If the required answer would have been the maximum value 
occurring among the given ones, the last restriction would have been super-
fluous, for the answer corresponding to the value set 7, 12, 2, 12 would 
then have been 12. 

Remark 2. Our restriction "Of the four values no two are equal" is 
still somewhat loosely formulated, for what do we mean by "equal"? In 
the processes to be constructed pairs of values will be compared with one 
another, and what is really meant is that every two values will be sufficiently 
different, so that the comparator will unambiguously decide which of the two 
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is the larger one. In other words, the difference between any two must be 
large compared with "the resolving power" of our comparators. 

We shall first construct our non-sequential machine. When we ass urne 
our given values to be represented by currents we can imagine a compara-
tor consisting of a two-way switch, the position of which is schematically 
controlled by the currents in the coils of electromagnets, as in Figs. 1 and 2. 

y A x y x 

l®J lQQ) (W 
B fC BI C 

Fig. 1. x<y 

Fig. 2. y<x 

When current y is larger than current x, the left electromagnet pulls 
harder than the right one and the switch switches to the left (Fig. 1) and 
the input A is connected to output B; if current x is the larger one we shall 
get the situation (Fig. 2), where the input A is connected to output C. 

In our diagrams we shall omit the coils and shall represent such a com-
parator by a small box 

A 
I 

y<x? 

I I 
B C 

only representing at the top side the input and at the bot tom side the two 
outputs. The currents to be led through the coils are identified in the ques-
tion written inside the box, and the convention is that the input will be 
connected to the right-hand side output when the answer to the question is 
"Yes", to the left-hand side output when the answer is "No". 

Now we can construct our machine as indicated in Fig. 3. At the output 
side we have drawn four indicator lamps, one, and only one, of which will 
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light up to indicate the answer. 

a(1) < a(3)? a(2)<a(3)? 

+ + + + 
Fig.3 

In Fig. 4 we indicate the position of the switches when the value set 7, 
12, 2, 9 is applied to it. In the boxes the positions of the switches are 
indicated, wires not connected to the input are drawn dotted. 
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Fig.4 

We draw the reader's attention to the fact that now only the positions 
of the three switches that connect output 2 to the input matter; the reader 
is invited to convince himself that the position of the other three switches is 
indeed immaterial. 

It is also worthwhile to give a moment's attention to see what happens in 
time when our machine of Fig. 3 is fed with four "value currents". Obviously 
it cannot be expected to give the correct answer before the four value currents 
start going through the coils. But one cannot even expect it to indicate the 
correct answer as so on as the currents are applied, for the switches must get 
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into their correct position, and this may take so me time. In other words, 
as soon as the currents are applied (simultaneously or the one after the 
other) we must wait aperiod of time -characteristic for the machine-and 
only after that the correct answer will be shown at the output side. What 
happens during this waiting time is immaterial, provided that the interval 
is long enough for all switches to find their final position. They may start 
switching simultaneously, the exact order in which they attain their final 
position is immaterial, and therefore we shall no longer pay any attention to 
it. 

From the logical point of view the switching time can be regarded as a 
marker on the time axis: before it the input data have to be supplied, after 
it the answer is available. 

In the use of our machine the progress of time is only refiected in the 0 b-
vious "before-after" relation, which teIls us that we cannot expect an answer 
before the quest ion has been properly put. This sequence relation is so obvi-
ous (and fundamental) that it cannot be regarded as a characteristic property 
of our machine. And our machine is therefore called a "non-sequential ma-
chine" to distinguish it from the kind of equipment-or processes that can 
be performed by it-to be described now. 

Up till now we have interpreted the diagram of Fig. 3 as the (schematic) 
picture of a machine to be built in space. But we can interpret this same 
diagram in a very different manner if we place ourselves in the mind of the 
electron entering at the top input and wondering where to go. First, it finds 
itself faced with the quest ion whether a [1] < a [2] holds. Having found 
the answer to this question, it can proceed. Depending on the previous 
answer, it will enter one of the two boxes a[1J < a[3] or a[2] < a[3], i.e. 
it will only know what to investigate next, after the first question has been 
answered. Having found the answer to the question selected from the second 
line, it will know which quest ion to ask from the third line and, having found 
this last answer, it will now know which bulb should start to glow. Instead 
of regarding the diagram of Fig. 3 as that of a machine, the parts of which 
are spread out in space, we have regarded it as rules of behaviour, to be 
followed in time. 

With respect to our earlier interpretation two differences are highly sig-
nificant. In the first interpretation all six comparators started working si-
multaneously, although finally only three switch positions were relevant. In 
the se co nd interpretation only three comparisons are actually evaluated-
the wondering electron asks itself three questions-but the price of this gain 
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is that they have to be performed the one after the other, as the outcome 

of the previous one decides what to ask next. In the second interpretation 

three quest ions have to be asked in sequence, the one after the other. The 

existence of such an order relation is the distinctive feature of the second 

interpretation, which in contrast to the first one is therefore called "a se�

quential process". We should like to make two remarks. 

Remark 3. In actual fact, the three comparisons will each take a finite 

amount of time ("switching time", "decision time", or, in the jargon, "ex�

ecution time"), and as a result the total time taken will at least be equal 

to the sum of these three execution times. We stress once more that for 

many investigations these executions can be regarded as ordered markers on 

a scaleless time axis and that it is only the relative ordering that matters 

from this (logical) point of view. 

Remark 4. As a small side line we note that the two interpretations 

(call them "simultaneous comparisons" and "sequential comparisons") are 

onlyextremes. There is a way of, again, only performing three comparisons, 

in wh ich two of them can be done independently from one another, i.e. 

simultaneously; the third one, however, can be done only after the other two 

have been completed. It can be represented with the aid of a box in which 

two questions are put and which, as a result, has four possible exits, as in 

Fig.5. 

all] < a[2]? 

a[3] < a[4]? 

NY 

YN 

a[2] < a[3]? 

1 2 

3 4 

Fig.5 

The total time taken will be at least the sum of the comparison execution 

times. The process is of the first kind in the sense that the first two com�

parisons can be performed simultaneously, it is of sequential nature, as the 

third comparison can be selected from the second line only when the first 

two have both been completed. 
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We return to our purely sequential interpretation. Knowing that the di-
agram is meant for purely sequential interpretations, we can take advantage 
of this circumstance to make the description of the "rules of behaviour" more 
compact. The idea is that the two questions on the second line only one of 
wh ich will be actually asked are highly similar: the questions on the same 
line differ only in the subscript value of the left operand of the comparison. 
And we may ask ourselves: "Can we map the questions on the same line of 
Fig. 3 on to a single question 7" 

This can be done, but it implies that the part that varies along a line-i.e. 
the subscript value in the left operand- must be regarded as a parameter, 
the task of which is to determine which of the quest ions mapped on each 
other is meant, when its turn to be executed has come. Obviously the value 
of this parameter must be defined by the past history of the process. 

Such parameters, in which past history can be condensed for future use, 
are called "variables". To indicate that a new value has to be assigned to 
it we use the so-called assignment operator := (read: "becomes"), a kind of 
directed equality sign which defines the value of the left-hand side in terms 
of the value of the right-hand side. 

We hope that the previous paragraph is sufficient for the reader to recog-
nize also in the diagram of Fig. 6 a set of "rules of behaviour". Our variable 
is called i; and the reader may wonder why the first question, which is in-
variably a [lJ < a [2J ? is not written that way, but with patience he will 
understand. 

When we have followed the rules of Fig. 6 as intended from top till 
bottom, the final value of i will identify the maximum value, viz. a [iJ . 

The transition from the scheme of Fig. 3 to the one of Fig. 6 is a drastic 
change, for the latter's "rules of behaviour" can only be interpreted sequen-
tially. And this is due to the introduction of the variable i: having only 
a [lJ , a [2J , a [3J , and a [4J available as values to be compared, the question 
a [iJ < a [2J ? is meaningless, unless it is known for which value of i this 
comparison has to be made. 

Remark 5. It is somewhat unfortunate that the jargon of the trade 
calls the thing denoted by i a variable, because in normal mathematics 
the concept of a variable is a completely timeless concept. Time has not hing 
to do with the x in the relation 

sin(2 * x) = 2 * sin(x) * cos(x) 

if such a variable ever denotes a value it denotes "any value" . 
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Fig.6 

Each time, however, that a variable in a sequential process is 
as i in a [iJ denotes a very specific value, viz. the last value assigned 
to it, and nothing else! As long as no new value is assigned to a variable, it 
denotes a constant value! 

Remark 6. One may well ask what we are actually doing when we intro�
duce a variable without specifying, for instance, a domain for it, i.e. a set of 
values which is guaranteed to comprise all its future actual values. We shall 
not pursue this quest ion here. 

Now we are going to subject our scheme to a next transformation. In 
Fig. 3 we have "wrapped up" the lines, now we are .going to wrap up the 
scheme of Fig. 6 in the vertical direction, an operation to which we are 
invited by the repetitive nature of it and which can be performed at the 
price of a next variable, j say. 

The change is a dramatic one, for the fact that the original problem was 
to identify the maximum value among Jour given values is no longer reflected 
in the "topology" of the rules of behaviour: in Fig. 7 we only find the number 
4 mentioned once. By introducing another variable, say n, and replacing the 
4 in Fig. 7 by n we have suddenIy the rules of behaviour to identify the 
maximum occurring among the n elements a [lJ, a [2J, ... , a [nJ, and 
this practically only for the price that before application the variable n must 
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be given its proper value. 

t 
i:= 1; 

j:= 1; 

j =4? 

j:=j+l; 

a[i] < a[j]? 

I i:=j 
I 

Fig.7 

The change is dramatic, for now we have not only given rules of behaviour 
which must be interpreted sequentially this was already the case with Fig. 6 
but we have devised a single mechanism for identifying the maximum value 
among any number of given elements, whereas our original non-sequential 
machine could only be built for a previously well-defined number of elements. 
We have mapped our comparisons in time instead of in space, and if we wish 
to compare the two methods it is as if the sequential machine "extends itself" 
in terms of Fig. 3 as the need arises. It is our last transition which displays 
the sequential processes in their full glory. 

The technical term for what we have called "rules of behaviour" is an al-
gorithm or a program. (It is not customary to call it "a sequential program" , 
although this name would be fully correct.) Equipment able to follow such 
rules, "to execute such a program" is called "a general-purpose sequential 
computer" or "computer" for short; what happens during such a program 
execution is called "a sequential process" . 

There is a commonly accepted technique of writing algorithms without 
the need of pictures such as we have used, viz. ALGOL 60 ("ALGOL" being 
short for Algorithmic Language). For a detailed discussion of ALGOL 60 I 
must refer the reader to the existing literature. We shall use it in future, 
whenever convenient for our purposes. 

For the sake of illustration we shall describe the algorithm of Fig. 7 (but 
for n instead of 4) by a sequence of ALGOL statements: 
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i:= 1; j:= 1; 
back: if j <> n then 

begin j:= j + 1; 

end 

if a[i] < a[j] then i:= j; 
goto back; 

The first two statements: i : = 1; j: = 1 are-one hopes-self-
explanatory. Then comes back:, a so-called label, used to identify this 
place in the program. Then comes if j <> n then, a so-called conditional 
dause. If the condition expressed by it is satisfied the following statement 
will be performed, otherwise it will be skipped. (Another example of it 
can be found two lines lower.) When the extent of the program which may 
have to be skipped presents itself primarily as a sequence of more than one 
statement, then one puts the so-called statement brackets begin and end 
around this sequence, thereby making it into a single statement as far as 
its surroundings are concerned. (This is entirely analogous to the effect of 
parentheses in algebraic formulae, such as a * eb + c) where the parenthe-
sis pair indicates that the whole expression contained within it is to be taken 
as factor.) The last statement goto back means that the process should be 
continued at the point thus labelled; it does exactly the same thing for us 
as the upward-pointing line of Fig. 7. 

2 LOOSELY CONNECTED PROCESSES 

The subject matter of this chapter is the co-operation between loosely con-
nected sequential processes, and this section will be devoted to a thorough 
discussion of a simple, but representative problem, in order to give the reader 
so me feeling for the problems in this area. 

In the previous section we have described the nature of a single sequential 
process, performing its sequence of actions autonomously, Le. independent 
of its surroundings as so on as it has been started. 

When two or more of such processes have to co-operate with each other 
they must be connected, i.e. they must be able to communicate with each 
other in order to exchange information. As we shall see below, the properties 
of these means of intercommunication playavital role. 

Furthermore, we have stipulated that the processes should be connected 
loosely; by this we me an that apart from the (rare) moments of explicit 
intercommunication, the individual processes themselves are to be regarded 
as completely independent of each other. In particular, we disallow any 
assumption about the relative speeds of the different processes. (Such an 
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assumption-say, "processes geared to the same clock"-could be regarded 
as implicit intercommunication.) This independence of speed ratios is in 
strict accordance with our appreciation of the single sequential process: its 
only essential feature is that its elementary steps are performed in sequence 
If we prefer to observe the performance with a chronometer in our hand 
we may do so, but the process itself remains remarkably unaffected by this 
observation. 

The consistent refusal to make any assumptions about the speed ratios 
will at first sight appear to the reader as a mean trick to make things more 
difficult than they already are. I feel, however, fully justified in my refusal. 
First, we may have to cope with situations in which, indeed, very little is 
known about the speeds. Far instance, part of the system may be a manu-
ally operated input station, another part of the system might be such that 
it can be stopped externally for any period of time, thus reducing its speed 
temporarily to zero. Secondly-and this is much more important-when we 
think that we can rely upon certain speed ratios we shall discover that we 
have been "penny wise and pound foolish". It is true that certain mecha-
nisms can be made simpler under the assumption of speed-ratio restrictions. 
The verification, however, that such an assumption is always justified is, 
in general, extremely tricky and the task to make, in a reliable manner, a 
well-behaved structure out of many interlinked components is seriously ag-
gravated when such "analogue interferences" have to be taken into account 
as weIl. (For one thing: it will make the proper working a rather unstable 
equilibrium, sensitive to any change in the different speeds, as may easily 
arise by replacement of a component by another-say, replacement of a line 
printer by a faster model-or reprogramming of a certain portion.) 

2.1 A Simple Example 

In considering two sequential processes, process 1 and process 2, they 
can for our purposes be regarded as cyclic. In each cycle a so-called "critical 
section" occurs, critical in the sense that at any moment at most one of the 
two processes is allowed to be engaged in its critical section. In order to 
effectuate this mutual exclusion, the two processes have access to a number 
of common variables. We postulate that inspecting the present value of such 
a common variable and assigning a new value to such a common variable 
are to be regarded as indivisible, non-interfering actions, Le. when the two 
processes assign a new value to the same common variable "simultaneously", 
then the assignments are to be regarded as done the one after the other, the 
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final value of the variable will be one of the two values assigned, but never 
a "mixt ure" of the two. Similarly, when one process inspects the value of a 
common variable "simultaneously" with the assignment to it by the other 
one, then the former process will find either the old or the new value, but 
never a mixture. 

For our purposes ALGOL 60 as it stands is not suited, as ALGOL 60 
has been designed to describe one single sequential process. We therefore 
propose the following extension to enable us to describe parallelism of execu-
tion. When a sequence of statements-separated by semicolons as usual in 
ALGOL 60-is surrounded by the special statement bracket pair parbegin 
and par end this is to be interpreted as parallel execution of the constituent 
statements. The whole construction-let us call it "a parallel compound"-
can be regarded as a statement. Initiation of a parallel compound implies 
simultaneous initiation of all its constituent statements, its execution is com-
pleted after the completion of the execution of all its constituent statements. 
E.g.: 

begin 81; parbegin 82; 83; 84 parend; 85 end 

(in which 81, 82, 83, 84, and 85 are used to indicate statements) means that 
after the completion of 81, the statements 82, 83, and 84 will be executed in 
parallel, and only when they are all finished will the execution of statement 
85 be initiated. 

With the above conventions we can describe our first solution: 

begin integer turn; turn:= 1; 
parbegin 

end 

process 1: begin L1: if turn = 2 then goto L1; 
critical section 1; 
turn:= 2; 
remainder of cycle 1, goto L1 

end; 
process 2: begin L2: if turn = 1 then goto L2; 

critical section 2; 
turn:= 1; 
remainder of cycle 2; goto L2 

end; 
par end 

(Note for the inexperienced ALGOL 60 reader. After begin in the first 
line we find the so-called declaration integer turn, thereby sticking to the 
rule of ALGOL 60 that program text is not allowed to refer to variables 
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without having introduced them with the aid of a declaration. As this dec�
laration occurs after the begin of the outermost statement bracket pair, it 
means that for the whole duration of the program a variable has been intro�
duced that will only take on integer values and to which the program text 
can refer by means of the name turn.) 

The two processes communicate with each other via the common integer 
turn, the value of which indicates which of the two processes is the first to 
perform (or rather: to finish) its critical section. From the program it is 
clear that after the first assignment the only possible values of the variable 
turn are 1 and 2. The condition for process 2 to enter its critical section is 
that it finds at so me moment turn <> 1, i.e. turn = 2. But the only way 
in wh ich the variable turn can get this value is by the assignment turn: = 2 
in process 1. As process 1 performs this assignment only at the completion 
of its critical section, process 2 can only initiate its critical section after 
the completion of critical section 1. And critical section 1 could indeed 
be initiated, because the initial condition turn = 1 implied turn <> 2, so 
that the potential wait cycle, labelled Ll, was initially inactive. After the 
assignment turn: = 2 the roles of the two processes are interchanged. (N.B. 
It is assumed that the only references to the variable turn are the ones 
explicitly shown in the program. ) 

Our solution, though correct, is, however, unnecessarily restrictive: after 
the completion of critical section 1 the value of the variable turn becomes 
2, and it must be = 1 again, before the next entrance into critical section 1. 

As a result, the only admissible succession of critical seetions is the 
strictly alternating one 1, 2, 1, 2, 1, 2, 1, ... ; in other words, the 
two processes are synchronized In order to stress explicitly that this is not 
the kind of solution we wanted, we impose the furt her condition: "If one of 
the processes is stopped weIl outside its critical section, this is not allowed 
to lead to potential blocking of the other process." This makes our previous 
solution unacceptable, and we have to look for another. 

Our second effort works with two integers cl and c2, where cl, c2 = 

0/1 respectively will indicate that the corresponding process is inside/outside 
its critical section respectively. We may try the following construction: 
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begin integer ci, c2; 

ci: = 1; c2: = 1; 

parbegin 

end 

processi: begin Li: if c2 = 0 then goto Li; 

c1:= 0; 

end; 

critical section 1; 

c1:= 1; 

remainder of cycle 1; goto Li 

process2: begin L2: if ci = 0 then goto L2; 

c2:= 0; 

end 

par end 

critical section 2; 

c2:= 1; 

remainder of cycle 2; goto L2 

The first assignments set both c's = 1, in accordance with the fact that 

the processes are started outside their critical sections. During the entire 

execution of critical section 1 the relation cl = 0 holds, and the first li ne 

of process 2 is effectively a wait: "Wait as long as process 1 is in its critical 

section." The trial solution gives indeed some protection against simultane�

ity of critical section execution, but is, alas, too simple, because it is wrong. 

Let first process 1 find that c2 = 1; let process 2 inspect cl immediately af�

terwards, then it will (still) find cl = 1. Both processes, each having found 

that the other is not in its critical section, will conclude that they can enter 

their own critical seetion safely! 

We have been too optimistic, we must playa safer game. Let us invert, 

at the beginning of the parallel processes, the inspection of the c of the other 

and the setting of the own c. We then get the construction: 

begin integer ci, c2; 

c1:= 1; c2:= 1; 

parbegin 

process 1: begin Al: cl:= 0; 

end; 

Li: if c2 = 0 then goto Li; 

critical section 1; 

ci:= 1; 
remainder of cycle 1; goto Ai 

process 2: begin A2: c2:= 0; 

end 

L2: if ci = 0 then goto L2; 

critical section 2; 

c2:= 1; 

remainder of cycle 2; goto A2 
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parend 
end 

It is worthwhile to verify that this solution is at least completely safe. 
Let us focus our attention on the moment that process 1 finds c2 = 1 

and therefore decides to enter its critical section. At this moment we can 
conclude: 

(1) that the relation cl = 0 already holds and will continue to hold until 
process 1 has completed the execution of its critical section; 

(2) that, since c2 = 1 holds, process 2 is weIl outside its critical section, 
which it cannot enter while cl = 0 holds, i.e. while process 1 is still 
engaged in its critical section. 

Thus the mutual exclusion is indeed guaranteed. 
But this solution, alas, must also be rejected: in its safety measures it 

has been too drastic, for it contains the danger of definite mutual blocking. 
When after the assignment cl: = 0 but yet before the inspection of c2 (both 
by process 1) process 2 performs the assignment c2: = 0, then both processes 
have arrived at label L1 or L2 respectively and both relations cl = 0 and 
c2 = 0 hold, with the result that both processes will wait for each other to 
eternity. Therefore this solution, too, must be rejected. 

It was aIl right to set one's own c before inspecting the c of the other, 
but it was wrong to stick to one's own c-setting and just to wait. This is 
(somewhat) remedied in the following construction: 

begin integer cl, c2; 
cl:= 1; c2: = 1; 
parbegin 
process 1: begin Ll: cl:= 0; 

end 

end; 

if c2 = 0 then 
begin cl:= 1; goto Ll end; 

critical section 1; 
ci:= 1; 
remainder of cycle 1; goto Ll 

process 2: begin L2: c2:= 0; 

end 
par end 

if cl = 0 then 
begin c2:= 1; goto L2 end; 

critical section 2; 
c2:= 1; 
remainder of cycle 2; goto L2 
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This construction is as safe as the previous one, and when the assignments 
ci: = 0 and c2: = 0 are performed "simultaneously" it will not necessarily 
lead to mutual blocking ad infinitum, because both processes will reset their 
own c back to 1 before restarting the entry rites, thereby enabling the other 
process to catch the opportunity. But our principles force us to reject this 
solution also, for the refusal to make any assumptions about the speed ratio 
implies that we have to cater for all speeds, and the last solution admits 
the speeds to be so carefully adjusted that the processes inspect the other's 
c only in those periods of time that its value is = O. To make clear that 
we reject such solutions that only work with some luck, we state our next 
requirement: "If the two processes are ab out to enter their critical sections, 
it must be impossible to devise for them such finite speeds, that the decision 
which one of the two is the first to enter its critical section is postponed to 
eternity." 

In passing we note that the solution just rejected is quite acceptable in 
everyday life, e.g. when two people are talking over the telephone and they 
are suddenly disconnected, as a rule both try to re-establish the connection. 
They both dial and if they get the signal "Number Engaged" they put down 
the receiver and, if not already caIled, they try "some" seconds later. Of 
course, this may coincide with the next effort of the other party, but as a 
rule the connection is re-established successfully after very few trials. In 
our mechanical circumstances, however, we cannot accept this pattern of 
behaviour: our parties might very weIl be identical! 

Quite a collection of trial solutions have been shown to be incorrect, and 
at some moment people that had played with the problem started to doubt 
whether it could be solved at all. To the Dutch mathematician Th. J. Dekker 
the credit is due for the first correct solution. It is, in fact, mixture of our 
previous efforts: it uses the "safe sluice" of our last constructions, together 
with the integer turn of the first one, but only to resolve the indeterminacy 
when neither of the two immediately succeeds. The initial value of turn 
could have been 2 as weIl. 
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begin integer c1, c2, turn; 
c1:= 1; c2:= 1; turn:= 1; 
parbegin 

end 

process 1: begin A1: c1:= 0; 

process 2: 

par end 

L1: if c2 = 0 then 

end; 
beg in A2: 

L2: 

end 

begin if turn 1 then goto L1; 
c1:= 1; 

B1: if turn 2 then goto B1; 
goto A1 

end; 
critical section l' , 
turn:= 2' , c1 := l' , 
remainder of cycle l' , goto A1 

c2:= O· , 
if c1 = o then 

begin if turn 2 then goto L2; 
c2:= 1 ; 

B2: if turn 1 then goto B2; 
goto A2 

end; 
critical section 2; 
turn:= l' , c2:= l' , 
remainder of cycle 2' , goto A2 

81 

We shall now prove the correctness of this solution. Our first observation 
is that each process only oper at es on its own c. As a result, process 1 inspects 
c2 only while ci = 0, it will only enter its critical section provided it finds 
c2 = 1; for process 2 the analogous observation can be made. 

In short, we recognize the safe sluice of our last constructions, and the 
solution is therefore safe in the sense that the two processes can never be in 
their critical sections simultaneously. The second part of the proof has to 
show that in case of doubt the decision which of the two will be the first to 
enter cannot be postponed until eternity. Now we should pay some attention 
to the integer turn: we note that assignment to this variable occurs only 
at the end or, if you wish, as part of critical sections, and therefore we can 
regard the variable turn as a constant during the decision process. Suppose 
that turn = 1. Then process 1 can only cycle via L1, that is with ci = 0 
and only as long as it finds c2 = O. But if turn = 1, then process 2 can only 
cycle via B2, but this state implies c2 = 1, so that process 1 cannot cycle 
and is bound to enter its critical section. For turn 2 the mirrored reasoning 
applies. As third and final part of the proof we observe that stopping, say, 
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process 1 in "remainder of cycle I" will not restrict process 2: the relation cl 
= 1 will then hold, and process 2 can merrily enter its critical section, quite 
independently of the current value of turn. And this completes the proof of 
the correctness of Dekker's solution. Those readers that fail to appreciate 
its ingenuity are kindly asked to realize that for them I have prepared the 
ground by means of a carefully selected set of rejected constructions. 

2.2 The Generalized Mutual Exclusion Problem 

The problem of Section 2.1 has a natural generalization: given N cyclic 
processes, each with a critical section, can we construct them in such a way 
that at any moment at most one of them is engaged in its critical section? 
We assume the same means of intercommunication to be available, i.e. a set 
of commonly accessible variables. Furthermore, our solution has to satisfy 
the same requirements, viz. that stopping one process weIl outside its critical 
section may in no way restrict the freedom of the others, and that if more 
than one process is about to enter its critical section it must be impossible 
to devise for them such finite speeds that the decision which one of them is 
to be first to enter its critical section can be postponed to eternity. 

In order to be able to describe the solution in ALGOL 60, we need the 
concept of the array. In Section 2.1 we had to introduce a c for each of the 
two processes and we did so by declaring 

integer cl, c2 

Instead of enumerating the quantities, we can declare-under the assumption 
that N has a well-defined positive value-

integer array c[l : N] 

which means, that at one stroke we have introduced N integers, accessible 
under the names 

c[subscript] 

where subscript might take the values 1, 2, ... N. 
The next ALGOL 60 feature we introduce is the so-called "for clause", 

which we shall use in the following form: 

for j:= 1 step 1 until N do statement S 

and wh ich enables us to express repetition of statement S quite conve-
niently. In principle, the for clause implies that statement S will be exe-
cuted N times, with j in succession = 1, = 2, ... = N. (We have added "in 
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prineiple", for via a goto statement as eonstituent part of statement Sand 
leading out of it, the repetition ean be ended earlier.) 

Finally, we need the logical operator that in this monograph is denoted 
by and. We have met the eonditional clause in the form: 

if condition then statement 

We shall now meet: 

if condition 1 and condition 2 then statement 

meaning that statement S will be exeeuted only if condi tion 1 and 
condition 2 are both satisfied. (Onee more we should like to stress that 
this monograph is not an ALGOL 60 programming manual: the 

of parts of ALGOL 60 have been introdueed only to 
make this monograph as self-contained as possible.) 

With the notational aids just sketched we can describe our solution for 
fixed N as folIows. 

The overall structure is: 

begin integer array b, c[O : N]; 
integer turn; 

end 

for turn:= 0 step 1 until N do 
begin b[turn]:= 1; c[turn)':= 1 end; 

turn:= 0; 
parbegin 
process 1: begin end; 
process 2: begin end; 

process N: begin ... end; 
par end 

The first declaration intro duces two arrays with N + 1 elements each, 
the next declaration introduces a single integer turn. In the following for 
clause this variable turn is used to take on the successive values 1, 2, 3, ... 
N, so that the two arrays are initialized with all elements 1. Then turn is 
set = 0 (Le. none of the processes, numbered from 1 onwards,· is privileged). 
After this the N processes are started simultaneously. 

The N processes are all similar. The structure of the i th process is as 
follows (1 :::; i :::; N): 
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process i: begin integer j; 
Ai: b[i]:= 0; 
Li: if turn <> i then 

begin c[i]: = 1; 

end 

if b[turn] = 1 then turn:= i; 
goto Li 

end; 
c[i]:= 0; 
for j:= 1 step 1 until N do 

begin if j <> i and c[j] = 0 then goto Li 
end; 

critical section i; 
turn:= 0; c[i]:= 1; b[i]:= 1; 
remainder of cycle i; goto Ai 

Remark. The description of the N individual processes starts with a 
declaration integer j. According to the rules of ALGOL 60 this means 
that each process introduces its own, private, integer j (a so-called "local 
quantity" ). 

We leave the proof to the reader. It has to showagain: 

(1) that at any moment at most one of the processes is engaged in its 
critical section; 

(2) that the decision which of the processes is the first to enter its critical 
section cannot be postponed to eternity; 

(3) that stopping a process in its "remainder of cycle" has no effect upon 
the others. 

Of these parts, the second one is the more difficult one. (Hint: As so on 
as one of the processes has performed the assignment turn: = i, no new 
processes can decide to assign their number to turn before a critical section 
has been completed. Mind that two processes can decide "simultaneously" 
to assign their i-value to turn!) 

(Remark that can be skipped at first reading) 

The program just described inspects the value of b [turn] where both 
the array band the integer turn are in common store. We have stated that 
inspecting a single variable is an indivisible action and inspecting b [turn] 
can therefore only mean: inspect the value of turn, and if this happens to 
be = 5, weH, then inspect b [5]. Or, in more explicit ALGOL: 
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process i: begin integer j, k; 

k:= turn; if b[k] = 1 then ... 

implying that by the time that b [k] is inspected, turn may already have a 
value different from the current one of k. 

Without the stated limitations in communicating with the common store, 
a possible interpretation of "the value of b [turn]" would have been "the 
value of the element of the array b as indicated by the current value of 
turn". In so-called uniprogramming i.e. a single sequential process oper-
ating on quantities local to it the two interpretations are equivalent. In 
multiprogramming, where other active processes may access and change the 
same common information, the two interpretations make a great difference! 
In particular, for the reader with extensive experience in uniprogramming 
this remark has been inserted as an indication of the subtleties of the games 
we are playing. 

2.3 A Linguistic Interlude 

In Section 2.2 we described the co-operation of N processes; in the overall 
structure we used a vertical sequence of dots between the brackets parbegin 
and parend. This is not hing but a loose formalism, suggesting to the human 
reader how to compose in our notation a set of N co-operating sequential 
processes, under the condition that the value of N has been fixed beforehand. 
It is a suggestion for the construction of 3, 4, or 5071 co-operating processes, 
it does not give a formal description of N such co-operating processes in 
which N occurs as a parameter, i.e. it is not a description valid for any value 
of N. 

It is the purpose of this section to show that the concept of the so-called 
"recursive procedure" of ALGOL 60 caters for this. This concept will be 
sketched briefty. 

We have seen how after begin declarations could occur in order to intro-
duce and to name either single variables (by enumeration of their names) or 
whole ordered sets of variables (viz. in the array declaration). With the so-
called "procedure declaration" we can define and name a certain action; such 
an action may then be invoked by using its name as astatement, thereby 
supplying the parameters to which the action should be applied. 

As an illustration we consider the following ALGOL 60 program: 



86 EDSGER W. DIJKSTRA 

begin integer a, b; 

procedure square(u, v); integer u, v; 

begin u:= v * v end; 

L: square(a, 3); square(b, a); square(a, b) 

end 

In the first line the integers named a and bare declared. The next li ne 

declares the procedure named square" operating on two parameters, wh ich 

are specified to be single integers (and not, say, complete arrays). This li ne is 

called "the procedure heading". The immediately following statement-the 

so-called "procedure body" -describes by definition the action named: in 

the third line-in which the bracket pair begin ... end is superfiuous-

it is told that the action of square is to assign to the first parameter the 

square of the value of the second one. Then, labelled L, comes the first 

statement. Before its execution the values of both a and bare undefined, 

after its execution a = 9. After the execution of the next statement the 

value of b is therefore = 81, after the execution of the last statement the 

value of a is = 6561, the value of b is still = 8I. 

In the previous example the procedure mechanism was essentially intro-

duced as a means for abbreviation, a means for avoiding to have to write 

down the "body" three times, although we could have done so quite easily: 

begin integer a, b; 

L: a:= 3 * 3; b:= a * a; a:= b * b 

end 

When the body is much more complicated than in this example a program 

along the latter lines tends to be much lengthier indeed. 

This technique of "substituting for the call the appropriate version of the 

body" is, however, no longer possible as so on as the procedure is a so-called 

recursive one, i.e. may call itself. It is then that the procedure really extends 

the expressive power of the programming language. 

A simple example might illustrate the recursive procedure. The greatest 

common divisor of two given natural numbers is: 

(1) if they have the same value equal to this value; 

(2) if they have different values equal to the greatest common divisor of 

the sm aller of the two and their difference. 

In other words, if the greatest common divisor is not trivial (first case) the 

problem is replaced by finding the greatest common divisor of two numbers 

with a sm aller maximum value. 
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(In the following program the insertion value v, w; can be skipped by 
the reader as being irrelevant for our present purposes; it indicates that for 
the parameters listed the body is only interested in the numerical value of 
the actual parameter, as supplied by the call.) 

begin integer a; 

end 

procedure GCD(u, v, w); value v, w; integer u, v, w; 
if v = w then u:= v 

else 
begin if v < w then GCD(u, v, w - v) 

else GCD(u, v - w, w) 
end; 

GCD(a, 12, 33) 

(In this example the more elaborate form of the conditional statement is 
used, viz.: 

if condition then statement 1 else statement 2, 

meaning that if condi tion is satisfied, statement 1 will be executed 
and statement 2 will be skipped, and that if condi t ion is not satisfied 
statement 1 will be skipped and statement 2 will be executed.) 

The reader is invited to follow the pattern of calls of GCD and to see 
how the variable a becomes = 3; he is also invited to convince himself of the 
fact that the (dynamic) pattern of calls depends on the parameters supplied 
and that the substitution technique-replace call by body-as applied in the 
previous example would lead to difficulties here. 

We shall now write a program to perform a matrix * vector multiplication 
in which: 

(1) the order in which the M scalar * scalar products are to be calculated 
is indeed prescribed (the rows of the matrix will be scanned from left 
to right); 

(2) the N rows of the matrix can be processed in parallel. 

(Where we do not wish to impose the restriction of purely integer values, 
we have used the declarator real instead of the declarator integer; furt her-
more, we have introduced an array with two subscripts in what we hope is 
an obvious manner.) 

It is assumed that, upon entry of this block of program, the integers M 
and N have positive values. 
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begin real array matrix[1 : N, 1 : M]; 
real array vector[1 : M]; 

end 

real array product[1 : N]; 
procedure rowmult(k); value k; integer k; 

begin if k > 0 then 

end 

parbegin 
begin real s; integer j; 

s:= 0; 

end; 

for j:= 1 step 1 until M do 
s:= s + matrix[k, j] * vectorU]; 

product[k]:= s 

rowmult (k - 1) 
par end 

rowmult(N); 

3 THE MUTUAL EXCLUSION PROBLEM REVISITED 

We return to the problem of mutual exclusion in time of critical sections, as 
introduced in Section 2.1 and generalized in Section 2.2. This section deals 
with a more efficient technique for solving this problem; only after having 
done so we have adequate means for the description of examples, with which 
I hope to convince the reader of the rather fundamental importance of the 
mutual exclusion problem, in other words, I must appeal to the patience 
of the wondering reader (suffering, as I am, from the sequential nature of 
human communication!). 

3.1 The Need for a More Realistic Solution 

The solution given in Section 2.2 is interesting in as far as it shows that the 
restricted means of communication provided are, from a theoretical point of 
view, sufficient to solve the problem. From other points of view, which are 
just as dear to my heart, it is hopelessly inadequate. 

To start with, it gives rise to a rather cumbersome description of the 
individual processes, in which it is anything but transparent that the overall 
behaviour is in accordance with the (conceptually so simple) requirement of 
the mutual exclusion. In other words, in so me way or another this solution 
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is a tremendous mystification. Let us try to isolate in which respect this 
solution represents indeed a mystification, for this investigation could give 
the clue to improvement. 

Let us consider the period of time during which one of the processes is in 
its critical section. We all know, that during that period no other processes 
can enter their critical section and that, if they want to do so, they have 
to wait until the current critical section execution has been completed. For 
the remainder of that period hardly any activity is required from them: they 
have to wait anyhow, and as far as we are concerned "they could go to sleep" . 

Our solution does not reflect this at all: we keep the processes busy 
setting and inspecting common variables all the time, as if no price has 
to be paid for this activity. But if our the ways in 
which or the means by which these processes are carried such that 
"sleeping" is a less-expensive activity than this busy way of waiting, then 
we are fully justified (now also from an economic point of view) to call our 
solution misleading. 

In present-day computers there are at least two ways in which this active 
way of waiting can be very expensive. Let me sketch them briefly. These 
computers have two distinct parts, usually called "the processor" and "the 
store". The processor is the active part, in wh ich the arithmetic and logical 
operations are performed, it is "active and small"; in the store, which is 
"passive and large" , there resides at any moment the information which is not 
being processed at that very moment but only kept there for future reference. 
In the total computational process information is transported from store to 
processor as soon as it has to play an active role, the information in store 
can be changed by transportation in the inverse direction. 

Such a computer is a very flexible tool for the implementation of sequen-
tial processes. Even a computer with only one single processor can be used 
to implement a number of concurrent sequential processes. From a macro-
scopic point of view it will seem as though all these processes are being 
carried out simultaneously, a closer inspection will reveal, however, that at 
any "microscopic" moment the processor serves only one single program at 
a time, and the overall picture only results because at wen-chosen moments 
the processor will switch from one process to another. In such an implemen-
tation the different processes share the same processor, and activity (i.e. a 
non-zero speed) of any single process will imply zero speed for the others; 
it is then undesirable that precious processor time is consumed by processes 
wh ich cannot go on anyhow. 
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Apart from processor sharing, the store sharing could make the unneces-

sary activity of a waiting process undesirable. Let us assurne that inspection 

of or assignment to a "common variable" implies the access to an informa-

tion unit a so-called "word" in a ferrite-core store. Access to a word in a 

core store takes a non-zero time, and for technical reasons only one word can 

be accessed at a time. When more than one active process may wish access 

to words of the same core store the usual arrangement is that in the case of 

imminent coincidence the storage access requests from the different active 

processes are granted according to a built-in priority rule: the lower prior-

ity process is automatically held up. (The literat ure refers to this situation 

when it describes "a communication channel stealing a memory cycle from 

the processor" .) The result is that frequent inspection of common variables 

may slow down any processes which share the same core storage for their 

local quantities. 

3.2 The Synchronizing Primitices 

The origin of the complications, which lead to such intricate solutions as 

the one described in Section 2.2, is the fact that the indivisible accesses to 

common variables are always "one-way information traffic": an individual 

process can either assign a new value or inspect a current value. Such an 

inspection itself, however, leaves no trace for the other processes, and the 

consequence is that, when a process wants to react to the current value of a 

common variable, that variable's value may have been changed by the other 

processes between the moment of its inspection and the following effectuation 

of the reaction to it. In other words: the previous set of communication 

facilities must be regarded as inadequate for the problem at hand, and we 

should look for more appropriate alternatives. 

Such an alternative is provided by introducing: 

(a) among the common variables special-purpose integers, wh ich we shall 

call "semaphores"; 

(b) among the repertoire of actions, from which the individual processes 

have to be constructed, two new primitives, which we call the "P-

operation" and the "V-operation" respectively. 

The latter operations always operate on a semaphore and represent the only 

way in which the concurrent processes may access the semaphores. 
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The semaphores are essentially non-negative integers; when used only to 
solve the mutual exclusion problem the range of their values will even be 
restricted to 0 and 1. It is the merit of the Dutch physicist and computer 
designer C. S. Scholten to have shown a considerable field of applicability for 
semaphores that can also take on larger values. When there is a need for dis-
tinction we shall talk about "binary semaphores" and "general semaphores" 
respectively. The definition of the P- and V-operation that I shall give now 
holds regardless of this distinction. 

Definition. The V-operation is an operation with one argument, which 
must be the identification of a semaphore. (If Si and S2 denote semaphores 
we can write V(S1) and V(S2).) Its function is to increase the value of its 
argument semaphore by 1; this increase is to be regarded as an indivisible 
operation. 

Note that this last sentence makes V(Sl) inequivalent to Sl:= Si + 1. 
For suppose that two processes A and B both contain the statement V(Sl) 
and that both should like to perform this statement at a moment when, 
say, Si = 6. Excluding interference with Si from other processes, A and B 
will perform their V-operations in an unspecified order-at least: outside our 
control-and after the completion of the second V-operation the final value of 
Si will be = 8. If Si had not been a semaphore but just an ordinary common 
integer, and if processes A and B had contained the statement Si: = Si + 
instead of the V-operation on Si, then the following could happen. Process A 
evaluates Si + 1 and computes 7; before effecting, however, the assignment 
of this new value, process B has reached the same stage and also evaluates 
Si + 1, computing 7. Thereafter both processes assign the value 7 to Si, 
and one of the desired incrementations has been lost. The requirement of 
the "indivisible operation" is meant to exclude this occurrence when the 
V-operation is used. 

Definition. The P-operation is an operation with one argument, which 
must be the identification of a semaphore. (If Si and S2 denote semaphores 
we can write P(S1) and P(S2).) Its function is to decrease the value of 
its argument semaphore by 1 as so on as the resulting value would be non-
negative. The completion of the P-operation-i.e. the decision that this 
is the appropriate moment to effectuate the decrease and the subsequent 
decrease itself-is to be regarded as an indivisible operation. 

It is the P-operation which represents the potential delay, viz. when a 
process initiates a P-operation on a semaphore, that at that moment is = 0, 
in that case this P-operation cannot be completed until another process has 
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performed a V-operation on the same semaphore and has given it the value 
1. At that moment more than one process may have initiated a P-operation 
on that very same semaphore. The clause that completion of P-operation 
is an indivisible action means that when the semaphore has got the value 
1 only one of the initiated P-operations on it is allowed to be completed. 
Which one, again, is left unspecified, i.e. at least outside our control. 

At this stage we shall take the implementability of the P- and V-
operations for granted. 

3.3 The Synchronizing Primitives Applied to the Mutual Exclusion 
Problem 

The construction of the N processes, each with a critical section, the exe-
cutions of which must exclude one another in time (see Section 2.2) is now 
trivial. It can be done with the aid of a single binary semaphore, say free. 
The value of free equals the number of processes allowed to enter their 
critical section now, or; 

free = 1 means: none of the processes is engaged in its critical section 
free = 0 means: one of the processes is engaged in its critical section. 

The overall structure of the solution becomes: 

begin integer free; free:= 1; 
parbegin 
process 1: begin end; 
process 2: begin ... end; 

process N: begin ... end; 
par end 

end 

with the i th process of the form: 

process i: begin 
Li: P(free); critical section i; V(free); 

remainder of cycle i; goto Li 
end 

4 THE GENERAL SEMAPHORE 

4.1 Typical Uses of the General Semaphore 

We consider two processes, which are called the "producer" and the "con-
sumer" respectively. The producer is a cyclic process, and each time it goes 
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through its cycle it produces a certain portion of information that has to be 
processed by the consumer. The consumer is also a cyclic process, and each 
time it goes through its cycle it can process the next portion of information, 
as produced by the producer. A simple example is given by a computing 
process, producing as "portions of information" punched-card images to be 
punched out by a card punch, which plays the role of the consumer. 

The producer-consumer relation implies a one-way communication chan-
nel between the two processes, along which the portions of information can 
be transmitted. We assurne the two processes to be connected for this pur-
pose via a buffer with unbounded capacity, Le. the portions produced need 
not be consumed immediately, but they may queue in the buffer. The fact 
that no upper bound has been given for the capacity of the buffer makes this 
example slightly unrealistic, but this should not trouble us too much now. 

(The reason for the name "buffer" becomes understandable when we in-
vestigate the consequences of its absence, viz. when the producer can only 
offer its next portion after the previous portion has been actually consumed. 
In the computer-card punch example, we mayassume that the card punch 
can punch cards at a constant speed, say 4 cards per second. Let us assurne 
that this output speed is weIl matched with the production speed, i.e. that 
the computer can perform the card image production process with the same 
average speed. If the connection between computing process and card punch 
is unbuffered, then the couple will only work continuously at full speed when 
the card-production process pro duces a card every quarter of a second. If, 
however, the nature of the computing process is such that after one or two 
seconds vigorous computing it produces 4 to 8 card images in a single burst, 
then unbuffered connection will result in aperiod of time during which the 
punch will be idle (for lack of information), followed by aperiod in which 
the computing process has to be idle, because it cannot get rid of the next 
card image before the preceding one has been actually punched. Such irreg-
ularities in production speed, however, can be smoothed out by a buffer of 
sufficient size and that is why such a queuing device is called "a buffer".) 

In this section we shall not deal with the various techniques of implement-
ing a buffer. It must be able to contain successive portions of information, 
it must therefore be a suitable storage medium, accessible to both processes. 
Furthermore, it must not only contain the portions themselves, it must also 
represent their linear ordering. (In the literat ure two weIl-known techniques 
are known as "cyclic buffering" and "chaining" respectively.) When the pro-
ducer has prepared its next portion to be added to the buffer we shall denote 
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this action simply by add portion to buffer, without going into furt her 
details; similarly, the take portion from buffer describes the consumer's 
behaviour, where the oldest portion still in the buffer is understood. (An-
other name of a buffer is a "First-In-First-Out-Memory".) 

Omitting in the outermost block all declarations for the buffer, we can 
now construct the two processes with the aid of a single general semaphore, 
called number of queuing portions. 

begin integer number of queuing portions; 
number of queuing portions:= 0; 
parbegin 

end 

producer: begin 
again 1: produce the next portion; 

add portion to buffer; 
V(number of queuing portions); 
goto again 1 

end; 
consumer: begin 

parend 

again 2: P(number of queuing portions); 
take portion from buffer; 
process portion taken; 
goto again 2 

end 

The first line of the producer represents the co ding of the process wh ich 
forms the next portion of information; it has a meaning quite independent of 
the buffer for which this portion is intended; when it has been executed the 
next portion has been successfully completed, the completion of its construc-
tion can no longer be dependent on other (unmentioned) conditions. The 
second li ne of co ding represents the actions which define the finished portion 
as the next one in the buffer; after its execution the new portion has been 
added completely to the buffer, apart from the fact that the consumer does 
not know it yet. The V-operation finally confirms its presence, i.e. signals 
it to the consumer. Note that it is absolutely essential that the V-operation 
is preceded by the complete addition of the portion. About the structure of 
the consumer analogous remarks can be made. 

Particularly in the case of buffer implementation by means of chaining the 
operations add portion to buffer and take portion from buffer-
operating as they are on the same clerical status information of the buffer-
may interfere with each other in a most undesirable fashion, unless we see to 
it, that they exclude each other in time. This can be catered for by a binary 
semaphore, called buffer manipulation, the values of which mean: 
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= 0: either adding to or taking from the buffer is taking place 
= 1: neither adding to nor taking from the buffer is taking place. 

The program is as follows: 

begin integer number of queuing portions, 

end 

buffer manipulation; 
number of queuing portions:= 0; 
buffer manipulation:= 1; 
parbegin 
producer: begin 

again 1: produce next portion; 

end; 
consumer: begin 

P(buffer manipulation); 
add portion to buffer; 
V(buffer manipulation); 
V(number of queuing portions); 
goto again 1 

again 2: P(number of queuing portions); 
P(buffer manipulation); 

end 
par end 

take portion from buffer; 
V(buffer manipulation); 
process portion taken; 
goto again 2 

The reader is requested to convince himself that: 

(a) the order of the two V-operations in the producer is immaterial; 

(b) the order of the two P-operations in the consumer is essential. 

95 

Remark. The presence of the binary semaphore buffer manipulation 
has another consequence. We have given the program for one producer 
and one consumer, but now the extension to more producers and/or more 
consumers is straightforward: the same semaphore sees to it that two or more 
additions of new portions will never get mixed up, and the same applies to 
two or more takings of a portion by different consumers. The reader is 
requested to verify that the order of the two V-operations in the producer 
is still immaterial. 

4.2 The Superfluity of the General Semaphore 

In this section we shall show the superfluity of the general semaphore and we 
shall do so by rewriting the last program of the previous section, using binary 



96 

EDSGER W. DIJKSTRA 

semaphores only. (Intentionally I have written "we shall show" and not "we 

shall prove". We do not have at our disposal the mathematical apparatus 

that would be needed to give such a proof, and I do not feel inclined to 

develop such mathematical apparatus now. Nevertheless, I hope that my 

show will be convincing!) We shall first give a solution and postpone the 

discussion till afterwards. 

begin integer numqueupor, buffer manipulation, 

end 

consumer delay; 

numqueupor:= 0; buffer manipulation:= 1; 

consumer delay:= 0; 

parbegin 

producer: begin 

again 1: produce next portion; 

P(buffer manipulation); 

end; 

add portion to buffer; 

numqueupor:= numqueupor + 1; 

if numqueupor = 1 then 

V(consumer delay); 

V(buffer manipulation); 

goto again 1 

consumer: begin integer oldnumqueupor; 

wait: P(consumer delay); 

par end 

go on: P(buffer manipulation); 

end 

take portion from buffer; 

numqueupor:= numqueupor - 1; 
oldnumqueupor:= numqueupor; 

V(buffer manipulation); 

process portion taken; 

if oldnumqueupor = 0 then goto wait 

else goto go on 

Relevant in the dynamic behaviour of this program are the periods of 

time during which the buffer is empty. (As long as the buffer is not empty, 

the consumer can go on happily at its maximum speed.) Such aperiod can 

only be initiated by the consumer (by taking the last portion present from 

the buffer), it can only be terminated by the producer (by adding a por-

tion to an empty buffer). These two events can be detected unambiguously, 

thanks to the binary semaphore buffer manipulation, that guarantees the 

mutual exclusion necessary for this detection. Each such period is accom-

panied by a P- and a V-operation on the new binary semaphore consumer 

delay. Finally, we draw attention to the local variable oldnumqueupor of the 

consumer: its value is set during the taking of the portion and fixes whether 
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it was the last portion then present. (The more expert ALGOL readers will 
be aware that we only need to store a single bit of information, viz. whether 
the decrease of numqueupor resulted in a value = 0; we could have used a 
local variable of type Boolean for this purpose. ) When the consumer decides 
to go to wait, i.e. finds oldnumqueupor = 0, at that moment numqueupor 
itself could already be greater than zero again! 

In the previous program the relevant occurrence was the period with 
empty buffer. One can remark that emptiness is, in itself, rather irrelevant: it 
only matters, when the consumer should like to take a next portion, which is 
still absent. We shall program this version as weIl. In its dynamic behaviour 
we may expect less P- and V-operations on consumer delay: they will not 
occur when the buffer has been empty for a short while, but is filled again 
in time to make delay of the consumer unnecessary. Again we shall first give 
the program and then its discussion. 

begin integer numqueupor, buffer manipulation, 
consumer delay; 

end 

numqueupor:= 0; buffer manipulation:= 1; 
consumer delay:= 0; 
parbegin 
producer: begin 

again 1: produce next portion; 
P(buffer manipulation); 
add portion to buffer; 
numqueupor:= numqueupor + 1; 
if numqueupor = 0 then 

begin V(buffer manipulation); 
V(consumer delay) end 

else 
V(buffer manipulation); 

goto again 1 
end; 

consumer: begin 

par end 

again 2: P(buffer manipulation); 
numqueupor:= numqueupor - 1; 
if numqueupor = -1 then 

end 

begin V(buffer manipulation); 
P(consumer delay); 
P(buffer manipulation) end; 

take portion from buffer; 
V(buffer manipulation), 
process portion taken; 
goto again 2 
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Again, the semaphore buffer manipulation caters for the mutual 

exclu- sion of critical sections. The last six lines of the producer could have 

been formulated as follows: 

if numqueupor = 0 then V(consumer delay); 

V(buffer manipulation); goto again 1 

In not doing so I have followed a personal taste, VIZ. to avoid P- and 

V- operations within critical sections; a personal taste to wh ich the reader 

should not pay too much attention. 

The range of possible values of numqueupor has been extended with the 

value -1, meaning (outside critical section execution) "the buffer is not only 

empty, but its emptiness has already been detected by the consumer, wh ich 

has decided to wait". This fact can be detected by the producer when, after 

the addition of one, numqueupor = 0 holds. 

Note how, in the case of numqueupor = -1, the critical section of the 

consumer is dynamically broken into two parts: this is most essential, for 

otherwise the producer would never get the opportunity to add the portion 

that is already so much wanted by the consumer. 

(The program just described is known as "The Sleeping Barber". There 

is a barbershop with aseparate waiting room. The waiting room has an entry 

and next to it an exit to the room with the barber's chair, entry and exit 

sharing the same sliding door, which always closes one of them; furthermore, 

the entry is so sm all that only one customer can enter it at a time, thus fixing 

their order of entry. The mutual exclusions are thus guaranteed. 

t I Barber's Chair 

jv-----C+ 

Waiting room 

\,. 

I 
When the barber has finished a haircut he opens the door to the waiting 

room and inspects it. If the waiting room is not empty he invites the next 

customer, otherwise he goes to sleep in one of the chairs in the waiting room. 

The complementary behaviour of the customers is as follows: when they find 

zero or more customers in the waiting room they just wait their turn, when 

they find, however, the Sleeping Barber-numqueupor = -l-they wake hirn 

up.) 

The two programs given present a strong indication that the general 

semaphore is, indeed, superfiuous. Nevertheless, we shall not try to abolish 
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the general semaphore: the one-sided synchronization restrietion expressible 
by it is very common, and comparison of the solutions with and without 
the general semaphore shows convincingly that it should be regarded as an 
adequate tool. 

4.3 The Bounded Buffer 

I shall give a last simple example to illustrate the use of the general 
semaphore. In Seetion 4.1 we have studied a producer and a consumer 
coupled via a buffer with unbounded capacity. This is a typically one-sided 
restriction: the producer can be arbitrarily far ahead of the consumer; on the 
other hand, the consumer can never be ahead of the producer. The relation 
becomes symmetrie when the two are coupled via a buffer of finite size, say 
of N portions. We give the program without discussion; we ask the reader 
to convince himself of the complete symmetry. ("The consumer pro duces 
and the producer consumes empty positions in the buffer.") The value N, 
as weIl as the buffer, is supposed to be defined in the surrounding universe 
into which the following program should be embedded. 

begin integer number of queuing portions, 
number of empty positions, 
buffer manipulation; 

end 

number of queuing portions:= 0; 
number of empty positions:= N; 
buffer manipulation:= 1; 
parbegin 
producer: begin 

again 1: produce next portion; 

end; 
consumer: begin 

P(number of empty positions); 
P(buffer manipulation); 
add portion to buffer; 
V(buffer manipulation); 
V(number of queuing portions); 
goto again 1 

again 2: P(number of queuing portions) ; 
P(buffer manipulation); 

end 
parend 

take portion from buffer; 
V(buffer manipulation); 
V(number of empty positions); 
process portion taken; 
goto again 2 
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5 CO-OPERATION VIA STATUS VARIABLES 

In Sections 4.1 and 4.3 we have illustrated the use of the general semaphore. 
It proved an adequate tool, be it as implement at ion of a rather trivial form 
of interaction. The rules for the consumer are very simple: if there is some-
thing in the buffer, consume it. They are of the same simplicity as the 
behaviour of the wage-earner who spends all his money as soon as he has 
been paid and is broke until the next pay day. 

In other words: when a group of co-operating sequential processes have 
to be constructed and the overall behaviour of these processes combined has 
to satisfy more elaborate community, formed by them, 
has, as a whole, to be weIl behaved in some can only expect to 
be able to achieve this if the individual processes themselves and the ways 
in wh ich they can interact will get more refined. We can no longer expect 
a ready-made solution, such as the general semaphore, to do the job. In 
general, we shall need such fiexibility as can be expressed in a program for 
a general-purpose computer. 

We now have the raw material, we can define the individual processes, 
they can communicate with each other via the common variables, and finally, 
we have the synchronizing primitives. How we can compose from it what we 
might want is, however, by no means obvious. We must now train ourselves 
to use the tools, we must develop a style of programming, a style of "parallel 
programming". Two points should be stressed. 

We shall be faced with a great amount of freedom. Interaction may imply 
decisions bearing upon more than one process, and it is not always obvious 
which of the processes should then take the decisions. If we cannot find 
a guiding principle (e.g. efficiency considerations), then we must have the 
courage to impose some rule for the sake of clarity. 

Secondly, if we are interested in systems that really work we should 
be able to convince ourselves (and anybody else who takes the trouble of 
doubting) of the correctness of our constructions. In uniprogramming one 
is already faced with the task of program verification a task the difficulty of 
which is often underestimated but there one can hope to debug by testing 
of the actual program. In our case the system will often have to work under 
irreproducible circumstances, and we can hardly expect any serious help 
from field tests. The duty of verification should concern us right from the 
start. 

We shall attack a more complicated example in the hope that this will 
give us some of the experience which might be used as guiding principle. 
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5.1 An Example of a Priority Rule 

In Section 4.3 we have used the general semaphore to couple a producer and 
a consumer via a bounded buffer. The solution given there is extendable to 
more producers and/or more consumers; it is applicable when the "portion" 
is at the same time a convenient unit of information, i.e. when we can regard 
the different portions as all being of the same size. 

In the present problem we consider producers that offer portions of dif-
ferent sizes; we assume the size of these portions to be expressed in portions 
units. The consumers, again, will process the successive portions from the 
buffer, and will therefore have to be able to process portions the size of which 
is not given apriori. A maximum portion size will, however, be known. 

The size of the portions is given in information units, we assume also 
that the maximum capacity of the buffer is given in information units: the 
quest ion whether the buffer will be able to accommodate the next portion 
will therefore depend on the size of the portion offered. The requirement 
that "adding a portion to" and "taking a portion from the buffer" are still 
conceivable operations implies that the size of the buffer is not less than the 
maximum portion size. 

We have a bounded buffer, and therefore a producer may have to wait 
before it can offer a portion. With fixed-sizeportions this would only occur 
when the buffer was full to the brim, now it can also happen because free 
space in the buffer, although present, is insucient for the portion concerned. 

Furthermore, when we have more than one producer and one of them is 
waiting, then the other ones may go on and reach the state that they wish to 
offer a portion. Such a portion from a next producer may also be too large, 
or it may be sm aller and it may fit in the available free space of the buffer. 

Somewhat arbitrarily, we impose on our solution the requirement that 
the producer wishing to offer the larger portion gets priority over the pro-
ducer wishing to offer the sm aller portion to the buffer. (When two or more 
producers are offering portions that happen to be of the same size we just 
don't care.) 

When a producer has to wait because the buffer cannot accommodate 
its portion, no other producers can therefore add their portions until furt her 
notice: they cannot do so if the new portion is larger (for then it will not fit 
either) , they are not allowed to if the new portion is smaller, for then they 
have a lower priority and must leave the buffer for the earlier request. 

Suppose a moment at which there is a completely filled buffer and three 
producers, waiting to offer portions of 1, 2, and 3 units respectively. When 
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a consumer now comsumes a five-unit portion the priority rule implies that 
the producers with the 2-unit portion and the 3-unit portion will get the 
opportunity to go on and not the one offering the l-unit portion. It is not 

meant to imply that in that case the 3-unit portion will actually be offered 
before the 2-unit portion! 

We shall now try to introduce so-called "status variables" for the different 
components of the system, with the aid of which we can characterize the state 
of the system at any moment. Let us try. 

For each producer we introduce a variable named desire; this variable 
will denote the number of buffer units needed for the portion it could not add 
to the buffer. As this number is always positive, we can attach to desire = 0 
the meaning that no request from this producer is pending. Furthermore, 
we shall introduce for each producer a private binary producer semaphore. 

For the buffer we introduce the binary semaphore bufman, wh ich takes 
care of the mutual exclusion of buffer manipulations in the widest sense 
(i.e. not only the adding to and taking from the buffer but also inspection 
and modification of the status variables concerned). 

Next we need a mechanism to signal the presence of a next portion to the 
consumers. As soon as a next portion is in the buffer, it can be consumed and 
as we do not care which of the consumers takes it, we can hope that a general 
semaphore number of queuing portions will do the job. (Note that it 
counts portions queuing in the buffer and not number of filled information 
units in the buffer.) 

Vacated buffer space must be signalled back to the producers, but the 
possible consequences of vacating buffer space are more intricate, and we 
cannot expect that a general semaphore will be adequate. Tentatively we 
introduce an integer status variable number of free buffer uni ts. Note 
that this variable counts units, not portions. 

Remark. The value of number of free buffer uni ts will at most be 
equal to the size of the buffer diminished by the total size of the portions 
counted in number of queuing portions, but it may be less! I refer to the 
program given in section 4.3; there the sum 

number of queuing portions + number of empty positions 

is initially (and usually) = N, but it may be = N - 1, because the P-
operation on one of the semaphores always precedes the V-operation on the 
other. (Verify that in the program of section 4.3 the sum can even be = 
N - 2 and that this value could even be lower had we had more produc-
ers and/or consumers.) Here we may expect the same phenomenon: the 
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semaphore number of queuing portions will count the portions'actually 
and completely filled and still unnoticed will count the completely free, un-
allocated units in the buffer. But the units which have been reserved for 
filling, which have been granted to a (waiting) producer, without already 
being filled, will not be counted in either of them. 

Finally, we introduce the integer buffer blocking, the value of which 
equals the number of quantities desire that are positive. Obviously, this 
variable is superfluous; it has been introduced as a recognition of one of our 
earlier remarks, that as so on as one of the desires is positive, no further 
additions to the buffer can be made, until furt her notice. At the same time 
this variable may act as a warning to the consumers, that such a "further 
notice" is wanted. 

We now propose the following program, written for N producers and M 
consumers. (N, M, Buffer size, and all that concerns the buffer is assumed 
to be declared in the surroundings of this program. ) 

begin integer array desire, producer semaphore[l N]; 
integer number of queuing portions, 

number of free buffer units, 
buffer blocking, bufman, loop; 

for loop:= 1 step 1 until N do 
begin des ire [loop] := 0; 

producer semaphore [loop] := 0 
end 

number of queuing portions:= 0 ; 
number of free buffer units:= Buffer size; 
buffer blocking:= 0; bufman:= 1; 
parbegin 
producer 1: 

begin end; 

producer n: 
begin integer portion size; 
again n: produce next portion and set portion size; 

P(bufman); 
if buffer blocking = 0 and 

number of free buffer units >= portion size 
then 

number of free buffer units:= 
number of free buffer units - portion size 

else 
begin buffer blocking:= buffer blocking + 1; 

desire[n]:= portion size; V(bufman); 
P(producer semaphore[n]); P(bufman) end; 

add portion to buffer; V(bufman); 
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V(number of queuing portions); goto again n 

end; 

producer 

N: 

begin end; 

consumer 1: 

begin end; 

consumer m: 

begin integer portion size, n, max, nmax; 

again m: P(number of queuing portions); P(bufman); 

take portion from buffer and set portion size; 

number of free buffer units:= 

number of free buffer units + portion size; 

test: if buffer blocking > 0 then 

end; 

consumer M: 

begin max:= 0, 

end; 

for n:= 1 step 1 until N do 

begin if max < desire[n] then 

begin max:= desire[n]; nmax:= n 

end end; 

if max <= 

number of free buffer units then 

begin number of free buffer units:= 

number of free buffer units 

- max; 

end 

desire[nmax] := 0; 

buffer blocking:= 

buffer blocking - 1; 

V(producer semaphore[nmax]); 

goto test 

V(bufman); process portion taken; 

goto again m 

begin end 

par end 

In the outermost block the common variables are declared and initialized. 

This part of the program hopefully presents no difficulties to the reader who 

has followed me until here. 
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Let us first try to understand the behaviour of the producer. When it 
wishes to add a new portion to the buffer there are essentially two cases: 
either it can do so immediately or not. It can add immediately under the 
combined condition: 

buffer blocking = 0 and 
number of free buffer units >= portion size; 

if so, it will decrease number of free buffer uni ts and-dynamically 
speaking in the same critical seetion-it will add the portion to the buffer. 
The two following V-operations (the order of which is immaterial) close the 
critical section and signal the presence of the next portion to the combined 
consumers. If it cannot add immediately, i.e. if (either) 

buffer blocking > 0 or 
number of free buffer units < portion size 

(or both), then the producer decides to wait, "to go to sleep", and delegates 
to the combined consumers the task to wake it up again in due time. The faet 
that it is waiting is coded by desire [n] > 0, buffer blocking is increased 
by 1 accordingly. After all clerical operations on the common variables have 
been carried out the critical seetion is left (by V (bufman)) and the producer 
initiates a P-operation on its private semaphore. When it has completed 
this P-operation it re-enters the critical seetion, merges dynamically with 
the first case and adds the portion to the buffer. (See also the consumer in 
the second program of section 4.2, where we have already met the cutting 
open of a critical section.) Note that in the waiting case the producer has 
skipped the decrease of number of free buffer uni ts. Note also that the 
producer initiates the P-operation on its private semaphore at a moment 
that the latter may already be = 1, i.e. this P-operation, again, is only a 
potential delay. 

Let us now inspect whether the combined consumers fulfil the tasks del-
egated to them. The presence of a next portion is correctly signalIed to 
them via the general semaphore number of queuing portions and, as the 
P-operation on it occurs outside any critical seetion, there is no danger of 
consumers not initiating it. After this P-operation the consumer enters its 
critical seetion, takes a portion, and increases the number of free buffer 
units. If buffer blocking = 0 holds, the following compound statement is 
skipped completely and the critical seetion is left immediately; this is cor-
reet, for buffer blocking = 0 means that none of the quantities desire is 
positive, i.e. that none of the producers is waiting for the free space just cre-
ated in the buffer. If, however, it finds buffer blocking > 0 it knows that 
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at least one of the producers has gone to sleep and it will inspect, whether 

one or more producers have to be woken up. It looks for the maximum value 

of desire. If this is not too large it decides that the corresponding producer 

has to go on. This decision has three effects: 

(a) The number of free buifer units is decreased by the number of 

units desired. Thus we guarantee that the same free space in the 

buffer cannot be granted to more than one producer. Furthermore, 

this decrease is in accordance with the producer behaviour. 

(b) Desire of the producer in question is set to zero; this is correct, for 

its request has now been granted; buffer blocking is decreased by 1 

accordingly. 

(c) A V-operation on the producer semaphore concerned wakes the sleep-

ing producer. 

After that, control of the consumer returns to test to inspect whether 

more sleeping producers should be woken up. The inspection process can 

end in one of two ways: either there are no sleeping producers left (buifer 

blocking = 0) or there are still sleeping processes, but the free space is 

insufficient to accommodate the maximum desire. The final value of buifer 

blocking is correct in both cases. After the waking up of the producers is 

done the critical section is left. 

5.2 An Example of Conversations 

In this section we shall discuss a more complicated example, in which one of 

the co-operating processes is not a machine but a human being, the "oper-

ator". 

The operator is connected with the processes via a so-called "semi-duplex 

channel" (say "telex connection" ). It is called a duplex channel because it 

conveys information in either direction: the operator can use a keyboard to 

type in a message for the processes, the processes can use the teleprinter 

to type out a message for the operator. It is called a semi-duplex channel, 

because it can only transmit information in one direction at a time. 

Let us now consider the requirements of the total construction, admit-

tedly somewhat simplified yet hopefully sufficiently complicated to pose to 

us a real problem, yet sufficiently simple so as not to drown the basic pattern 

of our solution in a host of inessential details. 
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We have N identical processes (numbered from 1 through N), and essen-
tially they can each ask a single question, called Q i, meaning "How shall I 
go on 7", to which the operator may give one of two possible answers, called 
Ai and A2. We assurne that the operator must know which of the processes 
is asking the question since his answer might depend on this knowledge and 
we therefore specify that the i th process identifies itself when posing the 
question; we indicate this by saying that it transmits the quest ion Q1(i). In 
a sense this is a consequence of the fact that all N processes use the same 
communication channel. 

A next consequence of this channel sharing between the different pro-
cesses is that no two processes can ask their question simultaneously: be-
hind the scenes so me form of mutual exclusion must see to this. If only 
Q1-questions are mutually exclusive the operator may meet the following 
situation: a question-say Q1(3)-is posed, but before he has decided how 
to answer it a next question-say, Qi (7)-is put to hirn. Then the single 
answer Ai is no longer sufficient, because now it is no longer clear whether 
this ans wer is intended for process 7 or for process 3. This could be over-
come by adding to the answers the identification of the process concerned, 
say, A1(i) and A2 (i) with the appropriate value of i. 

Eut this is only one way of doing it: an alternative solution is to make the 
question, followed by its answer, together a critical occurrence: it relieves 
the operator from the duty to identify the process, and we therefore select 
the latter arrangement. So we stick to the answers Ai and A2. We have 
two kinds of conversations Q1(i) , Ai and Q1(i), A2 with the rule that 
a next conversation can be initiated only when the previous one has been 
completed. 

We shall now complicate the requirements in three respects. 
First, the individual processes may wish to use the communication chan-

nel for single-shot messages M (i) say which do not require any answer from 
the operator. 

Secondly, we wish to give the operator the possibility to postpone an 
answer. Of course, he can do so by just not answering, but this would have 
the undesirable effect that the communication channel remains blocked for 
the other N - 1 processes. We introduce a next answer A3, meaning: "The 
channel becomes free again, but the conversation with the process concerned 
remains unfinished." Obviously, the operator must have the opportunity to 
reopen the conversation again. He can do so via A4(i) or A5(i), where 
i runs from 1 through N and identifies the process concerned, where A4 
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indicates that the process should continue in the same way as after Al, while 

A5 prescribes the reaction as to A2. Possible forms of conversation are now: 

(a) Ql (i) , 

Al 

(b) Ql Ci) , 

A2 

(c) 

Ql(i), A3 - -

- A4(i) 

(d) Ql (i) , 

A3 

- A5 (i) 

As far as process i is concerned (a) is equivalent with (c) and (b) is equivalent 

with (d). 

The second-requirement has a profound infiuence: without it-i.e. only 

Al and A2 permissible answers-the process of incoming message interpreta-

tion can always be subordinate to one of the N processes, viz. the one that 

has put the question, this can wait for an answer and can act accordingly. 

We do not know beforehand, however, when the message A4(i) or A5(i) will 

arrive, and we cannot delegate its interpretation to the ith process, because 

the discovery that this incoming message is concerned with the i th process 

is part of the message interpretation itself! 

Thirdly, A4- and A5-messages must have priority over Ql- and M- mes-

sages, i.e. while the communication channel is occupied (in a Ql- or M-

message), processes might reach the state that they want to use the channel, 

but the operator too might co me to this conclusion at the same time. As 

soon as the channel becomes available, we wish that the operator can use 

it and that, if he so desires, it won't be snatched away by one of the pro-

cesses. This implies that the operator has a means to express this desire a 

rudimentary form of input even if the channel itself is engaged in output. 

We assurne that the operator 

(a) can give externally a 

V(incoming message) 

which he can use to announce a message (Al, A2, A3, A4, or A5); 

(b) can detect by the machine's reaction, whether his intervention is ac-

cepted or ignored. 

Remark. The situation is not unlike the school teacher shouting, "Now 

children, listen!" If this is regarded as a normal message it is nonsensical: 
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either the children are listening and it is therefore superfluous, or they are 
not listening and therefore they do not hear it. It is, in fact, a kind of "meta-
message" , which only teIls that a normal message is coming and which should 
even penetrate if the children are not listening (talking, for instance). 

This priority rule may cause the communication channel to be reserved 
for an announced A4-or A5 message. By the time the operator gets the 
opportunity to give it the situation or his mood may have changed, and 
therefore we extend the list of answers with A6-the dummy opening-which 
enables the operator to withhold, on second thoughts, the A4 or A5. 

A final feature of the message interpreter is the applicability test. The 
operator is a human being, and we may be sure that he will make mistakes. 
The states of the message interpreter are such that at any moment not all 
incoming messages are applicable; when a message has been rejected as non-
applicable the interpreter should return to such astate that the operator 
can then give the correct version. 

Our attack will be along the following lines: 

(1) Besides the N processes we introduce another process, called message 
interpreter; this,is done because it is difficult to make the interpre-
tation of the messages A4, A5, and A6 sub ordinate to one of the N 
processes. 

(2) Interpretation of a message always implies, besides the message itself, 
astate of the interpreter. (In the trivial case this is a constant state, 
viz. the willingness to understand the message.) We have seen that not 
all incoming messages are acceptable at all times, so our message in-
terpreter will have to have different states. We shall code them via the 
(common) state variable comvar. The private semaphore, which can 
delay the action of the message interpreter, is the semaphore incoming 
message, already mentioned. 

(3) For the N processes we shall introduce an array procsem of private 
semaphores and an array procvar of state variables, through which 
the different processes can communicate with each other, with the 
message interpreter, and vice versa. 

(4) Finally, we introduce a single binary semaphore mutex which caters 
for the mutual exclusion during inspection and/or modification of the 
common variables. 
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(5) We shall use the binary semaphore mutex only for the purpose just 
described, and never, say, will mutex = 0 be used to code that the 
channel is occupied. Such a convention would be a dead alley in the 
sense that the technique used would fall into pieces as soon as the 
N processes would have two channels (and two operators) at their 
disposal. We aim to make the critical sections, governed by mutex, 
rather short, and we won't shed a tear if some critical section is shorter 
than necessary. 

The above five points are helpful, and in view of our previous experiences 
they seem a set of reasonable principles. One facet of this subject has been 
to present a solution along the lines just given and show that it is correct. I 
would do a better job if I could show as weIl how such a solution is found. 
Admittedly any such solution is found by trial and error, but even so, we 
could try to make the then prevailing guiding principle (in mathematics 
usually called "The feeling of the genius") somewhat more explicit. For we 
are still faced with problems: 

(a) what structure should we give to the N +1 processes? 

(b) what states should we introduce (Le. how many possible values should 
the state variables have and what should be their meanings)? 

The problem (both in constructing and in presenting the solution) is 
that the two points just mentioned are interdependent. For the values of 
the state variables have only an unambiguous, interpretable meaning, when 
mutex = 1 holds, i.e. when none of the processes is inside a critical section, 
in which these values are subject to change. In other words, the conditions 
under which the meaning of the state variable values should be applicable 
is only known when the programs have been constructed, but we can only 
construct the programs after we know what inspections of and operations on 
the state variables are to be performed. In my experience, one starts with a 
rough picture of both programs and state variables, then starts to enumerate 
the different states and finally tries to build the programs. Then two things 
may happen: either one finds that one has introduced too many states or 
one finds overlooked a need for cutting a critical section into 

has not introduced enough of them. One modi fies the states 
and then the program, and with luck and care the design process converges. 
Usually I found myself content with a working solution and did not bother 
to minimize the number of states introduced. 
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In my experience it is easier to conceive first the states (these being 
statically interpretable) and then the programs. In conceiving the states we 
have to bear three points in mind. 

(a) State variables should have a meaning when mutex is = 1; on the other 
hand, a process must leave the critical section before it starts to wait 
for a private semaphore. We must be very keen on all those points 
where a process may have to wait for something more complicated 
than permission to complete P (mutex) . 

(b) The combined state variables specify the total state of the system. 
Nevertheless, it helps a great deal if we can regard so me state variables 
as "belonging to that and that process". If some aspect of the total 
state increases linearly with N it is easier to conceive that part as 
equally divided among the N processes. 

( c) If a process decides to wait on account of a certain (partial) state each 
process that makes the system leave this partial state should inspect 
whether on ac count of this change so me waiting process should go on. 
(This is only a generalization of the principle already illustrated in The 
Sleeping Barber.) 

The first two points are mainly helpful in the conception of the different 
states, the last one is an aid to make the programs correct. 

Let us now try to find a set of appropriate states. We start with the 
element procvar [i], describing the state of process i. 

procvar[i] = 0 

This we call "the horne position". It will indicate that none of the fol-
lowing situations applies, that process i does not require any special service 
from either the message interpreter or one of the other processes. 

procvar [i] = 1 

"On account of non-availability of the communication channel, process 
i has decided to wait on its private semaphore." This decision can be taken 
independently in each process, it is therefore reasonable to represent it in 
the state of the process. Up till now there is no obvious reason to distinguish 
between waiting upon availability for aM-message and for a Ql-question, 
so let us try to do without this distinction. 
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procvar[i] = 2 

"Question Ql Ci) has been answered by A3, viz. with respect to process 

i the operator has postponed his final decision." The fact of the post-

ponement must be represented because it can hold for an indefinitely long 

period of time (observation a); it should be regarded as astate variable of 

the process in question, as it can hold in N-fold (observation b). Moreover, 

procvar [i] = 2 will act as applicability criterion for the operator messages 

A4 [i] and A5 [i] . 

procvar[i] = 3 

"Ql [i] has been answered by Al or by A3 - - - A4 [i]." 

procvar[i] = 4 

"Ql [i] has been answered by A2 or by A3 - - - A5 [i]." 

First of all we remark that it is of no concern to the individual process 

whether the operator has postponed his final answer or not. The reader may 

wonder, however, that the answer given is coded in procvar, while only one 

answer is given at a time. The reason is that we do not know how long it 

will take the individual process to react to this answer: before it has done 

so, a next process may have received its final answer to the Q1-question. 

Let us now try to list the possible states of the communication organi-

sation. We introduce a single variable, called comvar to distinguish between 

these states. We have to bear in mind three different aspects: 

(1) availability of the communication possibility for M-messages, Q1-

quest ions , and the spontaneous message of the operator; 

(2) acceptability-more general: interpretability-of the incoming mes-

sages. 

(3) operator priority for incoming messages. 

In order not to complicate matters too much at once, we shall start by 

ignoring the third point. Without operator priority we can see the following 

states. 

comvar 0 
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"The communication facility is idle", i.e. equally available for both pro-
cesses and operator. For the processes comvar = 0 me ans that the commu-
nication facility is available, for the message interpreter it means that an 
incoming message need not be ignored, but must be of type A4, A5, or A6. 

comvar = 1 

"The communication facility is used for aM-message or a Ql-question." 
In this period of time the value of comvar must be i= 0, because the commu-
nication facility is not available for the processes; for the message interpreter 
it me ans that incoming messages have to be ignored. 

comvar = 2 

"The communication facility is reserved for an Al-, A2-, or A3-answer." 
When the M-message has been finished the communication facility becomes 
available again; after a Ql-question, however, it must remain reserved. Dur-
ing this period, characterized by comvar = 2, the message interpreter must 
know to which process the operator answer applies. At the end of the answer 
the communication facility becomes again available. 

Let us now take the third requirement into consideration. This will lead 
to a duplication of (certain) states. When comvar = 0 holds, an incom-
ing message is accepted, when comvar = 1, an incoming message must be 
ignored. This occurrence must be noted down, because at the end of this 
occupation of the communication facility the operator must get his priority. 
We can introduce a new state: 

comvar = 3 

"As comvar = 1 with operator priority requested." 
When the transition to comvar = 3 occurred during aM-message the 

operator could get his opportunity immediately at the end of it; if, however, 
the transition to comvar = 3 took place during a Ql-question the prior-
ity can only be given to the operator after the answer to the Ql-question. 
Therefore, also state 2 is duplicated: 

comvar = 4 

"As comvar = 2, with operator priority requested." 
Finally, we have the state: 

comvar = 5 
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"The communication facility is reserved for, or used upon, instigation of 
the operator." For the processes this means non-availability, for the message 
interpreter the acceptability of the incoming messages of type A4, A5, and 
A6. UsuaIly, these messages will be announced to the message interpreter 
while comvar is = O. If we do not wish that the entire collection and interpre-
tation of these messages is done within the same critical section the message 
interpreter can break it open. It is then necessary that comvar is # o. We 
may try to use the same value 5 for this purpose: for the processes it just 
means non-availability, while the control of the message interpreter knows 
very weIl whether it is waiting for a spontaneous operator message (i.e. "re-
served for ... ") or interpreting such a message (i.e. "used upon instigation 
of ... "). 

Before starting to try to make the program we must bear in mind point 
c: remembering that availability of the communication facility is the great 
(and only) bottleneck, we must see to it that every process that ceases to 
occupy the communication facility decides upon its future usage. This occurs 
in the processes at the end of the M-message (and not so much at the end 
of the Ql-question, for then the communication facility remains reserved 
for the answer ) and in the message interpreter at the end of each message 
interpretation. 

The proof of the pudding is the eating: let us try whether we can make the 
program. (In the program the sequence of characters starting with comment 
and up to and including the first semicolon are inserted for explanatory 
purpose only. In ALGOL 60 such a comment is admitted only immediately 
after begin, but I do not promise to respect this (superfluous) restriction. 
The following program should be interpreted to be embedded in a uni verse in 
which the operator, the communication facility, and the semaphore incoming 
message-initially = O-are defined.) 

begin integer mutex, comvar, asknum, loop; 
comment The integer "asknum" is astate variable of the 
message interpreter, primarily during interpretation of 
the answers A1, A2, and A3. It is a common variable, as 
its value is set by the asking process; 
integer array procvar, procsem[1 : N]; 
for loop:= 1 step 1 until N do 
begin procvar[loop]:= 0; procsem[loop]:= 0 end; 
comvar:= 0; mutex:= 1; 
parbegin 

process 1: begin ... end; 
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process n: begin integer i; comment The integer "i" is a 
local variable, very much like "loop"; 

M message: P(mutex); 
if comvar = 0 then 
begin comment When the communication 

facility is available, it is taken; 
comvar:= 1; V(mutex) end 

else 
begin comment Otherwise the process re cords 

itself as dormant and goes to sleep; 
procvar[n]:= 1; V(mutex); 
P(procsem[n]) 

end; 

comment At the completion of this 
P-operation, "procsem[n]" will again 
be = 0, but comvar - still untouched 
by this process - will be = 1 or = 3; 

send M message; 
comment Now the process has to analyse 
whether the operator (first) or one of the 
other pro ces ses should get the communication 
facility; P(mutex); 
if comvar = 3 then comvar:= 5 

else 
begin comment Otherwise "comvar = 1" will 

hold and process n has to look whether 
one of the other processes is waiting. 
Note that "procvar[n] = 0" holds; 
for i:= 1 step 1 until N do 
begin if procvar[i] = 1 then 

end; 

begin procvar[i] := 0; 
V(procsem[i]); goto ready 

end 

comvar:= 0 
end 

ready: V(mutex); 

Q1 Question: P(mutex); 
if comvar = 0 then 
begin comvar:= 1; V(mutex) end 

else 
begin procvar[n]:= 1; V(mutex); 

P(procsem[n]) 
end; 
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comment This entry is identical to that of 
the M message. Note that we are out of the 
critical section, nevertheless this process 
will set "asknum". It can do so safely, for 
neither another process nor the message 
interpreter will access "asknum" as long as 
"comvar = 1" holds; 
asknum:= n, send question Ql(n); 
P(mutex); 
comment "comvar" will be = 1 or 3; 
if comvar = 1 then comvar:= 2 

else comvar:= 4; 
V(mutex); P(procsem[n]); 
comment After completion of this 
P-operation, procvar[n] will be = 3 or = 4. 
This process can now inspect and reset its 
procvar, although we are outside a critical 
section; 
if procvar[n] = 3 then Reaction 1 

else Reaction 2; 
procvar[n]:= 0; 
comment This last assignment is 
superfluous; 

process N: begin ... end; 
message interpreter: 

begin integer i; 
wait: P(incoming message); 

P(mutex); 
if comvar = 1 then comvar:= 3; 
if comvar = 3 then 
begin comment The message interpreter 

ignores the incoming message, but in 
due time the operator will get the 
opportunity; 
V(mutex); goto wait end; 

if comvar = 2 or comvar = 4 then 
begin comment Only Al, A2 and A3 are 

admissible. The interpretation of the 
message need not be done inside a 
critical section; 
V(mutex); 
interpretation of the message coming 
in; 
if message = Al then 
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begin procvar[asknum] := 3; 
V(procsem[asknum]); 
goto after correct answer end; 

if message = A2 then 
begin procvar[asknum]:= 4; 

V(procsem[asknum]); 
goto after correct answer end; 

if message = A3 then 
begin procvar[asknum]: = 2; 

goto after correct answer end; 
comment The operator has given an 
erroneous answer and should repeat the 
message; goto wait; 

after correct answer: P(mutex); 
if comvar = 4 then 
begin comment The operator should now 

get his opportunity; 
comvar:= 5; V(mutex); goto wait 

end; 
perhaps comvar to zero:for i:= 1 step 1 until N do 

begin if procvar[i] = 1 then 
begin procvar[i] := 0; 

end 
end; 
comvar:= 0; 

comvar:= 1; 
V(procsem[i]); goto ready 

ready: V(mutex); goto wait 
end; 
comment The cases "comvar 0" and 
"comvar = 5" remain. 
Messages A4, A5, and A6 are admissible; 
if comvar = 0 then comvar:= 5; 
comment See Remark 1 after the program; 
V(mutex); 
interpretation of the message coming in; 
P(mutex); 
if message = A4[process number] then 
begin i:= process number given in the 

end; 

message; 
if procvar[i] = 2 then 
begin procvar[i]:= 3; V(procsem[i]); 

goto perhaps comvar to zero end; 
comment Otherwise process not waiting 
for postponed answer; 
goto wrong message 

if message = A5[process number] then 
begin i:= process number given in the 

message; 
if procvar[i] = 2 then 
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end; 

begin procvar[il:= 4; V(procsem[i]); 
goto perhaps comvar to zero end; 

comment Otherwise process not waiting 
for postponed answer; 
goto wrong message 

if message = A6 then 
goto perhaps comvar to zero; 

wrong message: comment "comvar = 5" holds, giving priority 
to the operator to repeat his message; 
V(mutex); goto wait 

end 

end 
par end 

Remark 1. If the operator, while comvar = 0 or comvar = 5 originally 
holds, gives an uninterpretable (or inappropriate) message the communica-
tion facility will remain reserved for his next trial. 

Remark 2. The final interpretation of the A4 and A5 messages is done 
within the critical section, as their admissibility depends on the state of the 
process concerned. If we have only one communication channel and one 
operator this precaution is rather superfiuous. 

Remark 3. The for-loops in the program scan the processes in order, 
starting at process 1; by scanning them cyclically, starting at an arbitrary 
process (selected by means of a (pseudo) random number generator), we 
could have made the solution more symmetrical in the N processes. 

Remark 4. In this section we have first presented a rather thorough 
exploration of the possible states and then the program. The reader might 
be interested to know that this is the true picture-"a live recording" - of 
the birth of this solution. When I started to write this section the problem 
posed was as new to me as it was to the reader: the program given is my 
first version, constructed on account of the considerations and explorations 
given. I hope that this section may thus give a hint as to how one may find 
such solutions. 

5.2.1 Improvements of the Previous Program 

In Section 5.2 we have given a first version of the program; this version has 
been included in the text, not because we are satisfied with it but because 
its inclusion completes the picture of the birth of a solution. Let us now 
try to embellish, in the name of greater conciseness, clarity, and, may be, 
efficiency. Let us try to discover in what respects we have made a mess of 
it. 
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Let us compare the information flows from a process to the message 
interpreter, and vi ce versa. In the one direction we have the common variable 
asknum to tell the message interpreter which process is asking the question. 
The setting and the inspection of asknum can safely take place outside the 
critical sections, governed by mutex, because at any moment at most one of 
the N + 1 processes will try to access asknum. In the inverse information 
flow, where the message interpreter has to signal back to the ith process the 
nature of the final operator answer, this answer is coded in procvar. This 
is mixing things up, as is shown: 

(a) by the procvar-inspection (whether procvar is = 3 or = 4), which is 
suddenly allowed to take place outside a critical section; 

(b) by the superfluity of its being reset to zero. 

The suggestion is to introduce a new 

integer array operanswer[1 : NJ 

the elements of which will be used in a similar fashion as asknum. (An 
attractive consequence is that the number of possible values of procvar-
the more fundamental quantity (see below) will no longer increase with the 
number of possible answers to the quest ion Ql.) 

I should like to investigate whether we can achieve a greater clarity 
by separating the common variables into two (or perhaps more?) distinct 
groups, in order to reflect an observable hierarchy in the way in which they 
are used. Let us try to order them in terms of "basicness". 

The semaphore incoming message seems at first sight a fairly basic one, 
being defined by the surrounding universe. This is, however, an illusion: 
within the parallel compound we should have programmed (as the N + 2nd 
process) the operator himself, and the semaphore incoming message is the 
private semaphore for the message interpreter just as procsem [i] is for the 
ith process. 

Thus the most basic quantity is the semaphore mutex taking care of the 
mutual exclusion of the critical sections. 

Then co me the state variables comvar and procvar, which are inspected 
and can be modified within the critical sections. 

The quantities just mentioned share the property that their values must 
be set before entering the parallel compound. This property is also shared 
by the semaphores procsem (and incoming message, see above) if we stick 
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to the rules that parallel statements will access common semaphores via P-

and V-operations exclusively. 

(Without this restrietion, re quest for the communication facility by 

process n could start with: 

P(mutex); 

if comvar = 0 then 

begin comvar:= 1; V(mutex) end 

else 

begin procvar[n]:= 1; procsem[n]:= 0; 

V(mutex); P(procsem[n]) end 

We reject this solution on the furt her observation that the assignment 

procsem [n] is void, except for the first time that it is executed; the ini-

tialization of procsem's outside the parallel compound seems therefore ap-

propriate. ) 

For the common variables listed thus far I should like to reserve the name 

"status variables" , to distinguish them from the remaining ones, asknum and 

operanswer, which I should like to call "transmission variables". 

The latter are called "transmission variables" because, whenever one of 

the processes assigns a value to such a variable, the information just stored 

is destinated for a well-known "receiving party". They are used to transmit 

information between well-known parties. 

Let us now turn our attention from the common variables towards the 

programs. Within the programs we have learnt to distinguish the so-called 

"critical sections" for which the semaphores mutex caters for the mutual 

exclusion. Besides these, we can distinguish regions in which relevant actions 

occur, such as: 

In the ith Process 

Region 1: 

Region 2: 

Region 3: 

sending an M-message 

sending a Q1(i)-question 

reacting to operanswer[i] (This region 

is somewhat openended). 

In the Message Interpreter 

Region 4: 

Region 5: 

Region 6: 

ignoring incoming messages 

expecting Al, A2, or A3 

expecting A4(i), A5(i), or A6. 

We come now to the following picture. In the programs we have critical 

sections, mutually excluded by the semaphore mutex. The purpose of the 
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critical sections is to resolve any ambiguity in the inspection and modification 
of the remaining state variables, inspection and modification performed for 
the purpose of more intricate "sequencing patterns" of the regions. These 
sequencing patterns make the unambiguous use of the transmission variables 
possible. (If one process has to transmit information to another it can now do 
so via a transmission variable, provided that the execution of the assigning 
region is always followed by that of the inspecting region before that of the 
next assigning region.) 

In the embellished version of the program we shall stick to the rule that 
the true state variables will only be accessed in critical sections (if they are 
not semaphores) or via P- and V-operations (if they are semaphores), while 
the transmission variables will only be accessed in the regions. (In more 
complicated examples this rule might prove too rigid, and duplication might 
be avoided by allowing transmission variables to be inspected at least within 
the critical section. In this example, however, we shall observe the rule.) 

The remaining program improvements are less fundamental. 
Co ding will be smoothed if we represent the fact of requested operator 

priority not by additional values of comvar but by an additional two-valued 
state variable: 

Boolean operator priority 

(Quantities of type Boolean can take on the two values denoted by true and 
false respectively, viz. they have the same domain as "conditions" such as 
we have met in the if-clause.) 

Furthermore we shall introduce two procedures; they are declared outside 
the compound and therefore at the disposal of the different constituents of 
the parallel compound. 

We shall first give a short description of the new meanings of the values 
of the state variables procvar and comvar: 

procvar [i] 
procvar[i] 

procvar[i] 
comvar 0 
comvar = 1 
comvar 2 
comvar 3 

o horne position 
1 waiting for availability of the communication 

facility for M or Q1(i) 
2 waiting for the answer A4 (i) or A5 (i) . 

horne position (communication facility free) 
communication facility for M or Q1 
communication facility for Al, A2, or A3 
communication facility for A4, A5, or A6. 

We give the program without comments, and shall do so in two stages: 
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first the program outside the parallel compound and then the constituents 
of the parallel compound. 

begin integer mutex, comvar, asknum, loop; 
Boolean operator priority; 

end 

integer array procvar, procsem, operanswer[l: N]; 
procedure M or Q entry(u); value u; integer u; 
begin P(mutex); 

end; 

if comvar = 0 then 
begin comvar:= 1; V(mutex) end 

else 
begin procvar[u]:= 1; V(mutex); P(procsem[u]) end 

procedure select new comvar value; 
begin integer i; 

if operator priority then 
begin operator priority:= false; comvar:= 3 end 

else 
begin for i:= 1 step 1 until N do 

begin if procvar[i] = 1 then 

end; 

begin procvar[i]:= 0; comvar:= 1; 
V(procsem[i]); goto ready end 

comvar:= 0; 
ready: end 

end; 
for loop:= 1 step 1 until N do 

beg in procvar[loop] := 0; procsem[loop]:= 0 end, 
comvar:= 0; mutex:= 1; operator priority:= false; 
parbegin 
process 1: begin ... end; 

process N: begin end; 
message interpreter: 

begin ... end 
par end 

Here the nth process will be of the form 

process n: 

M message: 
Region 1: 

begin 

M or Q entry(n); 
send M message; 
P(mutex); select new comvar value; V(mutex); 
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Q1 question: M or Q entry(n); 
Region 2: asknum:= n; 

send Q1(n); 
P(mutex); comvar:= 2; V(mutex); P(procsem[n]) 

Region 3: if operanswer[n] = 1 then Reaction 1 
else Reaction 2; 

end 
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When the message interpreter decides to enter Region 6 it copies, before 
doing so, the array procvar: if an answer A4(i) should be acceptable, then 
procvar [i] = 2 should already hold at the moment of announcement of the 
answer. 

Message Interpreter: 

begin integer i; integer array pvcopy[l: N]; 
wait: P(incoming message); P(mutex); 

if comvar = 1 then 
Region 4: 
leave: 

Region 5: 

signal to 
preleave: 
Region 6: 

end 

begin operator priority:= true; 
V(mutex); goto wait end; 

if comvar <> 2 then goto Region 6; 
V(mutex); collect message; 
if message <> A1 and message <> A2 
and message <> A3 then goto wait; 
i:= asknum; 
if message A1 then operanswer[i]:= 1 else 
if message = A2 then operanswer[i]:= 2; 
P(mutex); 
if message = A3 then procvar[i]:= 2 else 
i: V(procsem[i]); 
select new comvar value; goto leave; 
if comvar = 0 then comvar:= 3; 
for i:= 1 step 1 until N do pvcopy[i]:= procvar[i]; 
V(mutex); collect message; 
if message = A6 then 
begin P(mutex); goto preleave end; 
if message <> A4(process number) 
and message <> A5(process number) then goto wait; 
i:= process number given in the message; 
if pvcopy[i] <> 2 then goto wait; 
operanswer[i]:= if message = A4 then 1 else 2; 
P(mutex); procvar[i]:= 0; goto signal to i 

As an exercise we leave to the reader the version in which pending re-
quests for Q1-questions have priority over those for M-messages. As a next 
extension we suggest a two-console configuration with the additional re-
striction that an A4- or A5-message is only acceptable via the console over 
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which the conversation has been initiated. (Otherwise we have to exclude 
simultaneous, contradictory messages A4 Ci) and A5 Ci) via the two different 
consoles. The solution without this restriction is left to the really fascinated 
reader.) 

5.2.2 Proving the Correctness 

In this section title I have used the word "proving" in an informal way. 
I have not defined what formal conditions must be satisfied by a "legal 
proof", and I do not intend to do so. When I can find a way to discuss the 
program of Section 5.2.1, by which I can convince myself of-and hopefully 
anybody else that takes the trouble of doubting!-the correctness of the 
overall performance of this aggregate of processes I am satisfied. 

In the following "state picture" we make a diagram of all the states 
in which a process may find itself "for any considerable length of time", 
i.e. outside sections critical to mutex. The arrows describe the transitions 
taking place within the critical sections; accompanying these arrows, we give 
the modifications of comvar or the conditions under which the transition from 
one state to another is made. 

Calling the neutral region of a process before entry into a Region 1 or 
Region 2, Region 0, we can give the state picture 

Region 0 
procvar = 0 

comvar 0-+ 1 comvar i= 0 

Region 1 or 2 
procvar = 0 

Leaving Region 1 can be pictured as: 
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I Region 1, procvar = 0 I 
comvar 1 -+ 3 

operator 
priority 

procvar 
1-+0 

1-+0 

all procvar i= 0 

l Region 0, procvar = 0 I 
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Leaving Region 2, with the possibility of a delayed answer, can be pic-
tured as: 

I 

I 
A1,A2 
comvar2 -+ 

I 
I 

Region 2, procvar = 0 J 
1-+2 

waiting for answer, procvar = 0 I 
A3 

3, 1,0 comvar 2 -+ 3,1,0 

I waiting for answer, procvar = 2 J 
comvar 0,3 -+ 0,1 
A4, A5 

Region 3, procvar = 0 I 
reaction to the answer , 
Region 0, procvar = ° I 

We can try to do the same for the message interpreter. Here we indicate 
along the arrows the relevant occurrences, such as changes of a procvar and 
the kind of message. We use WIM as abbreviation for "Waiting for Incoming 
Message". 
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Regionl-.. 

ReBlon 0 

end of ReBlon 2 

an procvar #: 1 

These diagrams, of course, tell us nothing new, but they may be a pow�

erful aid to program inspection. 

We verify first that comvar = 0 represents indeed the horne position 

of the communication facility, i.e. its availability either for entrance into 

Region 1 or Region 2 (by one of the processes ) or for entrance into Region 6 

(by the message interpreter, as result of an incoming message for which it is 

waiting). 

If comvar = 0 and one of the processes wants to enter Region 1 or Re�

gion 2, or a message comes from the operator, Region 1, 2, or 6 is en�

teredj furthermore, this entrance is accompanied by either comvar: = 1 or 

comvar : = 3, and in this way care is taken of the mutual exclusion of the 

Regions 1, 2, and 6. 

The mutual exclusion implies that processes may fail to enter Region 1 

or 2 immediately, or that an incoming message must be rejected when 

it comes at an inacceptable moment. In the first case the process sets 

procvar: = 1, in the second case (in Region 4) the message interpreter sets 
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operator priority:= true. 
These assignments are performed only under the condition comvar <> 0; 

furthermore, the assignment comvar: = O-only occurring in the procedure 
select new comvar value-is only performed provided "non-operator pr i-
ority and all procvar i- 1". From these two observations and the initial 
values we can conclude: 

comvar = 0 excludes operator priori ty as weIl as the occurrence of 
one or more procvar = 1. 

Since all ways of ceasing to occupy the communication facility (i.e. the 
end of Region 1, 5, and 6) call select new comvar value, we have estab-
lished: 

(a) that entrance into the Region 1, 2, and 6 is only delayed if necessary; 

(b) that such a delay is guaranteed to end at the earliest opportunity. 

The structure of the message interpreter shows clearly that: 

(a) it can execute Region 5 only if comvar 2 

(b) it can only execute Region 5 if comvar 2 

(c) execution of Region 5 is the only way to make comvar again i- 2. 

The only assignment comvar: = 2 occurs at the end of Region 2. As a 
result, each Region 2 can be followed only by a Region 5 and, conversely, 
each Region 5 must be preceded by a Region 2. This sequencing allows us to 
use the transmission variable asknum, which is set in Region 2 and inspected 
in Region 5. 

For the uses of the transmission variables oper ans wer an analogous anal-
ysis can be made. Region 2 will be followed by Region 5 (see above); if 
here the final answer (Al or A2) is interpreted, operanswer Ei] is set before 
V (procsem Ei] ), so that the transmission variable has been set properly be-
fore the process can (and will) enter Region 3, where its operanswer will be 
inspected. If in Region 5 the answer A3 is detected, the message interpreter 
sets procvar Ei] : = 2 for this process, thus allowing the answer A4 or A5 for 
this process exactly once in Region 6. Again V (procsem [i]) is performed 
only after the assignment to operanswer. Thus we have verified that: 

(a) operanswer is only set on ce by the message interpreter after arequest 
in Region 2; 
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(b) this operanswer will only be inspected in the following Region 3 after 

the request to set it has been fulfilled (in Region 5 or Region 6). 

This completes the analysis of the soundness of the use of the transmis-

sion variables operanswer . 

Inspection of the message interpreter (particularly the scheme of its 

states) shows: 

(a) that a rejected message (Region 4) so on er or later is bound to give rise 

to Region 6; 

(b) that wrong messages are ignored, giving the operator the opportunity 

of correction. 

By the above analysis we hope to have created sufficient confidence in 

the correctness of our construction. The analysis followed the steps already 

hinted at in section 5.2.1: after creation of the critical sections (with the aid 

of mutex) the latter are used to sequence Regions properly, thanks to which 

sequencing the transmission variables can be used unambiguously. 

6 THE PROBLEM OF THE DEADLY EMBRACE 

In the introductory part of this section I shall draw attention to a rather 

logical problem that arises in the co-operation between various processes 

when they have to share the same facilities. We have selected this problem 

for various reasons. First, it arises by a straightforward extension of the 

sound principle that no two persons should use a single compartment of a 

revolving door simultaneously. Secondly, its solution, which I regard as non-

trivial and which will be given in Section 6.1, gives us a nice example of 

more subtle co-operation rules than we have met before. Thirdly, it gives us 

the opportunity to illustrate (in Section 6.2) a programming technique by 

which a furt her gain in clarity can be achieved. 

Let me first give an example of the kind of facility-sharing I have in mind. 

As "processes" we might take "programs" , describing so me computa-

tional process to be performed by a computer. Execution of such a com-

putational process takes time, during which information must be stored in 

the computer. We restrict ourselves to those processes of which is known in 

advance: 

(1) that their demand on storage space will not exceed a certain limit, and 
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(2) that each computational process will end, provided that storage space 
requested by the process will be put at its disposal. The ending of the 
computational process will imply that its demand on storage space will 
reduce to zero. 

We ass urne that the available store has been subdivided into fixed-size 
"pages" which, from the point of view of the programs, can be regarded as 
equivalent. 

The actual demand on storage space needed by a process may be a func-
tion varying in time as the process proceeds-subject, of course, to the a 

priori known upper bound. We assurne that the individual processes request 
from and return to "available store" in single page units. By "equivalence" 
(see the last word of.the previous paragraph) is meant that a process requir-
ing a new page only asks for "a new page" but never for a special one nor 
one out of a special group. 

We now request that a process, once initiated, will-sooner or later-get 
the opportunity to complete its action and reject any organization in which 
it may happen that a process may have to be killed half-way through its 
activity, thereby throwing away the computation time already invested in it. 

If the computer has to perform the different processes one after the other 
the only condition that must be satisfied by a process is that its maximum 
demand does not exceed the total storage capacity. 

If, however, the computer can serve more than one process simultaneously 
one can adhere to the rule that one only admits pro grams as long as the sum 
of their maximum demands does not exceed the total storage capacity. This 
rule, safe though it is, is unnecessarily restrictive, for it means that each 
process effectively occupies its maximum demand during the complete time 
of its execution. When we consider the following table (in which we regard 
the processes as "borrowing" pages from available store) 

Process 
PI 
P2 

Maximum demand 
80 
60 

Present Ioan 
40 
20 + 

A vailable store = 100 - 60 = 40 

Further claim 
40 
40 

(a total store of 100 pages is assumed), we have a situation in which is still 
not hing wrong. If, however, both processes request their next page, and if 
they should both get it, we should get the following situation: 
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Maximum demand 
80 
60 

Present loan 
41 
21 + 

Available store = 100 - 62 = 38 

Further claim 
39 
39 

This is an unsafe situation, for both processes might want to realize their 
full further claim before returning a single page to available store. So each 
of them may first need a further 39 pages, while there are only 38 available. 

This situation, when one process can continue only provided the other 
one is killed first, is called "The Deadly Embrace". The problem to be 
solved is: how can we avoid the danger of the Deadly Embrace without 
being unnecessarily restrictive. 

6.1 The Banker's Algorithm 

A banker has a finite capital expressed in florins. He is willing to accept 
customers, that may borrow florins from hirn on the following conditions: 

1. The customer makes the loan for a transaction that will be completed 
in a finite period of time. 

2. The customer must specify in advance his maximum "need" for florins 
for this transaction. 

3. As long as the "loan" does not exceed the "need" stated in advance, 
the customer can increase or decrease his loan florin by florin. 

4. A customer when asking for an increase in his current loan undertakes 
to accept without complaint the answer "If I gave you the florin you 
ask for you would not exceed your stated need, and therefore you 
are entitled to a next florin. At present, however, it is somewhat 
inconvenient for me to pay you, but I promise you the florin in due 
time." 

5. His guarantee that this moment will indeed arrive is founded on the 
banker's cautiousness and the fact that his co-customers are subject 
to the same condition as he: that as so on as a customer has got the 
florin he asked for he will proceed with his transactions at a non-zero 
speed, i.e. within a finite period of time he will ask for a next florin 
or will return a florin or will finish the transaction, which implies that 
his complete loan has been returned (florin by florin). 
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The primary questions are: 

(a) under which conditions can the banker enter into contract with a new 
customer? 

(b) under which conditions can the banker pay a (next) florin to a request-
ing customer without running into the danger of the Deadly Embrace? 

The answer to question (a) is simple: he can accept any customer, whose 
stated need does not exceed the banker's capital. 

In order to answer question (b), we introduce the following terminology. 
The banker has a fixed capi tal at his disposal; each new customer states 

in advance his maximum need and for each customer will hold 

need[i] ::; capital (for an i). 

The current situation for each customer is characterized by his loan. 
Each loan is initially = 0 and shall satisfy at any instant 

0::; loan[i] ::; need[i] (for an i). 

A useful quantity to be derived from this is the maximum further claim, 
given by 

claim[i] = need[i] - loan[i] (for an i). 

Finally, the banker notes the amount in cash, given by 

cash = capital - sum of the loans 

Obviously 

o ::; cash::; capi tal 

has to hold. 
In order to decide whether a requested florin can be paid to the customer, 

the banker essentially inspects the situation that would arise if he had paid 
it. If this situation is "safe", then he pays the florin, if the situation is not 
"safe" he has to say: "Sorry, but you have to wait." 

Inspection whether a situation is safe amounts to inspecting whether all 
customer transactions can be guaranteed to be able to finish. The algorithm 
starts to investigate whether at least one customer has a claim not exceed-
ing cash. If so, this customer can complete his transactions, and therefore 
the algorithm investigates the remaining customers as if the first one had 
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finished and returned its complete loan. Safety of the situation means that 

all transactions can be finished, i.e. that the banker sees a way of getting all 

his money back. 

If the customers are numbered from 1 through N the routine inspecting 

a situation can be written as follows: 

integer free money; Boolean safe; 

Boolean array finish doubtful[l : N]; 

free money:= cash; 

for i:= 1 step 1 until N do finish doubtful[i]:= true; 

L: for i:= 1 step 1 until N do 

begin if finish doubtful[i] and claim[i] <= free money 

then 

begin finish doubtful[il:= false; 

free money:= free money + loan[i]; goto L 

end 

end; 

if free money = capital then safe:= true else safe:= false 

The above routine inspects any situation. An improvement of the Al�

gorithm has been given by L. Zwanenburg, who takes into account that 

the only situations to be investigated are those, where, starting from a safe 

situation, a florin has been tentatively given to customer [i]. As soon as 

finish doubtful[i] : = false can be executed the algorithm can decide 

directly on safety of the situation, for then clearly this attempted payment 

was reversible. This short cut will be implemented in the program in the 

next section. 

6.2 The Banker's Algorithm Applied 

In this example also the florins are processes. (Each florin, say, represents 

the use of a magnetic tape deck; the loan of a florin is then the permission 

to use one of the tape decks.) 

We assurne that the customers are numbered from 1 through N and that 

the florins are numbered from 1 through M. Each customer has a variable 

florin number in which, after each granting of a florin, it can find the num�

ber of the florin it has just borrowed; also each florin has a variable customer 

number in which it can find by which customer it has been borrowed. 

Each customer has astate variable cusvar, where cusvar = 1 me ans 

"I am anxious to borrow." (otherwise cusvar = 0); each florin has astate 

variable flovar, where flovar = 1 me ans "I am anxious to get borrowed, 

i.e. I am in cash." (otherwise flovar = 0). Each customer has a binary 
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semaphore cussem, each florin has a binary semaphore flosem, which will 
be used in the usual manner. 

We assurne that each florin is borrowed and returned upon customer 
indication, but that he cannot return a borrowed florin immediately. After 
the customer has indicated that he has no further use for this florin the 
florin may not be instantaneously available for subsequent use. It is as if 
the customer can say to a borrowed florin "run horne to the banker". The 
actual loan will only be ended after the florin has indeed returned to cash: 
it will signal its return into the banker's cash to the customer from which 
it came via a customer semaphore florin returned. A P-operation on 
this semaphore should guard the customer against an inadvertent overdraft. 
Before each florin re quest the customer will perform a P-operation on its 
florin returned; the initial value of florin returned will be = need. 

We assurne that the constant integers N and M (= capi tal) and the 
constant integer array need are declared and defined in the universe in which 
the following program is embedded. 

The procedure try to gi ve to is made into a Boolean procedure, the 
value of which indicates whether a delayed request for a florin has been 
granted. In the florin program it is exploited that returning a florin may at 
most give rise to a single delayed request to be granted now. (If more than 
one type of facility is shared under control of the banker this will no Ion ger 
hold. Jumping out of the for loop to the statement labelled leave at the 
end of the florin program is then not permissible.) 

begin integer array loan, claim, cussem, cusvar, 
florin number, florin returned[1 : N], 
flosem, flovar, customer number[1 : M]; 

integer mut ex , cash, k; 
Boolean procedure try to give to (j); value j; 
integer j; 
begin if cusvar[j] = 1 then 

begin integer i, free money; 
Boolean array finish doubtful[1 N]; 
free money:= cash - 1; 
claim[j]:= - 1; 
loan[j] := loan[j] + 1; 
for i:= 1 step 1 until N do 

finish doubtful[i]:= true; 
LO: for i:= 1 step 1 until N do 

begin if finish doubtful[i] 
and claim[i] <= free money then 
begin if i <> j then 

begin 
finish doubtful[i] := false; 
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end 
end; 

free money:= 
free money + loan[i] ; 

goto LO 
end 

else 
begin comment Here more 

sophisticated ways for 
selecting a free florin 
may be implemented; 
i:= 0; 

L1: i:= i + 1; 

end 

if flovar[i] = 0 then 
goto L1; 
florin number[j]:= i; 
customer number[i]:= j; 
cusvar[j]:= 0; 
flovar[i]:= 0; 
cash:= cash - 1; 
try to give to:= true; 
V(cussem[j]) ; 
V (flosem Ci] ) ; 
goto L2 

claim[j]:= claim[j] + 1; 
loan[j]:= loan[j] - 1 

try to give to:= false; 
L2: end, 

mutex:= 1; cash:= M; 
for k:= 1 step 1 until N do 
begin loan[k] := 0; cussem[k]:= 0; cusvar[k]:= 0; 

claim[k] := need[k]; florin returned[k] := need[k] 
end; 
for k:= 1 step 1 until M do 
begin flosem[k] := 0; flovar[k]:= 1 end; 
parbegin 

customer 1: begin ... end; 

customer N: begin end; 
florin 1: beg in end; 

florin M: begin ... end 
par end 

end 
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In customer n the request for a new florin consists of the following se-
quence of statements: 

P(florin returned[n]); 
P(mutex); 
cusvar[n]:= 1; try to give to (n); 
V(mutex); 
P(cussem[n]); 

after completion of the last statement florin number [n] gives the identity 
of the florin just borrowed, the customer has the opportunity to use it and 
the duty to return it in due time to the banker. 

The structure of a florin is as follows: 

florin m: 
begin integer h; 
start: P(flosem[m]); 

comment Now customer number[m] identifies the 
customer that has borrowed it. The florin can serve 
that customer until it has finished the task required 
from it during this loan. To return itself to the 
cash, the florin proceeds as follows; 
P(mutex); 
claim[customer number[m]] := 

claim[customer number[m]] + 1; 
loan[customer number[m]] := 

loan[customer number[m]] - 1; 
flovar[m]:= 1; cash:= cash + 1; 
V(florin returned[customer number[m]]); 
for h:= 1 step 1 until N do 

begin if try to give to(h) then goto leave end; 
leave: V(mutex); 

goto start 
end 

Remark. Roughly speaking, a successful loan can take place only when 
two conditions are satisfied: the florin must be requested and the florin must 
be available. In this program the mechanism of cusvar and cussem is also 
used (by the customer) when the requested florin is immediately available, 
likewise the mechanism of flovar and flosem is also used (by the florin) if, 
after its return to cash, it can immediately be borrowed again by a waiting 
customer. This programming technique has been suggested by C. Ligtmans 
and P.A. Voorhoeve, and I mention it because in the case of more intricate 
rules of co-operation it has given rise to a simplification that proved to be 
indispensable. The underlying cause of this increase in simplicity is that 
the dynamic way through the topological structure of the program no longer 
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distinguishes between an actual delay or not, just as in the case of the P-
operation itself. 

7 CONCLUDING REMARKS 

In the literat ure one sometimes finds a sharp distinction between "con-
current programming" -more than one central processor operating on the 
same job-and "multi-programming" -a single processor dividing its time 
between different jobs. I have always feIt that this distinction was rather 
artificial and therefore confusing. In both cases we have, macroscopicaIly 
speaking, a number of sequential processes that have to co-operate with each 
other, and our discussions on this co-operation apply equaIly weIl to "concur-
rent programming" as to "multi-programming" or any mixture of the two. 
What in concurrent programming is spread out in space (e.q. equipment) 
is in multi-programming spread out in time: the two present themselves 
as different implement at ions of the same logical structure, and I regard the 
development of a tool to describe and form such structures themselves, i.e. in-
dependent of these implementational differences, as one of the major contri-
butions of the work from which this monograph has been born. As a specific 
example of this unifying train of thought I should like to mention-for those 
that are only meekly interested in multi-processors, multi-programming, and 
the like-the complete symmetry between anormal sequential computer, on 
the one hand, and its peripheral gear, on the other (as displayed, for instance, 
in Section 4.3: "The Bounded Buffer"). 

Finally, I should like to express, on ce more, my concern about the cor-
rectness of programs, because I am not too sure whether all of it is duly 
refiected in what I have written. 

If I suggest methods by which we could try to attain a greater security, 
then this is, of course, more psychology than, say, mathematics. I have the 
feeling that for the human mi nd it is just terribly hard to think in terms of 
processing evolving in time and that our greatest aid in controlling them is 
by attaching meanings to the values of identified quantities. For instance, in 
the program section 

i:= 10; 
LO: x:= sqrt(x); i:= i-i; 

if i > 0 then goto LO 

we conclude that the operation x: = sqrt (x) is repeated ten times, but I 
have the impression that we can do so by attaching to i the meaning of 
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"the number of times that the operation x: = sqrt (x) still has to be re-
peated". But we should be aware of the fact that such a timeless meaning (a 
statement of fact or relation) is not permanently correct: immediately after 
the execution of x: = sqrt (x) but before that of the sub se quent i: = i - 1 

the value of i is "one more than the number of times that the operation 
x: = sqrt (x) still has to be repeated". In other words, we have to specify 
at what stages of the process such a meaning is applicable and, of course, 
it must be applicable in every situation where we rely on this meaning in 
the reasoning that convinces us of the desired overall performance of the 
program. 

In purely sequential programming, as in the above example, the regions 
of applicability of such meanings are usually closely connected with places in 
the program text (if not, we have just a tricky and probably messy program ). 
In multi-programming we have seen in particular in Section 5.2.1 that it 
is a worth-while effort to create such regions of applicability of meaning 
very consciously. The recognition of the hierarchical difference between the 
presence of a message and the message itself, here forced upon us, might 
give a clue even to clearer uniprogramming. 

For example, if I am married to one out of ten wives, numbered from 
1 through 10, this fact may be represented by the value of a variable wife 
number associated with me. If I may also be sIngle it is a commonly used pro-
grammer's device to code the state of the bachelor as an eleventh value, say 
wife number = O. The meaning of the value of this variable then becomes 
"If my wife nu mb er is = 0, then I am single, otherwise it gives the number of 
my wife". The moral is that the introduction of aseparate Boolean variable 
married might have been more honest. 

We know that the von Neumann-type machine derives its power and 
flexibility from the fact that it treats all words in store on the same footing. 
It is often insufficiently realized that, thereby, it gives the user the duty to 
impose structure wherever recognizable. 

Sometimes it iso It has often been quoted as The Great Feature of the 
von Neumann-type machine that it can modify its own instructions, but 
most modern algorithmic translators, however, create an object program 
that remains in its entire execution phase just as constant as the original 
source text. Instead of chaotically modifying its own instructions just be-
fore or after their execution, creation of instructions and execution of these 
instructions now occur in different sequenced regions: the translation phase 
and the execution phase. And this for the benefit of us all. 
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It is my firm belief that in each process of any complexity the variables 

occurring in it admit analogous hierarchical orderings, and that when these 

hierarchies are clearly recognizable in the program text the gain in clarity of 

the program and in effiiciency of the implementation will be considerable. If 
this chapter gives any reader a clearer indication of what kind of hierarchi�

cal ordering can be expected to be relevant I have reached one of my goals. 

And may we not hope that a confrontation with the intricacies of Multipro�

gramming gives us a clearer understanding of what Uniprogramming is all 

about? 


