Heap Review & Abstract Data Types

Joe Sventek



Objectives

» Review the use of pointers in C

e Review dynamic memory allocation and
return using malloc()/free()

» Describe how “void *” can be exploited to
orovide generic abstract data types in C

» Demonstrate this through the complete
specification of a generic Stack ADT in C



Pointers

e A pointer is a variable that contains the address of
another variable

* A typical machine has an array of consecutively
numbered (or addressed) memory cells that can be
manipulated individually or in contiguous groups —
assume N cells, numbered 0 .. N-1

* Suppose that we have a char variable named ¢, and
that is is assigned to location M

* Now suppose that we have a variable p which is a
pointer to a character; p will be assigned to a location,
say L, and a pointer will typically occupy >1 bytes,
usually 4 or 8, depending upon the memory
architecture of your processor



O~NO OB WN -=O

N-7
N-6

N-4
N-3
N-2
N-1

More on pointers

We make p point to c with a
statement of the formp = &c;

The unary operator s gives the
address of a variable, and is verbalized
as “address of”

p is said to “point to” ¢

& can only be applied to variables and
array elements; it cannot be applied
to expressions, constants, or
register variables.



More on pointers

 The unary operator * is the indirection or dereferencing
operator

» When applied to a pointer, it access the object the pointer
points to

» Consider the following artificial sequence of statements
showing the use of & and *

int x =1, y =2, z[10];

int *p, *qg; /* p and g are pointers to an int */
P = &X; /* p now points to x */

y = *p; /* vy is now 1 */

xp = 0; /* x 1is now 0 */

q = &z[0]; /* g now points to z[0] */

P = g /* p now points to z[0] */



More on pointers

Note that the declaration for a pointer to an int is int *p;

This indicates that *p can be used anywhere that an int is legal,

or that p must be dereferenced to yield an int —i.e. p is a pointer
toan int

Pointers are constrained to point to a particular kind of object —in
this case, p is a pointer to an int

If p _oﬂ_sﬁm to an integer x, then *p can occur in any context where
xX COU

What :m_ﬁo

pens for each of the following?
Assume

he following declarations:
int y, x[2] = {1, 9}, *p = &x[0];

Retrieve x[0], add 1, store in y; y now has a value
= *p + 1

Y B 1; of 2

*mv += Hn Add 1 to x[0], storing the value in x[0] (now 2)
Increment value of x[0] (now 3), then return its

++*p; value

*WY++n Return the wvalue of x[0] (3), then increment wvalue
of x[0] (now 4)

*AmY++v ; Increment p to point to x[1], return its wvalue (9)



Pointers and arrays

* Pointers and arrays are strongly related in C

* Any operation that can be achieved by array
subscripting can also be done with pointers

» Consider the following declaration
int al[l0];

» This defines an array a of size 10 —i.e. a block of
10 consecutive int objects named a[0],a[1] ,
ey a[9]

« a[i] refersto the ith element of the array

* assume pa is a pointer to an integer, declared
as
int *pa;



More pointers and arrays

pa: % patl pat2

o the assighnment pa = &a[0];
causes pa to point to element zero of a; i.e. pa contains the
address of a[0]

o the assignment x = *pa;
copies the contents of a[0] into x

* by definition, pa+1 points to the next element of the array,

pa+i pointsielements past pa, and pa-i points i elements
before pa



More pointers and arrays

* The preceding statements are true regardless of
the type or size of the variables in the array a

* the meaning of “add 1 to a pointer” and by
extension, all pointer arithmetic, is that pa+1
points to the next object, and pa+i points to
the it" object beyond pa

» The value of a variable or expression of type
array is the address of element O of the array —
l.e.a == &a[0]

* Thus, the following are equivalent:

pa = &al[0];
pa = a;



Penultimate slide on pointers and
arrays

a reference to a[i] can be written as * (a+1i)
a reference to sa[i] isidentical to a+1i
pa[i] isidentical to * (pa+i)

Since a pointer is a variable, expressions like
pa=a and pa++ are legal

Since an array hame is not a variable,
expressions like a=pa and a++ are illegal

when an array name is passed to a function,
what is passed is the location of the initial
element; within the called function, the
argument is a local variable; thus, an array
name parameter is a pointer



Last slide on pointers and arrays

/* strlen: return length of string */
int strlen(char *s)

{

int n;

for (n = 0; *s++ != “\0’; n++)
’
return n;

}

* As formal parameters to a function definition, s[] and *s are
equivalent

* If an array name has been passed as the actual argumentin a
call, the function can believe that it has been handed either
an array or a pointer

o Part of an array can be passed to a function by passing a

pointer to the beginning of the subarray; e.g., £ (¢sa[2]) or
f(at+2)



Address arithmetic

* |f p is a pointer to some element of an array, then p++
increments p to point to the next element, and p+=i
increments it to point i elements beyond the current
element

e There is a distinguished pointer value, NULL, which
means that the pointer does not point at anything valid;
it is defined in <stdio.h>

* Pointer values can be compared using ==, '=, >, >=, <,
<= ; when comparing two pointers, you are comparing
their contents, which are addresses in memory.

* A pointer and an integer may be added or subtracted;
p+n means the address of the nt object beyond the one
p currently points to



More pointer arithmetic

» Pointer subtraction is valid; if p and g point to
elements of the same array, and p < g, then g-p+1
is the number of elements from p to g, inclusive

/* strlen: return length of string s */
int strlen(char *s)
{

char *p = s;

while (*p++ != “\0')

return p — s;



More pointer arithmetic

e Valid pointer arithmetic operations are:

o

o

0]

o

assignment of pointers of the same type
adding or subtracting a pointer and an integer

subtracting or comparing two pointers to members of the
same array

assigning or comparing to NULL

* You CANNOT perform the following operations on
pointers

o

o

o

add two pointers
multiply, divide, shift, or mask pointers
add float or double to pointers

assign a pointer of one type to a pointer of another type
without an explicit cast



void * pointers

» void * is the generic pointer type

e Any pointer can be cast to void * and
back again without loss of information

 void * is used to construct modules that
provide generic capabilities at runtime

* The most common initial exposure to
void * is through the dynamic memory

allocation routines defined in
<stdlib.h>



Heap Memory

* Heap memory is allocated on demand
o Usemalloc (), similar to new in Java
o Request a given number of bytes
o A pointer to the first byte is returned asa void *

» sizeof(type) returns the number of bytes in a type; this

is a compile-time function; it does not determine the
length of a string variable

» Heap memory must be returned when no longer
needed.
o Use free ()
> Cdoes not provide garbage collection.

> |f you do not explicitly free the allocated memory, you will have
memory leaks in your program



Function prototypes

/
* malloc: return a pointer to space for an object of size ‘size’, or NULL
* if the request cannot be satisfied. The space is uninitialized.
*/

vold *malloc(size t size);

/%

* free: deallocates space pointed to by ‘p’; it does nothing if ‘p’

* is NULL. ‘p/ must be a pointer to space previously allocated by
* calloc (), malloc (), or realloc().

*/

void free(void *p);

/%

* calloc: returns a pointer to space for an array of ‘nobj’ objects, each
* of size ‘size’, or NULL if the request cannot be satisfied.

* The space is initialized to zero bytes

*/

voild *calloc(size t nobj, size t size);



Use of malloc() and free()

e malloc () isusedin asimilar way to new in
Java — to dynamically allocate memory

o free () is used to explicitly return such
dynamically allocated memory

* The simple program on the following page
reads the first 100 lines from standard input
and stores these lines into dynamic memory



#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define NLINES 100
#define MAXLINESIZE 1024

/* this program reads the first 100 lines from standard input, stores
these lines in dynamic memory, and then frees the dynamic memory */
int main () {
char *lines[NLINES];
char buf [MAXLINESIZE];

char *p;

int 1i;

int nl = 0;

while(nl < NLINES && fgets (buf, MAXLINESIZE, stdin) != NULL) {
p = (char *)malloc(strlen (buf)+1l); /* leave room for EOS */
strcpy (p, buf);
lines[nl++] = p;

}

for (1 = 0; i < nl; 1i++)

printf ("%$s", lines[i]);
for (1 = 0; i < nl; 1i++)

free((void *)lines[i]);
return 0;



Character Pointers and Functions

* The most common pointers that you will
encounter are pointers to characters

o String literals are written as:
“This is a string”

* The internal representation of the literal is an
array of characters, with the array terminated
with the null character 7\ 0~

*» When a string constant is specified as an
argument to a function, a pointer to the first
character of the constant is passed to the
function




More character pointers ...

» Suppose the following declaration:
char *pmessage = “this 1s a string”;

 This does not cause the string to be copied; pmessage is
assigned the address of the first character of the string
constant in read-only memory

e Cdoes not provide any operators for processing an
entire string as a unit! Become familiar with the
functions defined in <string.h>!

e There is an important difference between these
definitions:
char amsg[] = “this 1s a string”;
char *pmsg = ”“this 1s a string”;

« amsg IS an array, just big enough to hold the sequence
of characters and the ' \ 0’ that initializes it; individual
characters in the array may be changed, but amsg
always refers to the same storage



More character pointers ...

.Bm@mmm_oo:;msSEm__Nmo_Sco_s:owmq_sm
mﬁmﬁm_h the pointer may subsequently be
modified to point elsewhere, but the result is
undefined if you attempt to modify the
contents of the string literal

* The following slide shows three different
versions of strcpy, a function for copying one
string to another; each successive version is
more succinct, taking fuller advantage of C’s
expressiveness

* The subsequent slide shows two different
versions of strcmp, a function that compares
two strings to each other; again, the 2"9 version
is more succinct than the first




strcpy

/* strcpy: copy t to s;
void strcpy(char *s, char *t) {

array subscript version */

int i;
i = 0;
while ((s[i] = t[i]) != "\0")
i++;
}
/* strcpy: copy t to s; pointer version 1 */
void strcpy(char *s, char *t) {
while ((*s = *t) != "\0") {
s++; t++;
}
}
/* strcpy: copy t to s; pointer version 2 */
void strcpy(char *s, char *t) {

while ((*s++ = *t++) != "\0")

4



strcmp

/* strcmp: return <0 if s<t, 0 if s==t, >0 if s>t */
int strcmp (char *s, char *t) { /* array subscript version */

int 1i;
for (1 = 0; s[i] == t[i]; 1i++)
if (s[1] == ’"\0")
return 0O;
return s[i] - t[i];

/* strcmp: return <0 if s<t, 0 if s==t, >0 if s>t */
int strcmp (char *s, char *t) { /* pointer version */
for (; *s == *t; s++, t++)
if (*s == ’"\0")
return 0;
return *s - *t;



Pointer Arrays — pointers to pointers

» Since pointers are variables themselves, they can be
stored in arrays just as other variables can

* As an example, suppose we wish to create a program
that will sort text lines

» For fixed-size data types, like integers, we simply need
an array of integers; since the lines of text are variable-
length, we need an efficient data representation to
cope with these variable-length lines

» Therefore, we will create an array of pointers to char,
and swap actions invoked as part of the sort algorithm
will simply swap the pointers; when finished, if one
proceeds linearly through the pointer array, one will
have the lines sorted



Pointer arrays and sorting

. » defghi . > defghi
. " Jklmn . > 5k1lmn
o > abc o )| abc
o "l op o >l op

See section 5.6 on pp 107-110 of the C Programming Language.



Initializing arrays of pointers

» Suppose you wanted to define a list of keywords that
your program would understand as commands from a
user

» For example, if you have written a hash table
implementation, you might want to write a test
program that can be used to exercise the
Implementation.

* The following declaration shows how you could declare
these keywords:

char *keywords[] = {
“insert”,
"delete”,
"lookup”,
\\“_unmumﬁ\\\
NULL

b s



Arguments to main()

e main() has parameters that are provided by the

operating system when it is invoked
int main(int argc, char *argvl[]);

 argv is an array of pointers to strings
« argc is the number of pointers to strings

* |f the invocation of the program was:
./program joe sventek

e Then
argc == 3
argv[0] - “./program”
argv|[l] - “joe”
argv[2] - “sventek”
argv[3] - NULL



Pointers to functions

» A function itself is not a variable
* |tis possible to define pointers to functions

» These can be assigned, placed in arrays, passed to
functions, returned by functions, ...

* Consider a sort program that sorts strings; sometimes,
we want it to sort the strings lexicographically (i.e. as
character strings); at other times, there may be a
number at the beginning of each line, and we would like
the lines to be sorted numerically according to the
leading number

* The user should be able to choose which type of sort is
desired through a flag in the arguments used to invoke
the program



Pointers to functions

» The pseudocode for our main() looks something
like the following:

process command arguments
read all lines of input

sort them

print them in order

e Assuming thereis a sort () function that
performs the “sort them” part of the
pseudocode, we need to have some way to

inform that function how we want the strings to
be compared.



Pointers to functions

* Assume the following declarations in main ()

char *lineptr [MAXLINES];
volid sort (char *lineptr[], int left, int right,
int (*comp) (char *, char *));

» This function prototype says that sort() is invoked with
an array of pointers to strings, the left and right index in
this array over which to sort, and the last formal
parameter is a pointer to a function that returns an
integer; this function takes two char * arguments, and
returns <0, 0, or >0 depending upon whether
argl<arg?, argl==arg2, or argl>arg2

 How could we make the signature to “sort” be more

general? What impact would it have on code that uses
it?



Pointers to functions

» Suppose we have read n lines of text, such that
lineptr[0] .. lineptr[n-1] have valid pointers. If
we wanted to do a lexicographical sort, main () would
invoke sort () as:

<lnclude string.h>

sort (lineptr, 0, n-1, strcmp);
» Recall that the signature for strcmp() as defined in
string.h is

int strcmp(const char *s, const char *t);



Pointers to functions

* |f we wanted to do a numeric sort, we must implement
a function that converts the leading number in each line
to an integer: consider

#include <stdlib.h>

int numcmp (char *s, char *t) {
int 11, 12;
11 = atoi(s);
12 = atoi(t);
return 11 - 12;

}
e main () would invoke sort () as:

sort (lineptr, 0, n-1, numcmp);



Complicated declarations

e Due to the precedence of C’s operators, you
must be careful when defining function pointers

* For example, consider the following function
prototype:
int *f(void *);
» This defines £ as a function returning a pointer
to an integer;

* Whereas, the following function prototype:
int (*pf) (void *);
defines pf as a pointer to a function returning
an integer



ADTs in C

CIS 415, Spring 2018

Heap Review & ADTs

3

5



ADT’s in C

» Recall from Java that the specification for an abstract
data type (ADT) hides the representation of the data
type (via the private keyword)

* In C, we hide the representation of an abstract data
type by declaring the public type to be

struct <name> *

* In C, we use the .h file for the specification, the . c file

for implementation

e The .n file contains
o Public type and constant declarations

o Function prototypes for the operations on an instance of the
ADT

o extern declarations (if any) for any global data defined in the .c
file



ADT’s in C (cont)

e Users of the ADT

- #include the .h file (to make types, constants, functions, any
externs) visible

> invoke the available functions
o NEVER, EVER #include a .cfile!!!

 The .c file contains
> #include of the matching . h file (to detect inconsistencies)

o QOther includes for libraries and ADTs needed for the
implementation

o Additional type definitions
> Implementations of the callable functions

o QOther functions as needed to complete the implementation —
these should be declared static



Generic container data types

o Recall from CIS 212 that in Java we can define generic classes
that are parameterized with respect to types

* A particular class of generic classes upon which you focussed
were containers — e.g. lists, sets, tables, ... that were
parameterized with respect to the type of the payload of the
data structures in the aggregate data type

A 4

A 4

Next Next » Next
Payload Payload Payload

Listhead

* The generic implementation concentrates on navigating
through the pointer/control aspect of the data structure, and
treats the payload as a “bag of bits”



Generic containers in C

* The type void * is a generic pointer; it can be cast to any
other type of pointer, and any other type of pointer can be
casttoa void *, without loss of information

» Thus, we can implement generic container data structures in
C exploiting void * pointers; the “Data” fields below are
void * pointers.

A\ 4

A\ 4
A 4

Listhead Next Next Next

Data Data Data

A\ 4 A 4 \ 4

Payload Payload Payload

* Unlike Java, in which a generic class is instantiated at run time
via “new”, in C we must instantiate the class at runtime
through a function call



Outline of a generic container interface

#ifndef FOO _H_
#define _FOO H_

/* interface definition for generic Foo container */
#include “iterator.h”

typedef struct foo Foo; /* forward reference */
struct foo {
void *self;
void (*destroy) (const Foo *f, void (*freeFxn)(void *element));
void (*clear)(const Foo *f, void (*freeFxn)(void *element));
int (*put)(const Foo *f, void *element);
int (*get)(const Foo *f, void **element);
int (*isEmpty)(const Foo *st);
long (*size)(const Foo *f);
void **(*toArray)(const Foo *f, long *len);
const Iterator *(*itCreate)(const Foo *f);
Iy

const Foo *Foo_create(/* appropriate arguments */);

#tendif /* _FOO_H_*/



What does each line mean?

typedef struct foo Foo; /* forward reference */
struct foo {

void *self;

/* method signatures */
};
This defines the dispatch table and a void * member for
instance-specific data; you will note that the constructor
and the methods on this ADT only ever refer to const Foo
*
const Foo *Foo create(/* appropriate arguments */);
this is called to create a new instance of a Foo; the required
arguments are specific to the ADT; this method is the
equivalent to a Java constructor; if successful, a const
pointer to the Foo is returned as the value of the function;

if it is unsuccessful, nurL will be returned



Method signatures

void (*destroy) (const Foo *f, void (*freeFxn) (void *e)) ;
this destroys the Foo instance; for each element in the

Foo, if freeFxn !'= NULL, that function is invoked on
that element to return any heap storage associated with
the element; then, any heap storage associated with the
Foo is returned to the heap

void (*clear) (const Foo *f, wvoid (*freeFxn) (void *e)) ;
purges all elements from the Foo; for each element, if

freeFxn != NULL, that function is invoked on that
element to return any heap storage associated with the
element; any heap storage associated with the element in
the Foo is then returned; upon return, £ will be empty



What does each line mean?

e There can be a number of methods for inserting
elements into a Foo and retrieving elements from a
Foo (either destructively or non-destructively); the
two examples shown below assume a storage
container with destructive retrieval

e int (*put) (const Foo *f, void *element)
adds an element to the Foo; return value of the
function is 1/0 if the call was
successful/unsuccessful;

e int (*get) (const Foo *f, void **element);
fetches an element from Foo, returning the
elementin *element; if successful, function return
value is 1; otherwise, itis 0



What does each line mean?

e int (*isEmpty) (const Foo *f);
returns true if the Foo is empty, returns false if not

e long (*size) (const Foo *f);
returns the number of elements in the Foo

e void ** (*toArray) (const Foo *f, long *len);
returns an array of pointers to the elements in the
Foo in the natural order defined by rFoo’s; the number
of elements in the array is returned in *1en; after the
caller has finished using the array of pointers, the
caller should return it to the heap via a call to free ()



What does each line mean?

e const Iterator *(*itCreate) (const Foo *f);
creates a generic iterator for this Foo instance;
successive calls to the next () method on the returned
iterator will return the elements of the Foo in the
natural order defined by Foo’s; if unsuccessful, NULL is
returned; when the caller has finished with the iterator,
the caller must invoke the destroy () method on the
iterator



Generic iterator — iterator.h

#ifndef TITERATOR H
#define TITERATOR H

/
* interface definition for generic iterator
*

* patterned roughly after Java 6 Iterator class

*/
typedef struct iterator Iterator;

struct i1terator {
volid *self;
int (*hasNext) (const Iterator *it);
int (*next) (const Iterator *it, void **element);
void (*destroy) (const Iterator *it);

const Iterator *Iterator create(long size, voild **elements);

#endif /* ITERATOR H */



iterator.c (1/3)

#include "iterator.h"
#include "stdlib.h"

typedef struct it data {
long next;
long size;
void **elements;

} ItData;

static int 1t hasNext (const Iterator *it) ({
ItData *itd = (ItData *)it->self;

return (itd->next < itd->size) 2?2 1 : 0;

14



iterator.c (2/3)

const Iterator *it,
ItData *)it->self;

static int 1t next(
ItData *itd = (
int status = 0;

if (itd->next < itd->size) {

void **element)

*element = itd->elements[itd->next++];

status = 1;

}

return status;

static void 1t destroy(const Iterator *it) ({

ItData *itd = (ItData *)it->self;
free(itd->elements) ;

free(itd) ;
free((void *)it);

static Iterator template = {

NULL, it hasNext, 1t next, 1t destroy



iterator.c (3/3)

const Iterator *Iterator create(long size, voild **elements) {

Iterator *it = (Iterator *)malloc (sizeof (Iterator)):;
if (it != NULL) {
ItData *itd = (ItData *)malloc (sizeof (ItData)) ;
if (itd != NULL) {
itd->next = 0L;
itd->size = size;
itd->elements = elements;

*1t = template;

it->self = itd;
} else {

free(it) ;

it = NULL;

}

return 1it;



Using an iterator

const Iterator *it;
vold *element;

/* obtain iterator using the factory method in another ADT */

while (it->hasNext (it)) {
it->next (it, &element);
/* use element, suitably cast */

}
it->destroy(it);



Generic stack — stack.h

#ifndef STACK H
#define STACK H

#include "iterator.h" /* needed for factory method */
typedef struct stack Stack; /* forward reference */
const Stack *Stack create(long capacity);

struct stack {
volid *self;
void (*destroy) (const Stack *st, void (*userFxn) (void *element));
volid (*clear) (const Stack *st, void (*userFxn) (void *element)):;
int (*push) (const Stack *st, void *element);
int (*pop) (const Stack *st, void **element);
int (*peek) (const Stack *st, void **element);
long (*size) (const Stack *st);
int (*1isEmpty) (const Stack *st);
volid ** (*toArray) (const Stack *st, long *len);
const Iterator * (*itCreate) (const Stack *st);

#endif /* STACK H */



stack.c (1/7)

#include "stack.h"
#include <stdlib.h>

#define DEFAULT CAPACITY 50L
#define MAX INIT CAPACITY 1000L

typedef struct st data {
long capacity;
long next;
void **theArray;

} StData;



stack.c (2/7)

/* helper fxn, traverses stack, calling freeFxn on each element */

static void purge (Sthata *std, void (*freeFxn) (void*)) {
if (freeFxn != NULL) {
long 1;

for (i = 0L; 1 < std->next; i++)
(*freeFxn) (std->theArray([i]); /* user frees elem storage */

static void st destroy(const Stack *st, void (*freefFxn) (void *element)) {
StData *std = (StData *)st->self;
purge (std, freeFxn);
free (std->theArray) ; /* free array of pointers */
free (std); /* free structure with instance data */
free((void *)st); /* free dispatch table */

}

static void st clear(const Stack *st, void (*freeFxn) (void *element)) {
StData *std = (StData *)st->self;

purge (std, freeFxn);
std->next = 0L;



stack.c (3/7)

static int st push(const Stack *st, void *element) ({
mﬁcmﬁm*mﬁgnAmﬁomﬁm*vmﬁ|meHmn

int status = 1;
if (std->capacity <= std->next) { /* need to reallocate */
size t nbytes = 2 * std->capacity * sizeof (void *);
void **tmp = (void **)realloc(std->theArray, nbytes);
if (tmp == NULL)
status = 0; /* allocation failure */
else {

std->theArray = tmp;
std->capacity nbytes;

}
if (status)

std->theArray[std->next++] = element;
return status;



stack.c (4/7)

static int st pop(const Stack *st, void **element) {
StData *std = (StData *)st->self;
int status = 0;

if (std->next > 0L) {
*element = std->theArray[--std->next];
status = 1;

}

return status;

const Stack *st, void **element) {
StData *)st->self;

static int st peek(
StData *std = (
int status = 0;

if (std->next > 0L) {
*element = std->theArray[std->next - 1];
status = 1;

}

return status;



stack.c (5/7)

static long st size(const Stack *st) {
StData *std = (StData *)st->self;
return std->next;

static int st isEmpty(const Stack *st) ({

StData *std = (StData *)st->self;
return (std->next == 0L);
}
/* helper function - duplicates array of void * pointers on the heap */

static void **arrayDupl (StData *std) {
void **tmp = NULL;
if (std->next > 0L) {

size t nbytes = std->next * sizeof (void *);
tmp = (void **)malloc (nbytes);
if (tmp != NULL) {
long 1i;
for (1 = 0L; 1 < std->next; i++)
tmp[i] = std->theArrayl[i];

}

return tmp;



stack.c (6/7)

static void **st toArray(const Stack *st, long *len) ({

StData *std = (StDhata *)st->self;
void **tmp = arrayDupl (std);
1if (tmp !'= NULL)

*len = std->next;

return tmp;

static const Iterator *st i1tCreate(const Stack *st) {
StData *std = (StData *)st->self;
const Iterator *it = NULL;
void **tmp = arrayDupl (std);

if (tmp !'= NULL) {
it = Iterator create(std->next, tmp);
if (it == NULL)

free (tmp) ;
}

return it;

static Stack template = { NULL, st destroy, st clear, st push, st pop,
st peek, st size, st isEmpty, st toArray, st itCreate };



stack.c (7/7)

const Stack *Stack create(long capacity) {

cap;

Stack *st = (Stack *)malloc(sizeof (Stack)):;
if (st != NULL) {
StData *std = (StData *)malloc(sizeof (StData)):;
if (std !'= NULL) {
long cap;
void **array = NULL;
cap = (capacity <= 0L) ? DEFAULT CAPACITY : capacity;
cap = (cap > MAX INIT CAPACITY) ? MAX INIT CAPACITY
array = (void **)malloc(cap * sizeof (void *));
if (array != NULL) {
std->capacity = cap;
std->next = 0L; std->theArray = array;
*st = template; st->self = std;
} else {
free(std); free(st); st = NULL;
}
} else {
free(st); st = NULL;

}

return st;



An application to use the stack

* Write a program that checks whether a
string of brackets is well-formed.

o Each string contains only the characters

[1O3<>

» A string is well-formed iff it meets the
following criteria:
> Each bracket is matched —i.e., for every open

bracket (, [, {, < there is a corresponding closing
bracket

> The substring contained within each matched
pair is also well-formed.




An application to use the stack

» The general approach is as follows:

o

Read the number of strings that we must check for well-formed-
ness from stdin

Read each line from stdin and remove the newline character
Create an empty stack

For each character in the line
If it is an opening bracket, push that character on the stack

If it is a closing bracket

 See if the top item on the stack is the corresponding opening bracket; if so, pop it off
the stack and continue to the next character

* If itis not the corresponding bracket, or if the stack is empty, the string is not well-
formed, and we stop processing

If the string is well formed, we will have processed the entire
string and the stack will be empty, in which case we print ‘YES’
on stdout

Otherwise, we print ‘NO’



brackets.c (1/2)

#include "stack.h"
#include <stdio.h>

#define UNUSED  attribute ((unused))
char *open = " ([{<";
char *close = ")1}1>";

long strindex (char s[], int c) {

long 1i;
for (1 = 0; s[i] != '"\0'; 1i++)
if (s[i] == c)

return 1;
return -1;

int main (UNUSED int argc, UNUSED char *argv([]) {
const Stack *st;
int nlines;
char buf[1024];

fgets (buf, sizeof buf, stdin);
sscanf (buf, "%d\n", &nlines);
while (nlines—-—- > 0) {

int i1, wellformed = 1;



brackets.c (2/2)

st = Stack create(0L);
fgets (buf, sizeof buf, stdin);
for (i = 0; buf[i] !'= '"\n' && buf[i] != '"\0O'; 1i++) {
int ¢ = bufl[i];
long 1 = strindex (open, c);
if (1 > -1)
st->push (st, (void *)1);
else {
long j = strindex(close, c);
int stat = st->peek(st, (void **)&l);
if (stat && 1 == 7j)
st->pop(st, (void **)&l);
else {
wellformed
break;

0;

}
if (! st->isEmpty(st))
wellformed = 0;
if (wellformed)
printf ("YES\n") ;
else
printf ("NO\n") ;
st->destroy(st, NULL);
}

return 0O;



