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A number of mainly independent sequential-cyclic processes 
with restricted means of communication with each other can 
be made in such a way that at any moment one and only one 
of them is engaged in the "critical section" of its cycle. 

I n t r o d u c t i o n  

Given in this paper is a solution to a problem for which, 
to the knowledge of the author, has been an open question 
since at least 1962, irrespective of the solvability. The 
paper consists of three parts: the problem, the solution, 
and the proof. Although the setting of the problem might 
seem somewhat academic at first, the author trusts that  
anyone familiar with the logical problems that  arise in 
computer coupling will appreciate the significance of the 
fact that  this problem indeed can be solved. 

T he  P r o b l e m  

To begin, consider N computers, each engaged in a 
process which, for our aims, can be regarded as cyclic. In 
each of the cycles a so-cMled "critical section" occurs and 
the computers have to be programmed in such a way that  
at any moment only one of these N cyclic processes is in 
its critical section. In order to effectuate this mutual 
exclusion of critical-section execution the computers can 
communicate with each other via a common store. Writing 
a word into or nondestructively reading a word from this 
store are undividable operations; i.e., when two or more 
computers t ry  to communicate (either for reading or for 
writing) simultaneously with the same common location, 
these communications will take place one after the other, 
but in an unknown order. 

The solution must satisfy the following requirements. 
(a) The solution must be symmetrical between the N 

computers; as a result we are not allowed to introduce a 
static priority. 

(b) Nothing may be assumed about the relative speeds 
of the N computers; we may not even assume their speeds 
to be constant in time. 

(c) If any of the computers is stopped well outside its 
critical section, this is not allowed to lead to potential 
blocking of the others. 

(d) If more than one computer is about to enter its 
critical section, it must be impossible to devise for them 
such finite speeds, that  the decision to determine which 
one of them will enter its critical section first is postponed 
until eternity. In other words, constructions in which 
"After you"-"After  you"-blocking is still possible, although 
improbable, are not to be regarded as valid solutions. 

We beg the challenged reader to stop here for a while 
and have a t ry  himself, for this seems the only way to get 
a feeling for the tricky consequences of the fact that  each 
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computer can only request one one-way message at a time. 
And only this will make the reader realize to what extent 
this problem is far from trivial. 

T h e  S o l u t i o n  

The common store consists of: 
"Boo lean  array b, c[ l :N] ;  i n t e g e r  k"  

The integer k will satisfy 1 < k < N, bill and c[i] 
will only be set by the ith computer; they will be inspected 
by the others. I t  is assumed that  all computers are started 
well outside their critical sections with all Boolean arrays 
mentioned set to t r u e ;  the starting value of k is immaterial. 

The program for the ith computer (1 < i < N) is: 

"integer  j ;  
LiO: b[i] :=  fa lse;  
Lil:  i f  k # i t h e n  
Li2: b e g i n  c[i] :=  true;  
Li3: i f b [ k ] t h e n k  : = i ;  

go  t o  Lil  
end  

e lse  
Li4: b e g i n  c[i] :=  fa lse;  

for j :=  1 s t e p  1 u n t i l  N do 
i f j  # i a n d  n o t  c[j] t h e n  go to Lil  

e n d  ; 
c r i t ica l  s ec t ion ;  
c[i] :=  t r u e ;  bill :=  t r u e ;  
r e m a i n d e r  of  t he  cycle  in w h i c h  s t o p p i n g  is a l lowed;  
go  t o  LiO" 

T h e  Proof  

We start  by  observing that  the solution is safe in the 
sense that  no two computers can be in their critical section 
simultaneously. For the only way to enter its critical 
section is the performance of the compound statement 
Li4 without jmnping back to Lil, i.e., finding all other 
c's t r u e  after having set its own e to false. 

The second part  of the proof must show that  no infinite 
"After  you"-"After you"-blocking can occur; i.e., when 
none of the computers is in its critical section, of the 
computers looping (i.e., jumping back to Lil) at least 
one--and therefore exactly one--will be allowed to enter 
its critical section in due time. 

If  the kth computer is not among the looping ones, 
bik] will be t r u e  and the looping ones will all find k # i. 
As a result one or mnore of them will find in Li3 the Boolean 
b[k] true  and therefore one or more will decide to assign 
"k :=  i". After the first assignment "k :=  i", b[k] be- 
comes false and no new computers can decide again to 
assign a new value to k. When all decided assignments to 
k have been performed,/c will point to one of the looping 
computers and will not change its value for the time being, 
i.e., until b[k] becomes t rue ,  viz., until the kth computer 
has completed its critical section. As soon as the value of 
]c does not change any more, the kth computer will wait 
(via the compound statement Li4) until all other c's are 
t rue ,  but  this situation will certainly arise, if not already 
present, because all other looping ones are forced to set 
their e t rue ,  as they will find k # i. And this, the author 
believes, completes the proof. 
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