
Solution of a Problem in
Concurrent Programming Control
E. W. DIJXSTRA
Technological University, Eindhoven, The Netherlands

A number of mainly independent sequential-cyclic processes
with restricted means of communication with each other can
be made in such a way that at any moment one and only one
of them is engaged in the "critical section" of its cycle.

I n t r o d u c t i o n

Given in this paper is a solution to a problem for which,
to the knowledge of the author, has been an open question
since at least 1962, irrespective of the solvability. The
paper consists of three parts: the problem, the solution,
and the proof. Although the setting of the problem might
seem somewhat academic at first, the author trusts that
anyone familiar with the logical problems that arise in
computer coupling will appreciate the significance of the
fact that this problem indeed can be solved.

T he P r o b l e m

To begin, consider N computers, each engaged in a
process which, for our aims, can be regarded as cyclic. In
each of the cycles a so-cMled "critical section" occurs and
the computers have to be programmed in such a way that
at any moment only one of these N cyclic processes is in
its critical section. In order to effectuate this mutual
exclusion of critical-section execution the computers can
communicate with each other via a common store. Writing
a word into or nondestructively reading a word from this
store are undividable operations; i.e., when two or more
computers t ry to communicate (either for reading or for
writing) simultaneously with the same common location,
these communications will take place one after the other,
but in an unknown order.

The solution must satisfy the following requirements.
(a) The solution must be symmetrical between the N

computers; as a result we are not allowed to introduce a
static priority.

(b) Nothing may be assumed about the relative speeds
of the N computers; we may not even assume their speeds
to be constant in time.

(c) If any of the computers is stopped well outside its
critical section, this is not allowed to lead to potential
blocking of the others.

(d) If more than one computer is about to enter its
critical section, it must be impossible to devise for them
such finite speeds, that the decision to determine which
one of them will enter its critical section first is postponed
until eternity. In other words, constructions in which
"After you"-"After you"-blocking is still possible, although
improbable, are not to be regarded as valid solutions.

We beg the challenged reader to stop here for a while
and have a t ry himself, for this seems the only way to get
a feeling for the tricky consequences of the fact that each

V o h m , e 8 / N u m b e r 9 / S e p t e m b e r , 1965

computer can only request one one-way message at a time.
And only this will make the reader realize to what extent
this problem is far from trivial.

T h e S o l u t i o n

The common store consists of:
"Boo lean array b, c[l :N] ; i n t e g e r k"

The integer k will satisfy 1 < k < N, bill and c[i]
will only be set by the ith computer; they will be inspected
by the others. I t is assumed that all computers are started
well outside their critical sections with all Boolean arrays
mentioned set to t r u e ; the starting value of k is immaterial.

The program for the ith computer (1 < i < N) is:

"integer j ;
LiO: b[i] := fa lse;
Lil: i f k # i t h e n
Li2: b e g i n c[i] := true;
Li3: i f b [k] t h e n k : = i ;

go t o Lil
end

e lse
Li4: b e g i n c[i] := fa lse;

for j := 1 s t e p 1 u n t i l N do
i f j # i a n d n o t c[j] t h e n go to Lil

e n d ;
c r i t ica l s ec t ion ;
c[i] := t r u e ; bill := t r u e ;
r e m a i n d e r of t he cycle in w h i c h s t o p p i n g is a l lowed;
go t o LiO"

T h e Proof

We start by observing that the solution is safe in the
sense that no two computers can be in their critical section
simultaneously. For the only way to enter its critical
section is the performance of the compound statement
Li4 without jmnping back to Lil, i.e., finding all other
c's t r u e after having set its own e to false.

The second part of the proof must show that no infinite
"After you"-"After you"-blocking can occur; i.e., when
none of the computers is in its critical section, of the
computers looping (i.e., jumping back to Lil) at least
one--and therefore exactly one--will be allowed to enter
its critical section in due time.

If the kth computer is not among the looping ones,
bik] will be t r u e and the looping ones will all find k # i.
As a result one or mnore of them will find in Li3 the Boolean
b[k] true and therefore one or more will decide to assign
"k := i". After the first assignment "k := i", b[k] be-
comes false and no new computers can decide again to
assign a new value to k. When all decided assignments to
k have been performed,/c will point to one of the looping
computers and will not change its value for the time being,
i.e., until b[k] becomes t rue , viz., until the kth computer
has completed its critical section. As soon as the value of
]c does not change any more, the kth computer will wait
(via the compound statement Li4) until all other c's are
t rue , but this situation will certainly arise, if not already
present, because all other looping ones are forced to set
their e t rue , as they will find k # i. And this, the author
believes, completes the proof.

C o m m u n i c a t i o n s o f t h e A C M 569

