CS 420/520 Automata Theory

Fall 2023

Assignment 6

due Thursday, November 30, 2023

1. Give implementation-level descriptions of TMs that decide the following languages. (Describe in English or pesudo-code instead of a diagram.)
(a) $\{w \mid w$ contains twice as many 0 s as 1 s$\}$
(b) $\{w \mid w$ does not contain twice as many 0 s as 1 s$\}$
2. Carefully describe (give state diagram) a TM which will add one to the binary representation of a number. The number will have a $\$$ on the left end.

- the number is written in reverse order: the number $13=(1101)_{2}$ will be on the tape as $\$ 1011$.
- If the input is the empty string, then the output should be $\$$.
- if the input is $\$$, the output should be $\$ 0$
- if the input is (for example) $\$ 0101$, the output should be $\$ 1101$, and $\$ 111$ should result in $\$ 0001$
- trailing zeroes are acceptable ($\$ 010$ becomes $\$ 110$)
- after correctly transforming the input, halt by entering the accepting state

3. What can a Turing machine with stay-put instead of left compute?
4. Let A be a Turing-recognizable language consisting of descriptions of Turing machines $\left\{\left\langle M_{1}\right\rangle,\left\langle M_{2}\right\rangle, \ldots\right\}$, where every M_{i} is a decider. Prove that some decidable language D is not decided by any decider M_{i} whose description appears in A. (Hint: you may find it helpful to consider an enumerator for A.)
5. (grads) exercise 4.17 (2nd ed) or 4.18 (3rd ed): Let C be a language. Prove that C is Turing-recognizable if and only if a decidable language D exists such that

$$
C=\{x \mid \exists y(\langle x, y\rangle \in D)\} .
$$

note: In the text this is a starred (difficult) problem. It should not be, and is important in understanding the Turing-recognizable (\triangleq recursively enumerable) languages. It has also an important analogy in the characterization of $N P$.
hint $($ for $\Rightarrow)$: Think of y as the number of steps for which to simulate the TM for C.

