CS 420/520 Automata Theory Fall 2023

Assignment 6

due Thursday, November 30, 2023

- 1. Give implementation-level descriptions of TMs that decide the following languages. (Describe in English or pesudo-code instead of a diagram.)
 - (a) { $w \mid w$ contains twice as many 0s as 1s }
 - (b) { $w \mid w$ does not contain twice as many 0s as 1s }
- 2. Carefully describe (give state diagram) a TM which will add one to the binary representation of a number. The number will have a \$ on the left end.
 - the number is written in reverse order: the number $13 = (1101)_2$ will be on the tape as \$1011.
 - If the input is the empty string, then the output should be \$.
 - if the input is \$, the output should be \$0
 - if the input is (for example) \$0101, the output should be \$1101, and \$111 should result in \$0001
 - trailing zeroes are acceptable (\$010 becomes \$110)
 - after correctly transforming the input, halt by entering the accepting state
- 3. What can a Turing machine with stay-put instead of left compute?
- 4. Let A be a Turing-recognizable language consisting of descriptions of Turing machines $\{\langle M_1 \rangle, \langle M_2 \rangle, \ldots\}$, where every M_i is a decider. Prove that some decidable language D is not decided by any decider M_i whose description appears in A. (Hint: you may find it helpful to consider an enumerator for A.)
- 5. (grads) exercise 4.17 (2nd ed) or 4.18 (3rd ed): Let C be a language. Prove that C is Turing-recognizable if and only if a decidable language D exists such that

$$C = \{ x \mid \exists y \ (\langle x, y \rangle \in D) \}.$$

note: In the text this is a starred (difficult) problem. It should not be, and is important in understanding the Turing-recognizable (\triangleq recursively enumerable) languages. It has also an important analogy in the characterization of NP.

hint $(for \Rightarrow)$: Think of y as the number of steps for which to simulate the TM for C.