TAKE-HOME FINAL EXAM

due by 11:59pm, Thursday, December 7, 2023

INSTRUCTIONS Undergraduates should do 4 of the following questions, and graduate students should do 5.

1. Consider the PDA of figure 1 for $\{a^i b^i c^j | i, j \ge 1\}$. Use the construction of lemma 2.27 to construct a CFG directly from it.

2. Pumping lemma:

- (a) Show that $A = \{ w \in \{a, b, c\}^* | w \text{ has more a's than b's } \}$ is not regular.
- (b) Show that $B = \{ w | w \in \{a, b, c\}^*, n_a(w)/n_b(w) = n_c(w) \}$ is not context-free. (Here, $n_a(w)$ means the number of a's in w, similarly for $n_b(w)$ and $n_c(w)$.)
- (c) Show that $C = \{ a^{i^2} | i \ge 0 \}$ is not context free
- 3. Convert the NFA of figure 2 to a DFA. The start state is q_0 , the accepting set is $F = \{q_3\}$, and "epsilon" means ϵ .
- 4. Build some context free items:
 - (a) Construct a PDA M (show diagram) such that

$$L(M) = \{ ax^{n}by^{m}cz^{2m}dx^{n}e \mid m, n \ge 0 \}.$$

(b) Show a CFG G such that

$$L(G) = \{ x^n \# y^m \mid 0 \le 2m \le n \le 4m \}.$$

- 5. Consider the grammar G given by $S \to aSb|bSa|SS|\epsilon$. We want to show very carefully that L(G) = A where $A = \{ w \in \{a, b\}^* | w \text{ contains an equal number of a's and b's} \}.$
 - (a) Prove the following: (Claim1) if $w \in A$ and w = axb or w = bxa, then $x \in A$.
 - (b) Prove the following: (Claim 2) if $w \in A$ and w = axa or w = bxb, then there are strings $y, z \in A$ such that w = yz.
 - (c) Prove by induction on the length of w that if $w \in A$ then there is a derivation $S \stackrel{*}{\Rightarrow} w$.
 - (d) Argue that if there is a derivation $S \stackrel{*}{\Rightarrow} w$, then w has an equal number of a's and b's.
- 6. Show that any infinite subset of MIN_{TM} is not recognizable. $(MIN_{TM}$ is defined in chapter 6).
- 7. Show how to compute the descriptive complexity of strings K(x) with an oracle for A_{TM} . Use that to give a function f that is computable with an oracle for A_{TM} , where for each n, f(n) is an incompressible string of length n.

- 8. Give a Σ_k or Π_k characterization of the following problems
 - (a) (example) $TOT_{TM} = \{ \langle M \rangle \mid L(M) = \Sigma^* \}$ is Π_2 since we can write $TOT_{TM} = \{ \langle M \rangle \mid \forall w \exists t \langle M, w, t \rangle \in B \}$, where $B = \{ \langle M, w, t \rangle \mid M \text{ accepts } w \text{ within } t \}$ is decidable.
 - (b) $INF_{TM} = \{ \langle M \rangle \mid L(M) \text{ has an infinite number of strings } \}$
 - (c) $COF_{TM} = \{ \langle M \rangle \mid \text{the complement of } L(M) \text{ has a finite number of strings } \}$
 - (d) $E_{TM} = \{ \langle M \rangle \mid L(M) = \emptyset \}$

Figure 1: PDA for problem 1

Figure 2: NFA for problem 3