CIS 420/520 Automata Theory

Lecture Notes for Reductions and Completeness

Alternate Terms

o Turing-decidable: decidable, recursive, rec
e Turing-recognizable: recognizable, semi-decidable, recursively enumerable, RE, re
o <7: Turing-reducible, reducible

o <,,: mapping-reducible, many-one-reducible
Definitions

1. A set B is used as an oracle if we allow a computation to ask questions of the form “y € B” as
a basic step. Think of it as allowing the computation as having a sub-routine that determines
membership in B.

2. A set A is B-recursive if A can be decided using a B-oracle. Similarly, A is B-re if it can be
recognized using a B-oracle.

3. We say A reduces to B (A <7 B) if A is B-recursive.

4. A m-reduces to B (A <,, B) if there is a Turing-computable string function f : ¥* — ¥*
such that for all strings w € X* we have

weAs f(w)eB

5. A set K is RE-hard if, for all recognizable sets A, A <,,, K.
6. K is RE-complete if K is both recognizable and RE-hard. Alternate terms:

e m-complete for RE

e complete for the recognizable sets under <,,
“Obvious?” Facts

e Both <7y and <, are reflexive (A <,, A) and transitive (4 <,, B and B <,, C implies
A<, C)

e A<, Bimplies A <p B

o A< A



e A<, Bif A<, B

the following are equivalent: A <7 B, A<y B, A<y B, A<r B

A7 is RE-complete (proof below)
o If

— K is RE-complete,
- K <, K, and
— K'is RE
then K’ is RE-complete (follows from definition of complete and transitivity of <;,).

If both A and A are RE, then A is recursive. (Theorem 4.22 of text says it better.)

More Facts, Definitions

A7y is RE-complete
(proof) First, Arys is RE, thanks to the existence of a universal TM . Now we have to show that
any RE set A m-reduces to Apps. Since A is RE, it is recognized by some TM M. By defining
f(w) = (M, w) we get

w e A& M accepts w < f(w) = (M,w) € Arm

Ary < HALT7TM
(proof ) pretty easy, done in text

Arn < HALT7), so therefore HALTr) is also RE-complete
(proof) Also sort of easy, but subtle. We show a computable f such that on input (M, w),
F{M,w)) = (M, w) so that

M accepts w < M’ halts on w

What M’ will do is simulate M on its input: M’ halts if M accepts but it goes into oo-loop if M
rejects. (Obviously, if M loops then so will M’.) Notably, the constructor for f does not run M,
instead it wraps the “code” for M with “code” that will simulate it and behave as described.

Closure properties for <, and <

1. The recursive sets are closed under <,,: if A <,,, B and B is recursive, then A is recursive.
2. The RE sets are closed under <,,,: if A <,, B and B is RE, then A is RE.
3. The recursive sets are closed under <7: if A <7 B and B is recursive, then A is recursive.

4. The RE sets are not closed under <p: for example A7ys is RE and Arys <7 Arar, but Arag
is not RE (if it were, then Arys would be recursive).

Arithmetic Hierarchy



e Yo =Ag=A; =1Iy = recursive

e ) = recursively-enumerable

ell;=coRE={A|Ae¥%;}

e in general Il =co-N, ={ A| A€ X }

o Apy1={ A| Ais B-recursive for some Be€ ¥ } ={ A| A <r B for some B € ¥ }

e Y1 ={A| Ais B-RE for some B € ¥, }

Basic AH Facts

o A =X, NII
o A, = co-Ag
o Ay # 3y (follows from ex 7, hw 7) , so Xy # Il

Post’s Theorem

A is Y, if it can be characterized as

A={z|3nVy2TJys...Qryr (z,y1,Y2,Y3, ..., Yx) € B }

where B is decidable and quantifier Q = 3 if £ is odd and V if it is even. (Here x and all the y;’s
are strings over the same alphabet.) Similarly, A is I if we can write

A={ x| Vyi3yVy3...Qryk (T, 1,2, Y3, Yk) € B }

where B is decidable and quantifier Q, = V if k is odd and 3 if it is even.

Friedberg-Muchnik Theorem

There are two RE sets A, B such that A £ B and B £ A.



