Lecture Notes for Reductions and Completeness

Alternate Terms

- Turing-decidable: decidable, recursive, rec
- Turing-recognizable: recognizable, semi-decidable, recursively enumerable, RE, re
- \leq_T : Turing-reducible, reducible
- \leq_m : mapping-reducible, many-one-reducible

Definitions

- 1. A set B is used as an *oracle* if we allow a computation to ask questions of the form " $y \in B$ " as a basic step. Think of it as allowing the computation as having a sub-routine that determines membership in B.
- 2. A set A is B-recursive if A can be decided using a B-oracle. Similarly, A is B-re if it can be recognized using a B-oracle.
- 3. We say A reduces to B $(A \leq_T B)$ if A is B-recursive.
- 4. A m-reduces to B $(A \leq_m B)$ if there is a Turing-computable string function $f : \Sigma^* \to \Sigma^*$ such that for all strings $w \in \Sigma^*$ we have

$$w \in A \Leftrightarrow f(w) \in B$$

- 5. A set K is RE-hard if, for all recognizable sets $A, A \leq_m K$.
- 6. K is *RE-complete* if K is both recognizable and RE-hard. Alternate terms:
 - m-complete for RE
 - complete for the recognizable sets under \leq_m

"Obvious?" Facts

- Both \leq_T and \leq_m are reflexive $(A \leq_m A)$ and transitive $(A \leq_m B$ and $B \leq_m C$ implies $A \leq_m C$)
- $A \leq_m B$ implies $A \leq_T B$
- $A \leq_T \bar{A}$

- $A \leq_m B$ iff $\bar{A} \leq_m \bar{B}$
- the following are equivalent: $A \leq_T B, A \leq_T \bar{B}, \bar{A} \leq_T B, \bar{A} \leq_T \bar{B}$
- A_{TM} is RE-complete (proof below)
- If
- K is RE-complete,
- $K \leq_m K'$, and
- K' is RE

then K' is RE-complete (follows from definition of complete and transitivity of \leq_m).

• If both A and \overline{A} are RE, then A is recursive. (Theorem 4.22 of text says it better.)

More Facts, Definitions

 A_{TM} is RE-complete

(proof) First, A_{TM} is RE, thanks to the existence of a universal TM \mathcal{U} . Now we have to show that any RE set A m-reduces to A_{TM} . Since A is RE, it is recognized by some TM M. By defining $f(w) = \langle M, w \rangle$ we get

 $w \in A \Leftrightarrow M$ accepts $w \Leftrightarrow f(w) = \langle M, w \rangle \in A_{TM}$

 $A_{TM} \leq_T HALT_{TM}$ (proof) pretty easy, done in text

 $A_{TM} \leq_m HALT_{TM}$, so therefore $HALT_{TM}$ is also RE-complete (proof) Also sort of easy, but subtle. We show a computable f such that on input $\langle M, w \rangle$, $f(\langle M, w \rangle) = \langle M', w \rangle$ so that

M accepts $w \Leftrightarrow M'$ halts on w

What M' will do is simulate M on its input: M' halts if M accepts but it goes into ∞ -loop if M rejects. (Obviously, if M loops then so will M'.) Notably, the constructor for f does not run M, instead it wraps the "code" for M with "code" that will simulate it and behave as described.

Closure properties for \leq_m and \leq_T

- 1. The recursive sets are closed under \leq_m : if $A \leq_m B$ and B is recursive, then A is recursive.
- 2. The RE sets are closed under \leq_m : if $A \leq_m B$ and B is RE, then A is RE.
- 3. The recursive sets are closed under \leq_T : if $A \leq_T B$ and B is recursive, then A is recursive.
- 4. The RE sets are **not** closed under \leq_T : for example A_{TM} is RE and $A_{TM} \leq_T A_{TM}$, but A_{TM} is not RE (if it were, then A_{TM} would be recursive).

Arithmetic Hierarchy

- $\Sigma_0 = \Delta_0 = \Delta_1 = \Pi_0 = \text{recursive}$
- $\Sigma_1 =$ recursively-enumerable
- $\Pi_1 = \operatorname{co-RE} = \{ A \mid \overline{A} \in \Sigma_1 \}$
- in general $\Pi_k = \operatorname{co-}\Sigma_k = \{ A \mid \overline{A} \in \Sigma_k \}$
- $\Delta_{k+1} = \{ A \mid A \text{ is } B \text{-recursive for some } B \in \Sigma_k \} = \{ A \mid A \leq_T B \text{ for some } B \in \Sigma_k \}$
- $\Sigma_{k+1} = \{ A \mid A \text{ is } B\text{-RE for some } B \in \Sigma_k \}$

Basic AH Facts

- $\Delta_k = \Sigma_k \cap \Pi_k$
- $\Delta_k = \operatorname{co-}\Delta_k$
- $\Delta_k \neq \Sigma_k$ (follows from ex 7, hw 7), so $\Sigma_k \neq \Pi_k$

Post's Theorem

A is Σ_k if it can be characterized as

$$A = \{ x \mid \exists y_1 \forall y_2 \exists y_3 \dots Q_k y_k \langle x, y_1, y_2, y_3, \dots, y_k \rangle \in B \}$$

where B is decidable and quantifier $Q_k = \exists$ if k is odd and \forall if it is even. (Here x and all the y_i 's are strings over the same alphabet.) Similarly, A is Π_k if we can write

$$A = \{ x \mid \forall y_1 \exists y_2 \forall y_3 \dots \overline{Q}_k y_k \langle x, y_1, y_2, y_3, \dots, y_k \rangle \in B \}$$

where B is decidable and quantifier $\overline{Q}_k = \forall$ if k is odd and \exists if it is even.

Friedberg-Muchnik Theorem

There are two RE sets A, B such that $A \not\leq_T B$ and $B \not\leq_T A$.