Lecture Notes for Reductions and Completeness

Alternate Terms

- Turing-decidable: decidable, recursive, rec
- Turing-recognizable: recognizable, semi-decidable, recursively enumerable, RE, re
- \leq_{T} : Turing-reducible, reducible
- \leq_{m} : mapping-reducible, many-one-reducible

Definitions

1. A set B is used as an oracle if we allow a computation to ask questions of the form " $y \in B$ " as a basic step. Think of it as allowing the computation as having a sub-routine that determines membership in B.
2. A set A is B-recursive if A can be decided using a B-oracle. Similarly, A is B-re if it can be recognized using a B-oracle.
3. We say A reduces to $B\left(A \leq_{T} B\right)$ if A is B-recursive.
4. A m-reduces to $B\left(A \leq_{m} B\right)$ if there is a Turing-computable string function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that for all strings $w \in \Sigma^{*}$ we have

$$
w \in A \Leftrightarrow f(w) \in B
$$

5. A set K is $R E$-hard if, for all recognizable sets $A, A \leq_{m} K$.
6. K is $R E$-complete if K is both recognizable and RE-hard. Alternate terms:

- m-complete for RE
- complete for the recognizable sets under \leq_{m}

"Obvious?" Facts

- Both \leq_{T} and \leq_{m} are reflexive $\left(A \leq_{m} A\right)$ and transitive $\left(A \leq_{m} B\right.$ and $B \leq_{m} C$ implies $A \leq{ }_{m} C$)
- $A \leq_{m} B$ implies $A \leq_{T} B$
- $A \leq_{T} \bar{A}$
- $A \leq_{m} B$ iff $\bar{A} \leq_{m} \bar{B}$
- the following are equivalent: $A \leq_{T} B, A \leq_{T} \bar{B}, \bar{A} \leq_{T} B, \bar{A} \leq_{T} \bar{B}$
- $A_{T M}$ is RE-complete (proof below)
- If
- K is RE-complete,
- $K \leq_{m} K^{\prime}$, and
$-K^{\prime}$ is RE
then K^{\prime} is RE-complete (follows from definition of complete and transitivity of \leq_{m}).
- If both A and \bar{A} are RE, then A is recursive. (Theorem 4.22 of text says it better.)

More Facts, Definitions

$A_{T M}$ is RE-complete
(proof) First, $A_{T M}$ is RE, thanks to the existence of a universal TM \mathcal{U}. Now we have to show that any RE set A m-reduces to $A_{T M}$. Since A is RE, it is recognized by some TM M. By defining $f(w)=\langle M, w\rangle$ we get

$$
w \in A \Leftrightarrow M \text { accepts } w \Leftrightarrow f(w)=\langle M, w\rangle \in A_{T M}
$$

$A_{T M} \leq_{T} H A L T_{T M}$
(proof) pretty easy, done in text
$A_{T M} \leq_{m} H A L T_{T M}$, so therefore $H A L T_{T M}$ is also RE-complete
(proof) Also sort of easy, but subtle. We show a computable f such that on input $\langle M, w\rangle$, $f(\langle M, w\rangle)=\left\langle M^{\prime}, w\right\rangle$ so that

$$
M \text { accepts } w \Leftrightarrow M^{\prime} \text { halts on } w
$$

What M^{\prime} will do is simulate M on its input: M^{\prime} halts if M accepts but it goes into ∞-loop if M rejects. (Obviously, if M loops then so will M^{\prime}.) Notably, the constructor for f does not run M, instead it wraps the "code" for M with "code" that will simulate it and behave as described.

Closure properties for \leq_{m} and \leq_{T}

1. The recursive sets are closed under \leq_{m} : if $A \leq_{m} B$ and B is recursive, then A is recursive.
2. The RE sets are closed under \leq_{m} : if $A \leq_{m} B$ and B is RE, then A is RE.
3. The recursive sets are closed under \leq_{T} : if $A \leq_{T} B$ and B is recursive, then A is recursive.
4. The RE sets are not closed under \leq_{T} : for example $A_{T M}$ is RE and $\bar{A}_{T M} \leq_{T} A_{T M}$, but $\bar{A}_{T M}$ is not RE (if it were, then $A_{T M}$ would be recursive).

Arithmetic Hierarchy

- $\Sigma_{0}=\Delta_{0}=\Delta_{1}=\Pi_{0}=$ recursive
- $\Sigma_{1}=$ recursively-enumerable
- $\Pi_{1}=\operatorname{co-RE}=\left\{A \mid \bar{A} \in \Sigma_{1}\right\}$
- in general $\Pi_{k}=\operatorname{co-} \Sigma_{k}=\left\{A \mid \bar{A} \in \Sigma_{k}\right\}$
- $\Delta_{k+1}=\left\{A \mid A\right.$ is B-recursive for some $\left.B \in \Sigma_{k}\right\}=\left\{A \mid A \leq_{T} B\right.$ for some $\left.B \in \Sigma_{k}\right\}$
- $\Sigma_{k+1}=\left\{A \mid A\right.$ is $B-\mathrm{RE}$ for some $\left.B \in \Sigma_{k}\right\}$

Basic AH Facts

- $\Delta_{k}=\Sigma_{k} \cap \Pi_{k}$
- $\Delta_{k}=\mathrm{co}-\Delta_{k}$
- $\Delta_{k} \neq \Sigma_{k}$ (follows from ex 7, hw 7), so $\Sigma_{k} \neq \Pi_{k}$

Post's Theorem

A is Σ_{k} if it can be characterized as

$$
A=\left\{x \mid \exists y_{1} \forall y_{2} \exists y_{3} \ldots Q_{k} y_{k}\left\langle x, y_{1}, y_{2}, y_{3}, \ldots, y_{k}\right\rangle \in B\right\}
$$

where B is decidable and quantifier $Q_{k}=\exists$ if k is odd and \forall if it is even. (Here x and all the y_{i} 's are strings over the same alphabet.) Similarly, A is Π_{k} if we can write

$$
A=\left\{x \mid \forall y_{1} \exists y_{2} \forall y_{3} \ldots \bar{Q}_{k} y_{k}\left\langle x, y_{1}, y_{2}, y_{3}, \ldots, y_{k}\right\rangle \in B\right\}
$$

where B is decidable and quantifier $\bar{Q}_{k}=\forall$ if k is odd and \exists if it is even.

Friedberg-Muchnik Theorem

There are two RE sets A, B such that $A \not \not_{T} B$ and $B \not \mathbb{Z}_{T} A$.

