
CIS 420/520 Automata Theory

Lecture Notes for Reductions and Completeness

Alternate Terms

• Turing-decidable: decidable, recursive, rec

• Turing-recognizable: recognizable, semi-decidable, recursively enumerable, RE, re

• ≤T : Turing-reducible, reducible

• ≤m: mapping-reducible, many-one-reducible

Definitions

1. A set B is used as an oracle if we allow a computation to ask questions of the form “y ∈ B” as
a basic step. Think of it as allowing the computation as having a sub-routine that determines
membership in B.

2. A set A is B-recursive if A can be decided using a B-oracle. Similarly, A is B-re if it can be
recognized using a B-oracle.

3. We say A reduces to B (A ≤T B) if A is B-recursive.

4. A m-reduces to B (A ≤m B) if there is a Turing-computable string function f : Σ∗ → Σ∗

such that for all strings w ∈ Σ∗ we have

w ∈ A⇔ f(w) ∈ B

5. A set K is RE-hard if, for all recognizable sets A, A ≤m K.

6. K is RE-complete if K is both recognizable and RE-hard. Alternate terms:

• m-complete for RE

• complete for the recognizable sets under ≤m

“Obvious?” Facts

• Both ≤T and ≤m are reflexive (A ≤m A) and transitive (A ≤m B and B ≤m C implies
A ≤m C)

• A ≤m B implies A ≤T B

• A ≤T Ā
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• A ≤m B iff Ā ≤m B̄

• the following are equivalent: A ≤T B, A ≤T B̄, Ā ≤T B, Ā ≤T B̄

• ATM is RE-complete (proof below)

• If

– K is RE-complete,

– K ≤m K ′, and

– K ′ is RE

then K ′ is RE-complete (follows from definition of complete and transitivity of ≤m).

• If both A and Ā are RE, then A is recursive. (Theorem 4.22 of text says it better.)

More Facts, Definitions

ATM is RE-complete
(proof) First, ATM is RE, thanks to the existence of a universal TM U . Now we have to show that
any RE set A m-reduces to ATM . Since A is RE, it is recognized by some TM M . By defining
f(w) = 〈M,w〉 we get

w ∈ A⇔M accepts w ⇔ f(w) = 〈M,w〉 ∈ ATM

ATM ≤T HALTTM

(proof) pretty easy, done in text

ATM ≤m HALTTM , so therefore HALTTM is also RE-complete
(proof) Also sort of easy, but subtle. We show a computable f such that on input 〈M,w〉,
f(〈M,w〉) = 〈M ′, w〉 so that

M accepts w ⇔M ′ halts on w

What M ′ will do is simulate M on its input: M ′ halts if M accepts but it goes into ∞-loop if M
rejects. (Obviously, if M loops then so will M ′.) Notably, the constructor for f does not run M ,
instead it wraps the “code” for M with “code” that will simulate it and behave as described.

Closure properties for ≤m and ≤T

1. The recursive sets are closed under ≤m: if A ≤m B and B is recursive, then A is recursive.

2. The RE sets are closed under ≤m: if A ≤m B and B is RE, then A is RE.

3. The recursive sets are closed under ≤T : if A ≤T B and B is recursive, then A is recursive.

4. The RE sets are not closed under ≤T : for example ATM is RE and ĀTM ≤T ATM , but ĀTM

is not RE (if it were, then ATM would be recursive).

Arithmetic Hierarchy
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• Σ0 = ∆0 = ∆1 = Π0 = recursive

• Σ1 = recursively-enumerable

• Π1 = co-RE = { A | Ā ∈ Σ1 }

• in general Πk = co-Σk = { A | Ā ∈ Σk }

• ∆k+1 = { A | A is B-recursive for some B ∈ Σk } = { A | A ≤T B for some B ∈ Σk }

• Σk+1 = { A | A is B-RE for some B ∈ Σk }

Basic AH Facts

• ∆k = Σk ∩Πk

• ∆k = co-∆k

• ∆k 6= Σk (follows from ex 7, hw 7) , so Σk 6= Πk

Post’s Theorem

A is Σk if it can be characterized as

A = { x | ∃y1∀y2∃y3 . . . Qkyk 〈x, y1, y2, y3, . . . , yk〉 ∈ B }

where B is decidable and quantifier Qk = ∃ if k is odd and ∀ if it is even. (Here x and all the yi’s
are strings over the same alphabet.) Similarly, A is Πk if we can write

A = { x | ∀y1∃y2∀y3 . . . Qkyk 〈x, y1, y2, y3, . . . , yk〉 ∈ B }

where B is decidable and quantifier Qk = ∀ if k is odd and ∃ if it is even.

Friedberg-Muchnik Theorem

There are two RE sets A,B such that A 6≤T B and B 6≤T A.

3


