Stack Construction Problem

This is meant to be a brief explanation of the recurrence for the StackConstruction problem, discussed in the seminar. The variable names here reflect the (very simple) names in the accompanying code.

Here we are given a string $w=w_{1} w_{2} \cdots w_{n}$ and want to find the fewest number of stack operations (push, print, and pop) to print the entire string as discussed in the problem description.

The subproblem, $s(i, j)$, will be the fewest number of stack operations to print $w_{i} w_{i+1} \cdots w_{j}$, as always starting with an empty stack and ending with an empty stack. Thus the desired output will be $s(1, n)$.

comments:

- A single character (alone) needs 3 operations (push, print, pop), so $s(i, i)=3$.
- We also need a base case of $s(i+1, i)=0$ for the empty string.
- It is always possible to process the first character of the substring alone (3 operations) then handle the rest independently, so $s(i, j)$ has $3+s(i+1, j)$ as a possible solution.
- Suppose $w_{i}=a$ and another a appears later in the substring, say at position k (so $w_{k}=w_{i}=a$ with $i<k \leq j)$...
- ... here think of the substring as $a w_{i+1} \cdots w_{k-1} a w_{k+1} \cdots w_{j}$, and now the idea is that we could reuse the a at position k...
- ... that is, push a, print a, process $w_{i+1} \cdots w_{k-1}$ on top of the a, then deal with the a at position k.
- The key point for the recurrence is that we will not charge $w_{i}=a$ for a $p u s h / p o p$, but defer that to the last character a that is used to match with it.
- Therefore, another solution to $s(i, j)$ is

1. 1 (to print w_{i}) plus,
2. $s\left(i+1, k-1\right.$) (to process $w_{i+1} \cdots w_{k-1}$ on top of the a) plus,
3. $s(k, j)$, to process $a w_{k+1} \cdots w_{j}$ (the push/pop costs for a would be paid here or deferred to an even later a)

Combining the above we get

$$
s(i, j)= \begin{cases}0 & (i>j) \\ 3 & (i=j) \\ & (i<j) \\ \text { minimum of } & \text { and } \\ 3+s(i+1, j) & \text { for all } k(i<k \leq j) \text { where } w_{i}=w_{k} \\ 1+s(i+1, k-1)+s(k, j)\end{cases}
$$

To think about coding this, note that the subproblems $s(i, j)$ get harder as $d=j-i$ get larger (the substrings get longer). Therefore we should compute them in that order.

Pseudo-pseudo-Code:

```
create array s
initialize all s[i,i]=3, s[i+1,i]=0 as the base cases
for d=1 to n-1
        for i=1 to n-d
            j=i+d
            s(i,j) = minimum of the last two lines in the recurrence above
return s[1,n]
```

Time is going to be $O\left(n^{3}\right)$ using $O\left(n^{2}\right)$ space.

