
Stack Construction Problem

This is meant to be a brief explanation of the recurrence for the StackConstruction problem, dis-
cussed in the seminar. The variable names here reflect the (very simple) names in the accompanying
code.

Here we are given a string w = w1w2 · · ·wn and want to find the fewest number of stack operations
(push, print, and pop) to print the entire string as discussed in the problem description.

The subproblem, s(i, j), will be the fewest number of stack operations to print wiwi+1 · · ·wj , as
always starting with an empty stack and ending with an empty stack. Thus the desired output will
be s(1, n).

comments:

• A single character (alone) needs 3 operations (push, print, pop), so s(i, i) = 3.

• We also need a base case of s(i + 1, i) = 0 for the empty string.

• It is always possible to process the first character of the substring alone (3 operations) then
handle the rest independently, so s(i, j) has 3 + s(i + 1, j) as a possible solution.

• Suppose wi = a and another a appears later in the substring, say at position k (so wk = wi = a
with i < k ≤ j) ...

• ... here think of the substring as awi+1 · · ·wk−1awk+1 · · ·wj , and now the idea is that we
could reuse the a at position k ...

• ... that is, push a, print a, process wi+1 · · ·wk−1 on top of the a, then deal with the a at
position k.

• The key point for the recurrence is that we will not charge wi = a for a push/pop, but defer
that to the last character a that is used to match with it.

• Therefore, another solution to s(i, j) is

1. 1 (to print wi) plus,

2. s(i + 1, k − 1) (to process wi+1 · · ·wk−1 on top of the a) plus,

3. s(k, j), to process awk+1 · · ·wj (the push/pop costs for a would be paid here or deferred
to an even later a)

Combining the above we get

s(i, j) =



0 (i > j)
3 (i = j)

minimum of (i < j)
3 + s(i + 1, j) and
1 + s(i + 1, k − 1) + s(k, j) for all k (i < k ≤ j) where wi = wk

1



To think about coding this, note that the subproblems s(i, j) get harder as d = j− i get larger (the
substrings get longer). Therefore we should compute them in that order.

Pseudo-pseudo-Code:

create array s

initialize all s[i,i]=3, s[i+1,i]=0 as the base cases

for d=1 to n-1

for i=1 to n-d

j=i+d

s(i,j) = minimum of the last two lines in the recurrence above

return s[1,n]

Time is going to be O(n3) using O(n2) space.

2


