Matrix Multiplication and Graph Search

Standard $O\left(n^{\wedge} 3\right)$ matrix multiplication

input: $\mathrm{n} \times \mathrm{n}$ matrices A and B (of int) output: product $C=A * B$
for $i=1$ to n
for $j=1$ to n
C[i,j] = 0
for $k=1$ to n

$$
C[i, j]=C[i, j]+A[i, k] * B[k, j]
$$

Matrix multiplication over $\{0, \mathrm{I}\}$

input: $\mathrm{n} \times \mathrm{n}$ matrices A and B (of boolean) output: product $C=A * B$
for $i=1$ to n
for $j=1$ to n
C[i,j] = false
for $k=1$ to n

$$
C[i, j]=C[i, j] \vee(A[i, k] \wedge B[k, j])
$$

+ becomes OR (\vee) and * becomes AND (\wedge)

Transitive closure

- M is the adjacency matrix
- M^{2} (using boolean matrix mult) tells us about paths of length 2
- ... and M^{k} about paths of length k
- the only k that matter are $0 \leq \mathrm{k}<\mathrm{V}$
- $M^{*}=M^{0}+M^{1}+M^{2}+\ldots+M^{V-1}$
- $M^{*}=(I+M)^{\vee}$

Shortest paths (future)

for $i=1$ to n
for $j=1$ to n

$$
W^{\leq 2}[i, j]=[i f \text { i=j then } 0 \text { else } \infty]
$$

for $k=1$ to n

$$
W^{\leq 2}[i, j]=\operatorname{MIN}\left(W^{\leq 2}[i, j], W[i, k]+W[k, j]\right)
$$

Breadth-First Search (from page 595 CLRS)

```
BFS(G,s)
    for each vertex u in V-{s}
        u.color = WHITE
        u.dist = infinity
        u.prev = nil
s.color = GRAY
s.dist = 0
s.prev = nil
Q = empty
ENQUEUE(Q,s)
while Q not empty
u u = DEQUEUE(Q)
12 for each v in ADJ(u) -- adjacency list of u
13 if v.color = WHITE
14
15
16
17
18
    u.color = BLACK
```


Depth-First Search (page 604 CLRS)

```
DFS(G)
    for each vertex u in V
    u.color = WHITE
    u.prev = nil
    time = 0
    for each vertex u in V
    if u.color = WHITE
        DFS-Visit(G,u)
```

white - not seen yet
gray - in process
black - done

```
DFS-VISIT(G,u)
1 time = time + 1
2 u.disc = time
3 u.color = GRAY
4 for each v in adjacency list of u
5 if v.color = WHITE
6 v.prev = u
7 DFS-Visit(G,v)
8 u.color = BLACK
9 time = time +1
10 u.finish = time
```

