Minimum spanning trees

algorithms

```
Kruskal's Method
1) A=\varnothing
2) for each v \inV
3) makeSet(v)
4) sort E by weight
5) for each (u,v) \in E
6) if findSet(u) \not= findSet(v)
7) then }A=A\cup{(u,v)
8) union(u, v)
9) return A
```

```
timing:
lines 2-3: O(V)
line 4: O(E Ig E) -- faster if small edge weights (counting sort)?
lines 5-8: E calls to 3 union-find operations, each O(lg*V) amortized
lines 5-8: total O(E Ig* V)
overall total: O(E IgE)
```


aside: disjoint sets

Figure 5.5 A directed-tree representation of two sets $\{B, E\}$ and $\{A, C, D, F, G, H\}$.

from Dasgupta-Papadimitriou-Vazirani

union-find by rank with path compression

```
    procedure makeset(x)
    \pi(x)=x
    rank(x)=0
```



```
```

function find(x)

```
```

function find(x)
if }x\not=\pi(x):\pi(x)={\operatorname{find}(\pi(x)
if }x\not=\pi(x):\pi(x)={\operatorname{find}(\pi(x)
return }\pi(x

```
```

return }\pi(x

```
```

```
procedure union \((x, y)\)
\(r_{x}=\) find \((x)\)
\(r_{y}=\mathrm{find}(y)\)
if \(r_{x}=r_{y}\) : return
if \(\operatorname{rank}\left(r_{x}\right)>\operatorname{rank}\left(r_{y}\right)\) :
    \(\pi\left(r_{y}\right)=r_{x}\)
else:
    \(\pi\left(r_{x}\right)=r_{y}\)
    if \(\operatorname{rank}\left(r_{x}\right)=\operatorname{rank}\left(r_{y}\right): \operatorname{rank}\left(r_{y}\right)=\operatorname{rank}\left(r_{y}\right)+1\)
```

Any sequence of m operations, n of which are makeset, takes time O(m $\lg * n$)

- $\lg ^{*} \mathrm{n}$ is minimum k such that $\lg \lg \lg \lg \mathrm{n} \leq 1$ (k iterations)
- actually better -- $\mathrm{O}(\mathrm{m} \alpha(\mathrm{n}))$-- $\alpha(\mathrm{n})$ is inverse Ackermann function
- both $\lg ^{*} \mathrm{n}$ and $\alpha(\mathrm{n})$ are very very slow growing, essentially constant

Prim's method

$$
\begin{aligned}
& \text { for each } u \in V \\
& \text { u.key }=\infty \\
& \text { u.prev }=\text { nil } \\
& \text { r.key }=0
\end{aligned}
$$

-- start point
priority queue $\mathrm{Q} \leftarrow \mathrm{V} \quad$-- insert all of V into Q
while Q not empty
$\mathrm{u}=\mathrm{Q}$. extractMin
for each $v \in \operatorname{adj}[u]$
if $v \in Q$ and $W[u, v]$ < v.key then

$$
\begin{aligned}
& \text { v.prev }=u \\
& \text { v.key }=\mathrm{W}[u, v] \quad \text {-- use heap decreaseKey operation }
\end{aligned}
$$

time for Prim

- there is one buildHeap
- V extractMin operations
- E decreaseKey operations
- time using binary heap

$$
\mathrm{O}((\mathrm{~V}+\mathrm{E}) \lg \mathrm{V})
$$

- time using Fibonacci heap

$$
O(V \lg V+E)
$$

generic MST proof with loop invariant!

```
A = \emptyset
while A not yet spanning tree
    choose a safe edge (u,v) for A
    add (u,v) to A
```

Definition: Suppose A is a subset of a MST of the graph G. A safe edge for A is an edge (u, v) such that $A \cup\{(u, v)\}$ is also a subset of a MST of G.

- so our algorithm is trivially correct (think about initialization, maintenance, and termination)
- still need to fill it out

safe edges and cuts

- Prim and Kruskal choose safe edges by means of cuts
- let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be the (weighted) graph, and let $A \subseteq E$ be a set of edges
- the idea is that A is a subset of a MST
- a cut that respects A is a proper subset of vertices $S \subset V$,...,so ($S, V-S$) partitions the vertices
- ... and no edge of A is allowed to cross (S,V-S)

light edge

- a light edge for a cut ($\mathrm{S}, \mathrm{V}-\mathrm{S}$) is a minimum weight edge crossing the cut
- main theorem: for any cut (S,V-S) respecting A, a light edge for the cut is safe for A
- both Prim and Kruskal pick light edges for some cut
- therefore, they are both correct

the dual to a cut is a cycle

```
input: graph G=(V,E), with weights
T=E
while T has a cycle
    pick a cycle C in T
    find a max weight edge (u,v) in T
    remove edge (u,v) from T
```

- does this work?
- can it be proved correct loop invariantly?
- efficiency?

the greedy algorithm

- red rule
- Let C be a cycle with no red edges.
- Select an uncolored edge of C of max cost and color it red
- blue rule
- Let D be a cutset with no blue edges.
- Select an uncolored edge in D of min cost and color it blue.
- greedy algorithm
- Apply the red and blue rules (nondeterministically!) until all edges are colored. The blue edges form a MST.
- Note: can stop once $\mathrm{n}-1$ edges colored blue.

