
Minimum spanning trees

algorithms

Kruskal’s Method

1) A = ∅
2) for each v ∈V
3) makeSet(v)
4) sort E by weight
5) for each (u,v) ∈ E
6) if findSet(u) ≠ findSet(v)
7) then A = A ∪{(u,v)}
8) union(u, v)
9) return A

timing:
lines 2-3: O(V)
line 4: O(E lg E) -- faster if small edge weights (counting sort)?
lines 5-8: E calls to 3 union-find operations, each O(lg*V) amortized
lines 5-8: total O(E lg* V)
overall total: O(E lgE)

aside: disjoint sets

144 Algorithms

Figure 5.4 Kruskal’s minimum spanning tree algorithm.
procedure kruskal(G,w)
Input: A connected undirected graph G = (V,E) with edge weights we

Output: A minimum spanning tree defined by the edges X

for all u ∈ V :
makeset(u)

X = {}
Sort the edges E by weight
for all edges {u, v} ∈ E, in increasing order of weight:

if find(u) "= find(v):
add edge {u, v} to X
union(u, v)

And whenever we add an edge, we are merging two components.

union(x, y): merge the sets containing x and y.

The final algorithm is shown in Figure 5.4. It uses |V | makeset, 2|E| find, and |V | − 1
union operations.

5.1.4 A data structure for disjoint sets
Union by rank
One way to store a set is as a directed tree (Figure 5.5). Nodes of the tree are elements of the
set, arranged in no particular order, and each has parent pointers that eventually lead up to
the root of the tree. This root element is a convenient representative, or name, for the set. It
is distinguished from the other elements by the fact that its parent pointer is a self-loop.

Figure 5.5 A directed-tree representation of two sets {B,E} and {A,C,D,F,G,H}.

E H

B C F

A

D

G

from Dasgupta-Papadimitriou-Vazirani

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 145

In addition to a parent pointer π, each node also has a rank that, for the time being, should
be interpreted as the height of the subtree hanging from that node.

procedure makeset(x)
π(x) = x
rank(x) = 0

function find(x)
while x != π(x) : x = π(x)
return x

As can be expected, makeset is a constant-time operation. On the other hand, find follows
parent pointers to the root of the tree and therefore takes time proportional to the height of
the tree. The tree actually gets built via the third operation, union, and so we must make
sure that this procedure keeps trees shallow.
Merging two sets is easy: make the root of one point to the root of the other. But we have

a choice here. If the representatives (roots) of the sets are rx and ry, do we make rx point
to ry or the other way around? Since tree height is the main impediment to computational
efficiency, a good strategy is to make the root of the shorter tree point to the root of the taller
tree. This way, the overall height increases only if the two trees being merged are equally tall.
Instead of explicitly computing heights of trees, we will use the rank numbers of their root
nodes—which is why this scheme is called union by rank.

procedure union(x, y)
rx = find(x)
ry = find(y)
if rx = ry: return
if rank(rx) > rank(ry):

π(ry) = rx

else:
π(rx) = ry

if rank(rx) = rank(ry) : rank(ry) = rank(ry) + 1

See Figure 5.6 for an example.

By design, the rank of a node is exactly the height of the subtree rooted at that node. This
means, for instance, that as you move up a path toward a root node, the rank values along the
way are strictly increasing.

Property 1 For any x, rank(x) < rank(π(x)).

A root node with rank k is created by the merger of two trees with roots of rank k − 1. It
follows by induction (try it!) that

Property 2 Any root node of rank k has at least 2k nodes in its tree.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 145

In addition to a parent pointer π, each node also has a rank that, for the time being, should
be interpreted as the height of the subtree hanging from that node.

procedure makeset(x)
π(x) = x
rank(x) = 0

function find(x)
while x != π(x) : x = π(x)
return x

As can be expected, makeset is a constant-time operation. On the other hand, find follows
parent pointers to the root of the tree and therefore takes time proportional to the height of
the tree. The tree actually gets built via the third operation, union, and so we must make
sure that this procedure keeps trees shallow.
Merging two sets is easy: make the root of one point to the root of the other. But we have

a choice here. If the representatives (roots) of the sets are rx and ry, do we make rx point
to ry or the other way around? Since tree height is the main impediment to computational
efficiency, a good strategy is to make the root of the shorter tree point to the root of the taller
tree. This way, the overall height increases only if the two trees being merged are equally tall.
Instead of explicitly computing heights of trees, we will use the rank numbers of their root
nodes—which is why this scheme is called union by rank.

procedure union(x, y)
rx = find(x)
ry = find(y)
if rx = ry: return
if rank(rx) > rank(ry):

π(ry) = rx

else:
π(rx) = ry

if rank(rx) = rank(ry) : rank(ry) = rank(ry) + 1

See Figure 5.6 for an example.

By design, the rank of a node is exactly the height of the subtree rooted at that node. This
means, for instance, that as you move up a path toward a root node, the rank values along the
way are strictly increasing.

Property 1 For any x, rank(x) < rank(π(x)).

A root node with rank k is created by the merger of two trees with roots of rank k − 1. It
follows by induction (try it!) that

Property 2 Any root node of rank k has at least 2k nodes in its tree.

union-find by rank with path compression

Any sequence of m operations, n of which are makeset, takes time
O(m lg*n)
• lg*n is minimum k such that lg lg lg lg n ≤ 1 (k iterations)
• actually better -- O(mα(n)) -- α(n) is inverse Ackermann function
• both lg*n and α(n) are very very slow growing, essentially constant

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 147

Path compression
With the data structure as presented so far, the total time for Kruskal’s algorithm becomes
O(|E| log |V |) for sorting the edges (remember, log |E| ≈ log |V |) plus another O(|E| log |V |) for
the union and find operations that dominate the rest of the algorithm. So there seems to be
little incentive to make our data structure any more efficient.
But what if the edges are given to us sorted? Or if the weights are small (say, O(|E|)) so

that sorting can be done in linear time? Then the data structure part becomes the bottleneck,
and it is useful to think about improving its performance beyond log n per operation. As it
turns out, the improved data structure is useful in many other applications.
But how can we perform union’s and find’s faster than log n? The answer is, by being a

little more careful to maintain our data structure in good shape. As any housekeeper knows,
a little extra effort put into routine maintenance can pay off handsomely in the long run, by
forestalling major calamities. We have in mind a particular maintenance operation for our
union-find data structure, intended to keep the trees short— during each find, when a series
of parent pointers is followed up to the root of a tree, we will change all these pointers so
that they point directly to the root (Figure 5.7). This path compression heuristic only slightly
increases the time needed for a find and is easy to code.

function find(x)
if x "= π(x) : π(x) = find(π(x))
return π(x)

The benefit of this simple alteration is long-term rather than instantaneous and thus neces-
sitates a particular kind of analysis: we need to look at sequences of find and union opera-
tions, starting from an empty data structure, and determine the average time per operation.
This amortized cost turns out to be just barely more than O(1), down from the earlier O(log n).

Think of the data structure as having a “top level” consisting of the root nodes, and below
it, the insides of the trees. There is a division of labor: find operations (with or without path
compression) only touch the insides of trees, whereas union’s only look at the top level. Thus
path compression has no effect on union operations and leaves the top level unchanged.
We now know that the ranks of root nodes are unaltered, but what about nonroot nodes?

The key point here is that once a node ceases to be a root, it never resurfaces, and its rank
is forever fixed. Therefore the ranks of all nodes are unchanged by path compression, even
though these numbers can no longer be interpreted as tree heights. In particular, properties
1–3 (from page 145) still hold.
If there are n elements, their rank values can range from 0 to log n by Property 3. Let’s

divide the nonzero part of this range into certain carefully chosen intervals, for reasons that
will soon become clear:

{1}, {2}, {3, 4}, {5, 6, . . . , 16}, {17, 18, . . . , 216 = 65536}, {65537, 65538, . . . , 265536}, . . .

Each group is of the form {k + 1, k + 2, . . . , 2k}, where k is a power of 2. The number of groups
is log∗ n, which is defined to be the number of successive log operations that need to be applied

Prim’s method

for each u ∈ V
u.key = ∞
u.prev = nil

r.key = 0 -- start point

priority queue Q ← V -- insert all of V into Q

while Q not empty
u = Q.extractMin
for each v ∈ adj[u]

if v∈Q and W[u,v] < v.key
then

v.prev = u
v.key = W[u,v] -- use heap decreaseKey operation

time for Prim

• there is one buildHeap
• V extractMin operations
• E decreaseKey operations
• time using binary heap

O((V+E) lg V)
• time using Fibonacci heap

O(V lg V + E)

generic MST proof
with loop invariant!

A = ∅
while A not yet spanning tree

choose a safe edge (u,v) for A
add (u,v) to A

Definition: Suppose A is a subset of a MST
of the graph G. A safe edge for A is an edge
(u,v) such that A∪{(u,v)} is also a subset of
a MST of G.

- so our algorithm is trivially correct (think about initialization,
maintenance, and termination)
- still need to fill it out

safe edges and cuts

• Prim and Kruskal choose safe edges by means
of cuts

• let G=(V,E) be the (weighted) graph, and let
A⊆E be a set of edges

• the idea is that A is a subset of a MST
• a cut that respects A is a proper subset of

vertices S⊂V,…,so (S,V-S) partitions the
vertices

• … and no edge of A is allowed to cross (S,V-S)

light edge

• a light edge for a cut (S,V-S) is a minimum
weight edge crossing the cut

• main theorem: for any cut (S,V-S) respecting A,
a light edge for the cut is safe for A

• both Prim and Kruskal pick light edges for
some cut

• therefore, they are both correct

the dual to a cut is a cycle

input: graph G=(V,E), with weights

T=E
while T has a cycle

pick a cycle C in T
find a max weight edge (u,v) in T
remove edge (u,v) from T

• does this work?
• can it be proved correct loop invariantly?
• efficiency?

the greedy algorithm
• red rule

– Let C be a cycle with no red edges.
– Select an uncolored edge of C of max cost and color

it red
• blue rule

– Let D be a cutset with no blue edges.
– Select an uncolored edge in D of min cost and color it blue.

• greedy algorithm
– Apply the red and blue rules (nondeterministically!) until all

edges are colored. The blue edges form a MST.
– Note: can stop once n – 1 edges colored blue.

