Minimum spanning trees

Kruskal’s Method

1) A =20
2) for each v €V
3) makeSet (V)

4) sort E by weight
5) for each (u,v) € E

6) if findSet(u) # findSet(v)
7) then A = A U{(u,v)}
8) union(u, V)

9) return A

timing:

lines 2-3: O(V)

line 4: O(E Ig E) -- faster if small edge weights (counting sort)?
lines 5-8: E calls to 3 union-find operations, each O(lg*V) amortized
lines 5-8: total O(E Ig* V)

overall total: O(E IgE)

aside: disjoint sets

Figure 5.5 A directed-tree representation of two sets {B, £} and {A,C, D, F,G, H}.

$o%

from Dasgupta-Papadimitriou-Vazirani

union-find by rank with path compression

procedure makeset(z)
m(x) =
rank(z) =0

procedure union(z,y)
ry = £ind(z)
ry = £ind(y)
if rp, =ry: return
if rank(r;) > rank(ry):
m(ry) =7rs
else:
(ry) =1y
if rank(r;) = rank(r,): rank(r,) = rank(ry)+1

tion find

function find(x)
if z# n(x): w(x)=find(m(x))
return 7(x)

Any sequence of m operations, n of which are makeset, takes time
O(m Ig*n)

* lg*nis minimum k such thatlglglg Ign <1 (kiterations)

* actually better -- O(ma(n)) -- a(n) is inverse Ackermann function

* both Ig*n and a(n) are very very slow growing, essentially constant

Prim’s method

foreachu eV

u.key = oo
u.prev = nil
r.key =0 -- start point

priority queue Q <V --insert all of Vinto Q

while Q not empty
u = Q.extractMin
for each v € adj[u]
if véQ and W]u,v] < v.key
then
v.prev=u
v.key = W[u,v] -- use heap decreaseKey operation

time for Prim

there is one buildHeap

V extractMin operations

E decreaseKey operations

time using binary heap
O((V+E) Ig V)

time using Fibonacci heap
O(VlIgV +E)

generic MST proof
with loop invariant!

A=20
while A not yet spanning tree
choose a safe edge (u,v) for A

add (u,v) to A

Definition: Suppose A is a subset of a MST
of the graph G. A safe edge for A is an edge
(u,v) such that AU{(u,v)} is also a subset of
a MST of G.

- so our algorithm is trivially correct (think about initialization,
maintenance, and termination)
- still need to fill it out

safe edges and cuts

Prim and Kruskal choose safe edges by means
of cuts

let G=(V,E) be the (weighted) graph, and let
ACE be a set of edges

the idea is that A is a subset of a MST

a cut that respects A is a proper subset of
vertices SCV,...,so (S,V-S) partitions the
vertices

... and no edge of A is allowed to cross (S,V-S)

light edge

a light edge for a cut (S,V-S) is a minimum
weight edge crossing the cut

main theorem: for any cut (S,V-S) respecting A,
a light edge for the cut is safe for A

both Prim and Kruskal pick light edges for
some cut

therefore, they are both correct

the dual to a cutis a cycle

input: graph G=(V,E), with weights

T=E

while T has a cycle
pick a cycle C in T
find a max weight edge (u,v) in T
remove edge (u,v) from T

* does this work?
e can it be proved correct loop invariantly?
» efficiency?

the greedy algorithm

* redrule
— Let C be a cycle with no red edges.

— Select an uncolored edge of C of max cost and color
it red

* bluerule
— Let D be a cutset with no blue edges.
— Select an uncolored edge in D of min cost and color it blue.

e greedy algorithm

— Apply the red and blue rules (nondeterministically!) until all
edges are colored. The blue edges form a MST.

— Note: can stop once n — 1 edges colored blue.

