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When Greedy Algorithms are Perfect: the Matroid

Greedy algorithms are by far one of the easiest and most well-understood algorithmic techniques. There is a wealth
of variations, but at its core the greedy algorithm optimizes something using the natural rule, “pick what looks
best” at any step. So a greedy routing algorithm would say to a routing problem: “You want to visit all these
locations with minimum travel time? Let’s start by going to the closest one. And from there to the next closest one.
And so on.”

Because greedy algorithms are so simple, researchers have naturally made a big effort to understand their
performance. Under what conditions will they actually solve the problem we’re trying to solve, or at least get
close? In a previous post we gave some easy-to-state conditions under which greedy gives a good approximation
(https://jeremykun.com/2014/07/07/when-greedy-algorithms-are-good-enough-submodularity-and-the-1-1e-
approximation/), but the obvious question remains: can we characterize when greedy algorithms give an optimal
solution to a problem?

The answer is yes, and the framework that enables us to do this is called a matroid. That is, if we can phrase the
problem we’re trying to solve as a matroid, then the greedy algorithm is guaranteed to be optimal. Let’s start with
an example when greedy is provably optimal: the minimum spanning tree problem. Throughout the article we’ll
assume the reader is familiar with the very basics of linear algebra and graph theory (though we’ll remind
ourselves what a minimum spanning tree is shortly). For a refresher, this blog has primers on both subjects
(https://jeremykun.com/primers/). But first, some history.

History

Matroids were first introduced by Hassler Whitney in 1935, and independently discovered a little later by B.L. van
der Waerden (a big name in combinatorics). They were both interested in devising a general description
of “independence,” the properties of which are strikingly similar when specified in linear algebra and graph
theory. Since then the study of matroids has blossomed into a large and beautiful theory, one part of which is
the characterization of the greedy algorithm: greedy is optimal on a problem if and only if the problem can be
represented as a matroid. Mathematicians have also characterized which matroids can be modeled as spanning
trees (http://en.wikipedia.org/wiki/Graphic_matroid#Algorithms) of graphs (we will see this momentarily). As
such, matroids have become a standard topic in the theory and practice of algorithms.
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Minimum Spanning Trees

It is often natural in an undirected graph  to find a connected subset of edges that touch every vertex. As
an example, if you’re working on a power network you might want to identify a “backbone” of the network so that
you can use the backbone to cheaply travel from any node to any other node. Similarly, in a routing network (like
the internet) it costs a lot of money to lay down cable, it’s in the interest of the internet service providers to design
analogous backbones into their infrastructure.

A minimal subset of edges in a backbone like this is guaranteed to form a tree. This is simply because if you have a
cycle in your subgraph then removing any edge on that cycle doesn’t break connectivity or the fact that you can get
from any vertex to any other (and trees are the maximal subgraphs without cycles). As such, these “backbones” are
called spanning trees. “Span” here means that you can get from any vertex to any other vertex, and it suggests the
connection to linear algebra that we’ll describe later, and it’s a simple property of a tree that there is a unique path
between any two vertices in the tree.

(https://jeremykun.files.wordpress.com/2014/08/example-spanning-tree.gif)
An example of a spanning tree

When your edges  have nonnegative weights , we can further ask to find a minimum cost spanning
tree. The cost of a spanning tree  is just the sum of its edges, and it’s important enough of a definition to offset.

Definition: A minimum spanning tree  of a weighted graph  (with weights  for ) is a spanning tree
which minimizes the quantity

There are a lot of algorithms to find minimal spanning trees, but one that will lead us to matroids is Kruskal’s
algorithm. It’s quite simple. We’ll maintain a forest  in , which is just a subgraph consisting of a bunch of trees
that may or may not be connected. At the beginning  is just all the vertices with no edges. And then at each step

https://jeremykun.files.wordpress.com/2014/08/example-spanning-tree.gif


we add to  the edge  whose weight is smallest and also does not introduce any cycles into . If the input graph 
 is connected then this will always produce a minimal spanning tree.

Theorem: Kruskal’s algorithm produces a minimal spanning tree of a connected graph.

Proof. Call  the forest produced at step   of the algorithm. Then  is the set of all vertices of  and  is the
final forest output by Kruskal’s (as a quick exercise, prove all spanning trees on  vertices have  edges, so we
will stop after  rounds). It’s clear that  is a tree because the algorithm guarantees no  will have a cycle.
And any tree with  edges is necessarily a spanning tree, because if some vertex were left out then there would
be  edges on a subgraph of  vertices, necessarily causing a cycle somewhere in that subgraph.

Now we’ll prove that  has minimal cost. We’ll prove this in a similar manner to the general proof for
matroids. Indeed, say you had a tree  whose cost is strictly less than that of  (we can also suppose that  is
minimal, but this is not necessary). Pick the minimal weight edge  that is not in . Adding  to 
introduces a unique cycle  in . This cycle has some strange properties. First,  has the highest cost of any edge
on  . For otherwise, Kruskal’s algorithm would have chosen it before the heavier weight edges. Second, there is
another edge in   that’s not in  (because  was a tree it can’t have the entire cycle). Call such an edge . Now we
can remove  from  and add . This can only increase the total cost of , but this transformation produces a
tree with one more edge in common with  than before. This contradicts that   had strictly lower weight than ,
because repeating the process we described would eventually transform  into  exactly, while only increasing
the total cost.

Just to recap, we defined sets of edges to be “good” if they did not contain a cycle, and a spanning tree is a maximal
set of edges with this property. In this scenario, the greedy algorithm performed optimally at finding a spanning
tree with minimal total cost.

Columns of Matrices

Now let’s consider a different kind of problem. Say I give you a matrix like this one:

In the standard interpretation of linear algebra (https://jeremykun.com/2011/06/19/linear-algebra-a-primer/),
this matrix represents a linear function  from one vector space  to another , with the basis  of 
being represented by columns and the basis  of  being represented by the rows. Column  tells you
how to write   as a linear combination of the  , and in so doing uniquely defines .

Now one thing we want to calculate is the rank of this matrix. That is, what is the dimension of the image of 
under ? By linear algebraic arguments we know that this is equivalent to asking “how many linearly independent
columns of  can we find”? An interesting consequence is that if you have two sets of columns that are both
linearly independent and maximally so (adding any other column to either set would necessarily introduce
a dependence in that set), then these two sets have the same size. This is part of why the rank of a matrix is well-
defined.

https://jeremykun.com/2011/06/19/linear-algebra-a-primer/


If we were to give the columns of  costs, then we could ask about finding the minimal-cost maximally-
independent column set. It sounds like a mouthful, but it’s exactly the same idea as with spanning trees: we want a
set of vectors that spans the whole column space of , but contains no “cycles” (linearly dependent combinations),
and we want the cheapest such set.

So we have two kinds of “independence systems” that seem to be related. One interesting question we can ask is
whether these kinds of independence systems are “the same” in a reasonable way. Hardcore readers of this blog
may see the connection quite quickly. For any graph , there is a natural linear map from   to , so that a
linear dependence among the columns (edges) corresponds to a cycle in . This map is called the incidence
matrix by combinatorialists and the first boundary map by topologists
(https://jeremykun.com/2013/04/03/homology-theory-a-primer/).

The map is easy to construct: for each edge  you add a column with a 1 in the -th row and a  in the -
th row. Then taking a sum of edges gives you zero if and only if the edges form a cycle. So we can think of a set of
edges as “independent” if they don’t contain a cycle. It’s a little bit less general than independence over , but you
can make it exactly the same kind of independence if you change your field from real numbers to . We won’t
do this because it will detract from our end goal (to analyze greedy algorithms in realistic settings), but for further
reading this survey of Oxley (https://www.math.lsu.edu/~oxley/survey4.pdf) assumes that perspective.

So with the recognition of how similar these notions of independence are, we are ready to define matroids.

The Matroid

So far we’ve seen two kinds of independence: “sets of edges with no cycles” (also called forests) and “sets of
linearly independent vectors.” Both of these share two trivial properties: there are always nonempty independent
sets, and every subset of an independent set is independent. We will call any family of subsets with this property
an independence system.

Definition: Let  be a finite set. An independence system over  is a family  of subsets of  with the following two
properties.

1.  is nonempty.
2. If  , then so is every subset of .

This is too general to characterize greedy algorithms, so we need one more property shared by our examples. There
are a few things we do, but here’s one nice property that turns out to be enough.

Definition: A matroid  is a set  and an independence system  over  with the following property:

If  are in  with , then there is an element  such that .

In other words, this property says if I have an independent set that is not maximally independent, I can grow the set
by adding some suitably-chosen element from a larger independent set. We’ll call this the extension property. For a
warmup exercise, let’s prove that the extension property is equivalent to the following (assuming the other
properties of a matroid):

For every subset , all maximal independent sets contained in   have equal size.
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Proof. For one direction, if you have two maximal sets  that are not the same size (say  is bigger),
then you can take any subset of  whose size is exactly , and use the extension property to make  larger, a
contradiction. For the other direction, say that I know all maximal independent sets of any  have the same
size, and you give me . I need to find an  that I can add to  and keep it independent. What I do
is take the subset . Now the sizes of  don’t change, but  can’t be maximal inside  because it’s
smaller than  (  might not be maximal either, but it’s still independent). And the only way to extend  is by
adding something from , as desired.

So we can use the extension property and the cardinality property interchangeably when talking about
matroids. Continuing to connect matroid language to linear algebra and graph theory, the maximal independent
sets of a matroid are called bases, the size of any basis is the rank of the matroid, and the minimal dependent sets are
called circuits. In fact, you can characterize matroids in terms of the properties of their circuits, which are dual to
the properties of bases (and hence all independent sets) in a very concrete sense.

But while you could spend all day characterizing the many kinds of matroids and comatroids out there, we are still
faced with the task of seeing how the greedy algorithm performs on a matroid. That is, suppose that your matroid 

 has a nonnegative real number  associated with each . And suppose we had a black-box
function to determine if a given set  is independent. Then the greedy algorithm maintains a set , and at
every step adds a minimum weight element that maintains the independence of . If we measure the cost of a
subset by the sum of the weights of its elements, then the question is whether the greedy algorithm finds a
minimum weight basis of the matroid.

The answer is even better than yes. In fact, the answer is that the greedy algorithm performs perfectly if and only if
the problem is a matroid! More rigorously,

Theorem: Suppose that  is an independence system, and that we have a black-box algorithm to
determine whether a given set is independent. Define the greedy algorithm to iteratively adds the cheapest element
of  that maintains independence. Then the greedy algorithm produces a maximally independent set  of minimal
cost for every nonnegative cost function on , if and only if  is a matroid.

It’s clear that the algorithm will produce a set that is maximally independent. The only question is whether what it
produces has minimum weight among all maximally independent sets. We’ll break the theorem into the
two directions of the “if and only if”:

Part 1: If  is a matroid, then greedy works perfectly no matter the cost function. 
Part 2: If greedy works perfectly for every cost function, then  is a matroid.

Proof of Part 1.

Call the cost function , and suppose that the greedy algorithm picks elements  (in
that order). It’s easy to see that . Now if you give me any list of  independent
elements  that has , I claim that  for all . This proves what we
want, because if there were a basis of size  with smaller weight, sorting its elements by weight would give a list
contradicting this claim.

To prove the claim, suppose to the contrary that it were false, and for some  we have .
Moreover, pick the smallest  for which this is true. Note , and so we can look at the special sets 

 and . Now , so by the matroid property there is some  between 



and  so that   is an independent set (and  is not in ). But then , and so the greedy
algorithm would have picked  before it picks   (and the strict inequality means they’re different elements). This
contradicts how the greedy algorithm runs, and hence proves the claim.

Proof of Part 2.

We’ll prove this contrapositively as follows. Suppose we have our independence system and it doesn’t satisfy the
last matroid condition. Then we’ll construct a special weight function that causes the greedy algorithm to fail. So let

 be independent sets with , but for every  adding  to  never gives you an
independent set.

Now what we’ll do is define our weight function so that the greedy algorithm picks the elements we want in the
order we want (roughly). In particular, we’ll assign all elements of  a tiny weight we’ll call . For elements
of  we’ll use , and for  we’ll use , with  for everything else. In a more compact notation:

(https://jeremykun.files.wordpress.com/2014/08/codecogseqn.gif)

We need two things for this weight function to screw up the greedy algorithm. The first is that  ,
so that greedy picks the elements in the order we want. Note that this means it’ll first pick all of , and then all
of , and by assumption it won’t be able to pick anything from , but since  is assumed to be non-
maximal, we have to pick at least one element from  and pay  for it.

So the second thing we want is that the cost of doing greedy is worse than picking any maximally independent set
that contains   (and we know that there has to be some maximal independent set containing ). In other words, if
we call  the size of a maximally independent set, we want

This can be rearranged (using the fact that ) to

The point here is that the greedy picks too many elements of weight , since if we were to start by taking all of 
(instead of all of ), then we could get by with one fewer. That might not be optimal, but it’s better than greedy
and that’s enough for the proof.

So we just need to make  large enough to make this inequality hold, while still maintaining . There are
probably many ways to do this, and here’s one. Pick some , and set

 (https://jeremykun.files.wordpress.com/2014/08/settings.gif)
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It’s trivial that  and . For the rest we need some observations. First, the fact that 
 implies that . Second, both  and  are nonempty, since otherwise the

second property of independence systems would contradict our assumption that augmenting  with elements of 
breaks independence. Using this, we can divide by these quantities to get

This proves the claim and finishes the proof.

As a side note, we proved everything here with respect to minimizing the sum of the weights, but one can prove an
identical theorem for maximization. The only part that’s really different is picking the clever weight function in
part 2. In fact, you can convert between the two by defining a new weight function that subtracts the old weights
from some fixed number  that is larger than any of the original weights. So these two problems really are the
same thing.

This is pretty amazing! So if you can prove your problem is a matroid then you have an awesome algorithm
automatically. And if you run the greedy algorithm for fun and it seems like it works all the time, then that may be
hinting that your problem is a matroid. This is one of the best situations one could possibly hope for.

But as usual, there are a few caveats to consider. They are both related to efficiency. The first is the black box
algorithm for determining if a set is independent. In a problem like minimum spanning tree or finding
independent columns of a matrix, there are polynomial time algorithms for determining independence. These two
can both be done, for example, with Gaussian elimination (https://jeremykun.com/2011/12/30/row-reduction-
over-a-field/). But there’s nothing to stop our favorite matroid from requiring an exponential amount of time to
check if a set is independent. This makes greedy all but useless, since we need to check for independence many
times in every round.

Another, perhaps subtler, issue is that the size of the ground set  might be exponentially larger than the rank of
the matroid. In other words, at every step our greedy algorithm needs to find a new element to add to the set it’s
building up. But there could be such a huge ocean of candidates, all but a few of which break independence. In
practice an algorithm might be working with  implicitly, so we could still hope to solve the problem if we had
enough knowledge to speed up the search for a new element.

There are still other concerns. For example, a naive approach to implementing greedy takes quadratic time, since
you may have to look through every element of  to find the minimum-cost guy to add. What if you just have to
have faster runtime than ? You can still be interested in finding more efficient algorithms that still perform
perfectly, and to the best of my knowledge there’s nothing that says that greedy is the only exact algorithm for your
favorite matroid. And then there are models where you don’t have direct/random access to the input, and lots of
other ways that you can improve on greedy. But those stories are for another time.

Until then!
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Theory and tagged greedy, kruskal's algorithm, linear independence, matroids, minimum spanning trees.
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10 thoughts on “When Greedy Algorithms are Perfect: the
Matroid”
1. 

g2-30144680f7f2afe3f2a07f9f8e50614a

Not all greedy algorithms correspond to matroids, though. Not many, in my book.
2. 

psicicle

In the proof of Part 1, do you mean for the list of r elements to be independent?

j2kun

Yes, good catch.
3. 

Shuai

Hi Jerem, your blog is great!!! May I ask a question ? 
The question is the first proof in the following paper: 
“Marshall L. Fisher, George L. Nemhauser, and Laurence A. Wolsey. An analysis of approximations for
maximizing 
submodular set functions – II. Mathematical Programming Study, (8):73–87, 1978.”

In the proof, the authors defined U^(t) as the set of elements considered in the first t+1 iterations of the greedy
heuristic before the addition of a (t+1)st element。 
In the page 78, in the second line (a): \[\sum\limits_{j \in T} {{\rho _j}\left( S \right)} = \sum\limits_{t = 1}^K
{\sum\limits_{j \in T \cap \left( {{U^t} – {U^{t – 1}}} \right)} {{\rho _j}\left( S \right)} } \], I cannot
understand this equation. The set T is included in set U^(K)? 
Could you help me ? Thank you very much!

4. 
Jiri Nadvornik

Hi. Big thanks for your blog. I really like your style of explaining. Here a some typos in this post:

I think “element x \in A \setminus B such that B \cup \{ a \} \in \mathscr{I}.” should be: 
“element a \in A \setminus B such that B \cup \{ a \} \in \mathscr{I}.”

You write “some j between 1 and r so”, I think that there should be “some j between 1 and k so”.

In “What I do is take the subset Y = A \cup B.” you use letter Y for second time in one paragraph: it took me
few minutes before I got it is a different set than before. Please consider using different letter for this set.

And please consider adding a link with instructions how to use latex in comments :-).

Thanks again for your great blog: I had spent many hours reading it.
5. 

Jesse
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December 15, 2014 at 7:58 pm • Reply

January 14, 2015 at 7:02 am • Reply
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Hello, thanks for your great explanation of matroid. 
I am wondering how to form a matroid? I feel quite strange when you talking about the independent sets in
linear algebra. I mean, if I already got the coefficient matrix, how to form a matroid? 
For example, I have some linear constraints, two types of them: a-b-c = 0, and a+b+c<x. My problem is a routing
problem. The first type of the constraints a-b-c = 0 means that the network vertex can only send the data it
receives. The second type of the constraints a+b+c<x means the capacity constraint of the link. If we ignore the
capacity constraints, then it just a routing problem, but I don't know how to form a matroid. 
If the objective function is submodular, I wondering if all these constraints set up a matroid? 
Thanks and hope to hear from you:)

j2kun

Matroid stuff is pure theory. It sounds like you want to look at related, concrete algorithms for computing
maximum network flow. For example,
https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm is a greedy algorithm implementing
the natural matroid corresponding to network flow problems, and I think this includes your problem, to the
best of my knowledge from your description. You may have to rephrase the capacity as happening along
edges instead of nodes?

Jesse

Hi, Thanks for your reply! 
Actually, I’m writing a paper right now and try to design an algorithm based on pi-page rounding. I’ve
already done the experiment and the result is good. But I need to proof it’s upper bound since it’s an
approximation algorithm. 
I found lots of papers about matroid constraints and submodular function. I’m wondering if this type of
formulation set up a matroid so I can prove a 1-1/e ratio? 
Maximizing a Submodular Set Function subject to a Matroid Constraint:
https://thibaut.horel.org/submodularity/papers/calinescu2007.pdf 
Randomized Pipage Rounding for Matroid Polytopes 
and Applications: https://pdfs.semanticscholar.org/b1a0/69ec189a23bd89d5564cfe14ba006521ccde.pdf 
Above are two related papers. 
Thanks!

Leonidas

There is a limited number of known optimization problems which are matroids, usually we have an
intersection of matroids. An intersection of matroids is an independent system with ground set the union of
the ground sets of the matroids and independence family the family of all maximally independent sets
which are independent in all matroids. Optimization on intersection of 2 matroids can be done polynomially
through Edmonds algorithm, while its NP-Hard for more than two matroids, and there are extensions to the
approximation bounds for the greedy for n matroids. The routing problem is an intersection of possibly
three matroids.

hope the above helps.
6. 

Avinandan

Hi, 
In the section of Minimum Spanning Trees,While discussing Kruskal’s algorithm,you shift from ‘minimum’ to
‘minimal’.Any particular reasons for this?
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