Natural Language Processing: CIS 410/510

Constituent Parsing

Instructor: Thien Huu Nguyen

Based on slides from: Ralph Grishman,
 David Bamman, Dan Jurasky, and others

syntax

- With syntax, we're moving from labels for discrete items - documents (sentiment analysis), tokens (POS tagging, NER) - to the structure between items.
- Syntax is fundamentally about the hierarchical structure of language and (in some theories) which sentences are grammatical in a language
words \rightarrow phrases \rightarrow clauses \rightarrow sentences

| PRP VBD | DT | NN | IN PRPS NNS |
| :--- | :--- | :--- | :--- | :--- | :--- |

I shot an elephant in my pajamas

Nominal elephant

Why is syntax important?

- Foundation for semantic analysis (on many levels of representation: semantic roles, compositional semantics, frame semantics)
- Humans communicate complex ideas by composing words together into bigger units to convey complex meanings

Why is syntax important?

- Linguistic typology; relative positions of subjects (S), objects (O) and verbs (V)

SVO	English, Mandarin	I grabbed the chair
SOV	Latin, Japanese	I the chair grabbed
VSO	Hawaiian	Grabbed I the chair
OSV	Yoda	Patience you must have
\ldots	\ldots	\ldots

Why is syntax important?

- Strong representation for discourse analysis (e.g., coreference resolution)

Formalisms

Phrase structure grammar (Chomsky 1957)

Dependency grammar (Mel'čuk 1988; Tesnière 1959; Pāṇini)

Constituency

- Groups of words ("constituents") behave as single units
- "Behave" = show up in the same distributional environments as single units (e.g., the substitution test)
- Substitution test for POS: if a word is replaced by another word, does the sentence remain grammatical?
- Substitution test for Constituency: if a constituent is replaced by another constituent of the same type, does the sentence remain grammatical?

Context-free grammar (CFG)

- A CFG gives a formal way to define what meaningful constituents are and exactly how a constituent is formed out of other constituents (or words). It defines valid structure in a language (i.e., defining how symbols in a language combine to form valid structures)

NP \rightarrow Det Nominal

NP \rightarrow Verb Nominal

CIS 410/510: Natural Language Processing

Context-free grammar (CFG)

N	Finite set of non-terminal symbols	NP, VP, S
Σ	Finite alphabet of terminal symbols	the, dog, eat
R	Set of production rules, each of the form $A \rightarrow \beta, \beta \in(\Sigma \cup N) *$	$\mathrm{S} \rightarrow \mathrm{NP}$ VP Noun \rightarrow dog
S	A designed start symbol	

Derivation

- Given a CFG, a derivation is the sequence of productions used to generate a string of words/terminal symbols (e.g., a sentence), often visualized as a parse tree.

the flight

a flight

the flight flight

Language

- The strings of words (e.g., sentences) are called as "derivable from the start symbol (S)"
- The formal language defined by a CFG is the set of strings derivable from S
$S \rightarrow$ NP VP \rightarrow cats VP \rightarrow cats chase NP \rightarrow cats chase mice

Preterminals

- It is convenient to include a set of symbols called preterminals (corresponding to the parts of speech) which can be directly rewritten as terminals (words)
- This allows us to separate the productions into a set which generates sequences of preterminals (the "grammar") and those which rewrite the preterminals as terminals (the "dictionary")

Grouping Alternates

- To make the grammar more compact, we group productions with the same left-hand side:

$\mathrm{S} \rightarrow \mathrm{NPVP}$
$\mathrm{NP} \rightarrow \mathrm{N} \mid$ ART $\mathrm{N} \mid$ ART ADJ N
$\mathrm{VP} \rightarrow \mathrm{V} \mid \mathrm{VNP}$

Example

Noun	\rightarrow flights \mid breeze \mid trip \mid morning
Verb	\rightarrow is \mid prefer \mid like \mid need \mid want \mid fly
Adjective	\rightarrow cheapest \mid non-stop \mid first \mid latest
	\mid other \mid direct
Pronoun	\rightarrow me $\|I\|$ you \mid it
Proper-Noun	\rightarrow Alaska \mid Baltimore \mid Los Angeles
	\mid Chicago \mid United \mid American
Determiner	\rightarrow the \mid a \mid an \mid this \mid these \mid that
Preposition	\rightarrow from \mid to \mid on \mid near
Conjunction	\rightarrow and \mid or \mid but

Figure 12.2 The lexicon for \mathscr{L}_{0}.

Grammar Rules	Examples
$S \rightarrow N P V P$	I + want a morning flight
$N P \rightarrow$ Pronoun	I
Proper-Noun	Los Angeles
Det Nominal	a + flight
Nominal \rightarrow Nominal Noun	morning + flight
Noun	flights
$V P \rightarrow \begin{aligned} & \text { V } \\ & \left\lvert\, \begin{array}{l}\text { V }\end{array}\right. \\ & \mid \\ & V\end{aligned}$	do
	want + a flight
	leave + Boston + in the morning
	leaving + on Thursday
PP \rightarrow Preposition NP	from + Los Angeles

Figure 12.3 The grammar for \mathscr{L}_{0}, with example phrases for each rule.

Bracketed notation

$$
\left[_ { N P } \left[\text { Det } \text { the] }\left[\left[_{\text {Nominal }}\left[{ }_{\text {Noun }} \text { flight }\right]\right]\right]\right.\right.
$$

Constituents

Every internal node is a phrase

- my pajamas
- in my pajamas
- elephant in my pajamas
- an elephant in my pajamas
- shot an elephant in my pajamas
- I shot an elephant in my pajamas

Each phrase could be replaced by another of the same type of constituent

Sentence

Rule	Description	Example
$S \rightarrow$ VP	Imperative	• Show me the right way
$S \rightarrow$ NP VP	Declarative	• The dog barks
$S \rightarrow$ Aux VP NP	Yes/no questions	• Will you show me the right way?

Noun Phrases

- NP \rightarrow Pronoun | Proper-noun | Det Nominal
- Nominal \rightarrow Nominal PP
- An elephant [pp in my pajamas]
- The cat [pp on the floor] [pp under the table] [pp next to the dog]
- Nominal \rightarrow RelClause, RelClause \rightarrow (who|that) VP : A relative pronoun (that, which) in a relative clause can be the subject or object of the embedded verb.
- A flight [Relclause that serves breakfast]
- A flight [RelClause that I got]

Verb Phrases

VP \rightarrow Verb	disappear
VP \rightarrow Verb NP	prefer a morning flight
VP \rightarrow Verb NP PP	prefer a morning flight on Monday
VP \rightarrow Verb PP	leave on Wednesday
VP \rightarrow Verb S	I think [S want a new flight]
VP \rightarrow Verb VP	want [to fly today]

Not every verb can appear in each of these productions

Verb Phrases

VP \rightarrow Verb	$*$ I filled
VP \rightarrow Verb NP	$*$ I exist the morning flight
VP \rightarrow Verb NP PP	* I exist the morning flight on Monday
VP \rightarrow Verb PP	$*$ I filled on Wednesday
VP \rightarrow Verb S	$*$ I exist [S I want a new flight]
VP \rightarrow Verb VP	$*$ I fill [to fly today]

Not every verb can appear in each of these productions

Subcategorization

- Verbs are compatible with different complements
- Transitive verbs take direct object NP ("I filled the tank")
- Intransitive verbs don’t ("I exist")
- The set of possible complements of a verb is its subcategorization frame.

VP	\rightarrow Verb VP	* I fill [vp to fly today]
VP	\rightarrow Verb VP	I want [vp to fly today]

Coordination

NP \rightarrow NP and NP	the dogs and the cats
Nominal \rightarrow Nominal and Nominal	dogs and cats
VP \rightarrow VP and VP	I came and saw and conquered
$\mathrm{JJ} \rightarrow \mathrm{JJ}$ and JJ	beautiful and red
$\mathrm{S} \rightarrow \mathrm{S}$ and S	I came and I saw and I conquered

Ambiguity

- Most sentences will have more than one parse
- Generally different parses will reflect different meanings ...
- Attachment ambiguity: a particular constituent can be attached to the parse tree at more than one place
"I saw the man with a telescope."
Can attach PP ("with a telescope") under NP or VP
- Coordination ambiguity: different sets of phrases can be conjoined by a conjunction like "and":
"old man and woman" -> [old [men and women]] or [[old man] and [woman]]?

S	\rightarrow NP VP
VP	\rightarrow Verb NP
VP	\rightarrow VP PP
Nominal	\rightarrow Nominal PP
Nominal	\rightarrow Noun
Nominal	\rightarrow Pronoun
PP	\rightarrow Prep NP
NP	\rightarrow Det Nominal
NP	\rightarrow Nominal
NP	\rightarrow PossPronoun
Nominal	

Example

Verb	\rightarrow shot
Det	\rightarrow an \mid my
Noun	\rightarrowpajamas \mid elephant
Pronoun	\rightarrow I
PossPronoun	\rightarrow my

I shot an elephant in my pajamas

CIS 410/510: Natural Language Processing

Evaluation

- Parseval (1991): represent each tree as a collection of tuples.
- Calculate precision, recall, F1 from these collections of tuples

$$
<l_{1}, i_{1}, j_{1}>, \ldots,<l_{n}, i_{n}, j_{n}>
$$

- l_{k} : label for the k-th phrase
- i_{k} : index for the first word in the k-th phrase
- j_{k} : index for the last word in the k-th phrase

$$
\begin{aligned}
& \bullet<S, 1,7> \\
& \bullet<N P, 1,1> \\
& \bullet<V P, 2,7> \\
& \bullet<V P, 2,4> \\
& \bullet<N P, 3,4> \\
& \bullet<N o m i n a l, 4,4> \\
& \bullet<P P, 5,7> \\
& \bullet<N P, 6,7>
\end{aligned}
$$

CIS 410/510: Natural Language Processing

Evaluation

- Precision $(P)=$ number of tuples in the predicted tree also in correct tree, divided by number of tuples in the predicted tree $=5 / 7$
- Recall $(R)=$ number of tuples in the predicted tree also in correct tree, divided by number of tuples in the correct tree = $5 / 7$
- $F 1=\frac{2 P R}{P+R}$

$$
\begin{aligned}
& \cdot<S, 1,7> \\
& \cdot<N P, 1,1> \\
& \cdot<V P, 2,7> \\
& \cdot<N P, 3,7>
\end{aligned}
$$

$$
\bullet<\text { Nominal, 4, 7> }
$$

$$
\bullet<\text { Nominal, 4, 4> }
$$

$$
\bullet<P P, 5,7>
$$

$$
\bullet<N P, 6,7>
$$

$$
\begin{aligned}
& \cdot<S, 1,7> \\
& \cdot<N P, 1,1> \\
& \cdot<V P, 2,7> \\
& \cdot<V P, 2,4> \\
& \cdot<N P, 3,4> \\
& \cdot<\text { Nominal, 4, 4> } \\
& \cdot<P P, 5,7> \\
& \cdot<N P, 6,7>
\end{aligned}
$$

CFGS

- Building a CFG by hand is really hard
- To capture all (and only) grammatical sentences, need to exponentially increase the number of categories (e.g., detailed subcategorization info)

Verb-with-no-complement	\rightarrow	disappear
Verb-with-S-complement	\rightarrow	said
VP	\rightarrow	Verb-with-no-complement
VP	\rightarrow	Verb-with-S-complement S

Treebanks

- Rather than create the rules by hand, we can annotate sentences with their syntactic structure and then extract the rules from the annotations
- Treebanks: collections of sentences annotated with syntactic structure (e.g., Penn Treebank)

CIS 410/510: Natural Language Processing

Penn Treebank

How to parse?

- Given a CFG and a sentence, how can we obtain the parse tree(s) for the sentence?
- Top-down parsing
- repeat
- expand leftmost non-terminal using first production (save any alternative productions on backtrack stack)
- if we have matched entire sentence, quit (success)
- if we have generated a terminal which doesn't match sentence, pop choice point from stack (if stack is empty, quit (failure))
- Bottom-up parsing
- Inefficiency: the top-down parsers waste effort to explore trees that are not consistent with the input while the bottom-up parsers waste effort to explore trees that cannot lead to the start symbol S. See SLP2 for details

Dynamic programming parsing, i.e., CYK parsing (Cocke-Kasami-Younger)

Chomsky Normal Form (CNF)

N	Finite set of non-terminal symbols	$\mathrm{NP}, \mathrm{VP}, \mathrm{S}$
Σ	Finite alphabet of terminal symbols	the, dog, eat
R	Set of production rules, each of the form $A \rightarrow \beta, \beta \in(\Sigma \cup N) *$ where $\beta=a \operatorname{single~terminal~in~} \Sigma$ or two non-terminals in N	$\mathrm{S} \rightarrow \mathrm{NP}$ VP Noun \rightarrow dog
S	A designed start symbol	

Chomsky Normal Form (CNF)

- Any CFG can be converted into a weakly equivalent CNF (recognizing the same set of sentences as existing in the grammar but differing in their derivation).

```
Case 1: mix of terminals and non-terminals
```


CNF conversion

Case 3: single nonterminal

A \rightarrow * B
$B \rightarrow \gamma$
$A \rightarrow \gamma$

S	\rightarrow NP VP
VP	\rightarrow VBD NP
VP	\rightarrow VP PP
Nominal	\rightarrow Nominal PP
Nominal	\rightarrow NN
Nominal	\rightarrow NNS
Nominal	\rightarrow PRP
PP	\rightarrow IN NP
NP	\rightarrow DT NN
NP	\rightarrow Nominal
NP	$\rightarrow \mathrm{PRP} \mathrm{\$}$ Nominal

VBD	\rightarrow shot
DT	\rightarrow an $/$ my
NN	\rightarrow elephant
NNS	\rightarrow pajamas
PRP	\rightarrow I
PRP\$	\rightarrow my
IN	\rightarrow in

I shot an elephant in my pajamas

CNF conversion

Case 3: single nonterminal
$\mathrm{A} \rightarrow{ }^{*} \mathrm{~B}$
$B \rightarrow \gamma$

$$
A \rightarrow \gamma
$$

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$		
$\mathrm{VP} \rightarrow$ VBD NP		
$\mathrm{VP} \rightarrow \mathrm{VPPP}$	VBD \rightarrow shot	
Nominal \rightarrow Nominal PP	DT \rightarrow an $\mid \mathrm{my}$	
Nominal $\rightarrow \begin{gathered}\text { pajamas } \\ \text { elephant }\|\mid\end{gathered}$	PRP \rightarrow I	
PP \rightarrow IN NP	PRP\$ \rightarrow my	
NP \rightarrow DT NN	$\mathrm{IN} \rightarrow$ in	
$\mathrm{NP} \rightarrow$ pajamas elephant\|		
NP \rightarrow PRP\$ Nominal		

I shot an elephant in my pajamas

CYK parsing

- For parsing from a grammar expressed in CNF
- Bottom-up dynamic programming

function CKY-PARSE(words, grammar) returns table
for $j \leftarrow$ from 1 to LengTh(words) do
for all $\{A \mid A \rightarrow$ words $[j] \in$ grammar $\}$
table $[j-1, j] \leftarrow$ table $[j-1, j] \cup A$
for $i \leftarrow$ from $j-2$ downto 0 do
for $k \leftarrow i+1$ to $j-1$ do
for all $\{A \mid A \rightarrow B C \in \operatorname{grammar}$ and $B \in \operatorname{table}[i, k]$ and $C \in \operatorname{table}[k, j]\}$ table $[i, j] \leftarrow$ table $[i, j] \cup A$
Figure 13.5 The CKY algorithm.

।	shot	an	elephant	in	my	pajamas

NP, PRP [0,1]					
	$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$				
$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$					
NP, NN $[3,4]$					
Each cell i,j keeps track of all phrase types that can be formed from all words from position i through position j			$\begin{gathered} \mathrm{IN} \\ {[4,5]} \end{gathered}$		
				$\begin{gathered} \text { PRP\$ } \\ {[5,6]} \end{gathered}$	
					$\begin{aligned} & \text { NNS } \\ & {[6,7]} \end{aligned}$

CIS 410/510: Natural Language Processing

I	shot	an	elephant	in	my	pajamas

CIS 410/510: Natural Language Processing

I	shot	an	elephant	in	my	pajamas

$\begin{gathered} \text { NP, PRP } \\ {[0,1]} \end{gathered}$					
	$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$				
	$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$				
		$\begin{gathered} \text { NP, NN } \\ {[3,4]} \end{gathered}$			
			$\begin{gathered} \mathrm{IN} \\ {[4,5]} \end{gathered}$		
What phrases can be formed from "I shot an elephant in my pajamas"				$\begin{gathered} \text { PRP\$ } \\ {[5,6]} \end{gathered}$	
					$\begin{aligned} & \text { NNS } \\ & {[6,7]} \end{aligned}$

CNF

- In CNF, each non-terminal generates two non-terminals

$$
\begin{aligned}
& S \rightarrow N P \text { VP } \\
& \text { [S [NP I] [vp shot an elephant in my pajamas]] }
\end{aligned}
$$

- If the left-side non-terminal spans tokens $i-j$, the right side must also span $i-j$, and there must be a single position k that separates them.

CIS 410/510: Natural Language Processing

CIS 410/510: Natural Language Processing

I	shot	an	elephant	in	my	pajamas

NP, PRP $[0,1]$	\varnothing					
	VBD $[1,2]$					
		DT $[2,3]$				
		NP, NN $[3,4]$				

CIS 410/510: Natural Language Processing

I	shot	an	elephant	in	my	pajamas

NP, PRP $[0,1]$	\varnothing					
	VBD $[1,2]$					
		DT $[2,3]$				
		NP, NN $[3,4]$				

CIS 410/510: Natural Language Processing

I	shot	an	elephant	in	my	pajamas
NP, PRP $[0,1]$	\varnothing					

CIS 410/510: Natural Language Processing

CIS 410/510: Natural Language Processing

	I	shot	an	elephant	in	my	pajamas
	NP, PRP $[0,1]$	\varnothing	\varnothing				
		$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$	\varnothing				
			$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$				
NP \rightarrow Prfes Sominal Vso \rightarrow stot				NP, NN $[3,4]$			
					$\begin{gathered} \mathrm{IN} \\ {[4,5]} \end{gathered}$		
	Does any rule generate DT NN?					$\begin{gathered} \text { PRP\$ } \\ {[5,6]} \end{gathered}$	
							$\begin{aligned} & \text { NNS } \\ & {[6,7]} \end{aligned}$

CIS 410/510: Natural Language Processing

I	shot	an	elephant	in	my	pajamas

NP, PRP $[0,1]$	$\begin{gathered} \varnothing \\ \hline \mathrm{VBD} \\ {[1,2]} \end{gathered}$	\varnothing				
		\varnothing				
		$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$	$\begin{gathered} \mathrm{NP} \\ {[2,4]} \end{gathered}$			
			$\begin{gathered} \text { NP, NN } \\ {[3,4]} \end{gathered}$			
				$\begin{gathered} \mathrm{IN} \\ {[4,5]} \end{gathered}$		
Two possible places look for that split k					$\begin{gathered} \text { PRP\$ } \\ {[5,6]} \end{gathered}$	
						$\begin{aligned} & \text { NNS } \\ & {[6,7]} \end{aligned}$

CIS 410/510: Natural Language Processing

	I	shot	an	elephant	in	my	pajamas
	NP, PRP $[0,1]$	\varnothing					
		VBD					
		[1,2]	\varnothing				
$\underset{\substack{\text { Nominal }}}{\text { - Noninapp }}$							
			DT	NP			
			[2,3]	[2,4]			
$\underset{\text { NF } \rightarrow \text { Prps Sominal }}{\substack{\text { vab }}}$				NP, NN			
				[3,4]			
					$\begin{gathered} \mathbb{N} \\ {[4,5]} \end{gathered}$		
	Two possib	laces plit k	for that			$\begin{gathered} \text { PRP\$ } \\ {[5,6]} \end{gathered}$	
							$\begin{aligned} & \text { NNS } \\ & {[6,7]} \end{aligned}$

CIS 410/510: Natural Language Processing

I	shot	an	elephant	in	my	pajamas
NP, PRP $[0,1]$ \varnothing \varnothing	VBD $[1,2]$	\varnothing	VP $[1,4]$			

CIS 410/510: Natural Language Processing

I	shot	an	elephant	in	my	pajamas
NP, PRP $[0,1]$ \varnothing \varnothing	VBD $[1,2]$	\varnothing	VP $[1,4]$			

CIS 410/510: Natural Language Processing

CIS 410/510: Natural Language Processing

	1	shot	an	elephant	in	my	pajamas
	NP, PRP [0,1]	\varnothing	\varnothing	$\begin{gathered} S \\ {[0,4]} \end{gathered}$			
		$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$	\varnothing	$\begin{gathered} \text { VP } \\ {[1,4]} \end{gathered}$			
			$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$	$\begin{gathered} \mathrm{NP} \\ {[2,4]} \end{gathered}$			
$\begin{aligned} \text { NP } & \rightarrow \text { PRP\$ Nomina } \\ & \\ \text { VBD } & \rightarrow \text { shot } \\ \text { DT } & \rightarrow \text { an } / \mathrm{my} \end{aligned}$				NP, NN $[3,4]$			
$\begin{gathered} \text { PRP } \rightarrow 1 \\ \text { PRPS } \rightarrow m y \\ N \rightarrow i n \end{gathered}$					$\begin{gathered} \mathrm{IN} \\ {[4,5]} \end{gathered}$		
						$\begin{gathered} \text { PRP\$ } \\ {[5,6]} \end{gathered}$	
							NNS $[6,7]$

CIS 410/510: Natural Language Processing

I	shot	an	elephant	in	my	pajamas

	\rightarrow NP VP	
VP	\rightarrow VBD NP	
VP	\rightarrow VPPP	
Nominal	\rightarrow Nominal PP	
Nominal	\rightarrow pajamas elephant \|	
PP	$\rightarrow \quad \mathrm{IN} \mathrm{NP}$	
NP	\rightarrow DT NN	
	$\left.\rightarrow \begin{aligned} & \text { pajamas } \\ & \text { elephant } \end{aligned} \right\rvert\,$	
NP	\rightarrow PRP\$ Nominal	
	VBD \rightarrow shot	
	DT \rightarrow an $\mid \mathrm{my}$	
	PRP \rightarrow I	
	PRP\$ \rightarrow my	
	$\mathrm{IN} \rightarrow$ in	

*elephant in
*an elephant in
*shot an elephant in
*। shot an elephant in
*in my
*elephant in my
*an elephant in my
*shot an elephant in my
*I shot an elephant in my
NNS
$[6,7]$

CIS 410/510: Natural Language Processing

	I	shot	an	elephant	in	my	pajamas
	$\begin{gathered} \text { NP, PRP } \\ {[0,1]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} S \\ {[0,4]} \end{gathered}$	\varnothing	\varnothing	
$\begin{aligned} & s \rightarrow \text { NVVP } \\ & \text { ve vep } \\ & \text { vp } \rightarrow \text { VPPP } \end{aligned}$		$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$	\varnothing	$\begin{gathered} \text { VP } \\ {[1,4]} \end{gathered}$	\varnothing	\varnothing	
			$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$	$\begin{gathered} \mathrm{NP} \\ {[2,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \text { NP } \\ {[3,7]} \end{gathered}$
NP \rightarrow Prpes Sominal				$\begin{gathered} \text { NP, NN } \\ {[3,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \text { NP } \\ {[3,7]} \end{gathered}$
$\begin{aligned} & \text { Lap } \rightarrow 1 \\ & \text { Paps } \rightarrow \text { my } \\ & \text { iN } \rightarrow \text { in } \end{aligned}$					$\begin{gathered} \mathrm{IN} \\ {[4,5]} \end{gathered}$	\varnothing	$\begin{gathered} \text { PP } \\ {[4,7]} \end{gathered}$
						$\begin{gathered} \text { PRP\$ } \\ {[5,6]} \end{gathered}$	$\begin{gathered} \text { NP } \\ {[5,7]} \end{gathered}$
							$\begin{aligned} & \text { NNS } \\ & {[6,7]} \end{aligned}$

CIS 410/510: Natural Language Processing

I	shot	an	elephant	in	my	pajamas

	NP, PRP $[0,1]$			$\begin{gathered} S \\ {[0,4]} \end{gathered}$	\varnothing		
$s \rightarrow n p v p$		VBD		VP	\varnothing	\varnothing	
		[1,2]	\varnothing	[1,4]	\varnothing	\varnothing	
			DT	NP	\varnothing	\varnothing	NP
$\begin{aligned} \mathrm{PP} & \rightarrow \mathrm{INNP} \\ \mathrm{NP} & \rightarrow \mathrm{DT} N \mathrm{~N} \end{aligned}$			[2,3]	[2,4]	\varnothing	\varnothing	[3,7]
NP \rightarrow Reammas							
Nf \rightarrow Prfs Sominal				$\begin{gathered} \text { NP, NN } \\ {[3,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \text { NP } \\ {[3,7]} \end{gathered}$
or \rightarrow an $\mid m y$							
$\underset{\text { prap } \rightarrow \text { Pry }}{\text { Prem }}$					IN	\varnothing	PP
(taps -my					$[4,5]$		$[4,7]$
						$\begin{gathered} \text { PRP\$ } \\ {[5,6]} \end{gathered}$	$\begin{gathered} \mathrm{NP} \\ {[5,7]} \end{gathered}$
							NNS $[6,7]$

	I	shot	an	elephant	in	my	pajamas
	NP, PRP $[0,1]$	\varnothing	\varnothing				
$\begin{aligned} \mathrm{S} & \rightarrow \mathrm{NPVP} \\ \mathrm{VP} & \rightarrow \mathrm{VBD} \mathrm{NP} \\ \mathrm{VP} & \rightarrow \mathrm{VPPP} \end{aligned}$		$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$		$\begin{gathered} \text { VP } \\ {[1,4]} \end{gathered}$	\varnothing	\varnothing	
Nominad \rightarrow Nominal PP							
			DT	NP	\varnothing	\varnothing	NP
NP \rightarrow DTMN			[2,3]	[2,4]			[3,7]
$N \mathrm{HP} \rightarrow$ Reiamas							
$\underset{\text { NP } \rightarrow \text { Prfes Sominal }}{\text { veo } \rightarrow \text { stot }}$				$[3,4]$	\varnothing	\varnothing	$[3,7]$
PRPS \rightarrow my					$[4,5]$	\varnothing	$[4,7]$
						$\begin{gathered} \text { PRP\$ } \\ {[5,6]} \end{gathered}$	$\begin{gathered} \mathrm{NP} \\ {[5,7]} \end{gathered}$
							NNS [6,7]

	1	shot	an	elephant	in	my	pajamas
	NP, PRP $[0,1]$	\varnothing	\varnothing	$\begin{gathered} \mathrm{S} \\ {[0,4]} \end{gathered}$			
$s \rightarrow$ neve		VBD	σ	VP			
		[1,2]	\varnothing	[1,4]	\varnothing	\varnothing	
Nomina \rightarrow Nominapp			DT	NP	\varnothing	\varnothing	NP
$\underset{\sim}{\text { PP }} \rightarrow \stackrel{N}{N(N P}$			[2,3]	[2,4]	\varnothing	\varnothing	[3,7]
NP \rightarrow cianas							
NP \rightarrow Prps Sominal				NP, NN $[3,4]$	\varnothing	\varnothing	$\begin{gathered} \mathrm{NP} \\ {[3,7]} \end{gathered}$
$\begin{aligned} & \text { PRP } \rightarrow 1 \\ & \text { PRes } \rightarrow \text { my } \end{aligned}$					IN	\varnothing	PP
$\mathrm{N}_{\mathrm{N} \rightarrow \text { in }}$					[4,5]		[4,7]
						PRP\$ [5,6]	NP [5.7]
							NNS
							[6,7]

CIS 410/510: Natural Language Processing

	1	shot	an	elephant	in	my	pajamas
	NP, PRP [0,1]	\varnothing	\varnothing	$\begin{gathered} S \\ {[0,4]} \end{gathered}$			
$\begin{aligned} \mathrm{S} & \rightarrow \mathrm{NP} \mathrm{VP} \\ \mathrm{VP} & \rightarrow \mathrm{VBD} \mathrm{NP} \\ \mathrm{VP} & \rightarrow \mathrm{VPPP} \end{aligned}$		$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$	\varnothing	$\begin{gathered} \text { VP } \\ {[1,4]} \end{gathered}$	\varnothing	\varnothing	
Norinal \rightarrow Nomprial Pp							
			$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$	$\begin{gathered} \mathrm{NP} \\ {[2,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \mathrm{NP} \\ {[3,7]} \end{gathered}$
$\underset{\substack{\text { NP }}}{\substack{\text { drem } \\ \text { NP }}}$							
				NP, NN			NP
veo \rightarrow stot				[3,4]	\varnothing	\varnothing	[3,7]
					IN		PP
					[4,5]	\varnothing	[4,7]
						$\begin{gathered} \text { PRP\$ } \\ {[5,6]} \end{gathered}$	NP [5,7]
							NNS [6,7]

CIS 410/510: Natural Language Processing

CIS 410/510: Natural Language Processing

	1	shot	an	elephant	in	my	pajamas
	NP, PRP $[0,1]$	\varnothing	\varnothing	$\begin{gathered} S \\ {[0,4]} \end{gathered}$	\varnothing	\varnothing	
		$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$	\varnothing	$\begin{gathered} \text { VP } \\ {[1,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \mathrm{VP}_{1}, \mathrm{VP}_{2} \\ {[1,7]} \end{gathered}$
			$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$	$\begin{gathered} \mathrm{NP} \\ {[2,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \mathrm{NP} \\ {[2,7]} \end{gathered}$
				NP, NN $[3,4]$	\varnothing	\varnothing	$\begin{gathered} \mathrm{NP} \\ {[3,7]} \end{gathered}$
$\begin{aligned} & \text { PRP } \rightarrow 1 \\ & \text { PRPs } \rightarrow \text { my } \\ & \text { N } \rightarrow \text { in } \end{aligned}$					$\begin{gathered} \mathrm{IN} \\ {[4,5]} \end{gathered}$	\varnothing	$\begin{gathered} \mathrm{PP} \\ {[4,7]} \end{gathered}$
						$\begin{gathered} \text { PRP\$ } \\ {[5,6]} \end{gathered}$	$\begin{gathered} N P \\ {[5,7]} \end{gathered}$
							NNS $[6,7]$

CIS 410/510: Natural Language Processing

।	shot	an	elephant	in	my	pajamas

	NP, PRP [0,1]	\varnothing	\varnothing	$\begin{gathered} S \\ {[0,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \mathrm{S}_{1}, \mathrm{~S}_{2} \\ {[0,7]} \end{gathered}$
		$\begin{aligned} & \text { VBD } \\ & {[1,2]} \end{aligned}$	\varnothing	$\begin{gathered} \text { VP } \\ {[1,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \mathrm{VP}_{1}, \mathrm{VP}_{2} \\ {[1,7]} \end{gathered}$
			$\begin{gathered} \text { DT } \\ {[2,3]} \end{gathered}$	$\begin{gathered} \mathrm{NP} \\ {[2,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \mathrm{NP} \\ {[2,7]} \end{gathered}$
				$\begin{gathered} \text { NP, NN } \\ {[3,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \mathrm{NP} \\ {[3,7]} \end{gathered}$
					$\begin{gathered} \mathrm{IN} \\ {[4,5]} \end{gathered}$	\varnothing	$\begin{gathered} \mathrm{PP} \\ {[4,7]} \end{gathered}$
	Success! We've recognized a total of two valid parses					$\begin{aligned} & \text { PRP\$ } \\ & {[5,6]} \end{aligned}$	$\begin{gathered} \text { NP } \\ {[5,7]} \end{gathered}$
	Complexity?						$\begin{aligned} & \text { NNS } \\ & {[6,7]} \end{aligned}$

CFG

- CYK allows us to:
- check whether a sentence in grammatical in the language defined by the CFG
- enumerate all possible parses for a sentence CFG
- But it doesn't tell us on which one of those possible parses is most likely
- might help to to disambiguate
-> Probabilistic context-free grammar

CIS 410/510: Natural Language Processing

Probabilistic context-free grammar (PCFG)

- Probabilistic context-free grammar: each production is also associated with a probability.

N	Finite set of non-terminal symbols	$\mathrm{NP}, \mathrm{VP}, \mathrm{S}$
Σ	Finite alphabet of terminal symbols	the, dog, eat
R	Set of production rules, each of the form $A \rightarrow \beta[p], \beta \in(\Sigma \cup N) *$ $p=P(\beta \mid A)$	$\mathrm{S} \rightarrow \mathrm{NP}$ VP Noun \rightarrow dog
S	A designed start symbol	

CIS 410/510: Natural Language Processing

Probabilistic context-free grammar (PCFG)

- We can then calculate the probability of a parse for a given sentence
- For a given parse tree T for sentence S comprised of n rules from R (each $A \rightarrow \beta$):

$$
P(T)=\prod_{i=1}^{n} P(\beta \mid A)
$$

- In practice, we often want to find the single best parse with the highest probability for a given tree S :

$$
\begin{aligned}
T^{*}(S) & =\operatorname{argmax}_{T} P(T \mid S)=\operatorname{argmax}_{T} \frac{P(S \mid T) P(T)}{P(S)} \\
& =\operatorname{argmax}_{T} P(S \mid T) P(T)=\operatorname{argmax}_{T} P(T)
\end{aligned}
$$

- We calculate the max probability parse using CKY by storing the max probability of each phrase within each cell as we build it up.

Probabilistic CYK for PCFG

function Probabilistic-CKY(words,grammar) returns most probable parse and its probability
for $j \leftarrow$ from 1 to LENGTH(words) do for all $\{A \mid A \rightarrow$ words $[j] \in$ grammar $\}$
table $[j-1, j, A] \leftarrow P(A \rightarrow$ words $[j])$
for $i \leftarrow$ from $j-2$ downto 0 do
for $k \leftarrow i+1$ to $j-1$ do
for all $\{A \mid A \rightarrow B C \in$ grammar,
and table $[i, k, B]>0$ and table $[k, j, C]>0\}$
if $($ table $[i, j, A]<P(A \rightarrow B C) \times$ table $[i, k, B] \times$ table $[k, j, C])$ then
table $[i, j, A] \leftarrow P(A \rightarrow B C) \times$ table $[i, k, B] \times$ table $[k, j, C]$
$\operatorname{back}[i, j, A] \leftarrow\{k, B, C\}$
return BUILD_TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]

Estimate the probabilities

- Using the treebank to count the statistics

$$
P(\beta \mid A)=\frac{\operatorname{Count}(A \rightarrow \beta)}{\sum_{\gamma} \operatorname{Count}(A \rightarrow \gamma)}=\frac{\operatorname{Count}(A \rightarrow \beta)}{\operatorname{Count}(A)}
$$

- We can also estimate the probabilities using a (nonprobabilistic) parser
- Parse the corpus, compute the statistics, and normalize the probabilities
- Might need to use the inside-outside algorithm for ambiguous sentences (see SLP2,3)

CIS 410/510: Natural Language Processing

A		β	$P(\beta \mid N P)$
NP	\rightarrow	NP PP	0.092
NP	\rightarrow	DT NN	0.087
NP	\rightarrow	NN	0.047
NP	\rightarrow	NNS	0.042
NP	\rightarrow	DT JJ NN	0.035
NP	\rightarrow	NNP	0.034
NP	\rightarrow	NNP NNP	0.029
NP	\rightarrow	JJ NNS	0.027
NP	\rightarrow	QP -NONE-	0.018
NP	\rightarrow	NP SBAR	0.017
NP	\rightarrow	NP PP-LOC	0.017
NP	\rightarrow	JJ NN	0.015
NP	\rightarrow	DT NNS	0.014
NP	\rightarrow	CD	0.014
NP	\rightarrow	NN NNS	0.013
NP	\rightarrow	DT NN NN	0.013
NP	\rightarrow	NP CC NP	0.013

CIS 410/510: Natural Language Processing

I	shot	an	elephant	in	my	pajamas

PRP:0.04 $[0,1]$					
	VBD:0.04 $[1,2]$				

CIS 410/510: Natural Language Processing

I	shot	an	elephant	in	my	pajamas
$\begin{gathered} \text { PRP:0.04 } \\ {[0,1]} \end{gathered}$	\varnothing	\varnothing				
	$\begin{gathered} \text { VBD:0.04 } \\ {[1,2]} \end{gathered}$	\varnothing				
		$\begin{gathered} \text { DT:0.05 } \\ {[2,3]} \end{gathered}$	$\begin{gathered} \text { NP: } \\ 0.00015 \\ {[2,4]} \end{gathered}$			
			$\begin{gathered} \text { NN:0.03 } \\ {[3,4]} \end{gathered}$			
				$\begin{gathered} \text { IN:0.10 } \\ {[4,5]} \end{gathered}$		
					PRP\$:0.12 [5,6]	
table $(2,4, N P)=P(\mathrm{NP} \rightarrow \mathrm{DT} \mathrm{NN}) \times \operatorname{table}(2,3, D T) \times \operatorname{table}(3,4, N N)$						$\begin{gathered} \text { NNS:0.01 } \\ {[6,7]} \end{gathered}$

CIS 410/510: Natural Language Processing

I	shot	an	elephant	in	my	pajamas

$\begin{gathered} \text { PRP:0.04 } \\ {[0,1]} \end{gathered}$	\varnothing	\varnothing				
VBD:0.04$[1,2]$		\varnothing	$\begin{gathered} \text { VP: } \\ 0.0000006 \\ {[1,4]} \\ \hline \end{gathered}$			
		$\begin{gathered} \text { DT:0.05 } \\ {[2,3]} \end{gathered}$	NP: 0.00015 [2.4]			
			NN:0.03 $[3,4]$			
				$\begin{gathered} \text { IN:0.10 } \\ {[4,5]} \end{gathered}$		
We just calculated this value and can use it now					$\begin{gathered} \text { PRP\$:0.12 } \\ {[5,6]} \end{gathered}$	
$e(1,4, V P)=P(\mathrm{VP} \rightarrow \mathrm{VBD} \mathrm{NP}) \times \operatorname{table}(1,2, V B D) \times \operatorname{table}(2,4, N P)$						$\begin{gathered} \text { NNS:0.01 } \\ {[6,7]} \end{gathered}$

CIS 410/510: Natural Language Processing

I	shot	an	elephant	in	my	pajamas

CIS 410/510: Natural Language Processing

I	shot	an	elephant	in	my	pajamas

$\begin{gathered} \text { PRP: }-3.21 \\ {[0,1]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \text { S: -19.2 } \\ {[0,4]} \end{gathered}$	\varnothing	\varnothing	
	$\begin{gathered} \text { VBD: -3.21 } \\ {[1,2]} \end{gathered}$	\varnothing	$\begin{gathered} \text { VP: -14.3 } \\ {[1,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \text { VP: }-30.2 \\ {[1,7]} \end{gathered}$
		$\begin{gathered} \text { DT: -3.0 } \\ {[2,3]} \end{gathered}$	$\begin{gathered} \text { NP: -8.8 } \\ {[2,4]} \end{gathered}$	\varnothing	\varnothing	$\begin{gathered} \text { NP: -24.7 } \\ {[2,7]} \end{gathered}$
			NN: -3.5 $[3,4]$	\varnothing	\varnothing	$\begin{gathered} \text { NP: -19.4 } \\ {[3,7]} \end{gathered}$
				$\begin{gathered} \text { IN: -2.3 } \\ {[4,5]} \end{gathered}$	\varnothing	$\begin{gathered} \text { PP: -13.6 } \\ {[4,7]} \end{gathered}$
For any phrase type spanning [i,j], we only need to keep the max probability given the assumptions of a PCFG					$\begin{aligned} & \text { PRP\$: } \\ & -2.12 \\ & {[5,61} \end{aligned}$	$\begin{gathered} \text { NP: -9.0 } \\ {[5,7]} \end{gathered}$
						$\begin{gathered} \text { NNS: -4.6 } \\ {[6,7]} \end{gathered}$

CIS 410/510: Natural Language Processing

I	shot	an	elephant	in	my	pajamas

Problems with PCFG

- $P(T)=\prod_{i=1}^{n} P(\beta \mid A)$
- Strong independence assumptions:
- Each production (e.g., NP \rightarrow DT NN) is independent of the rest of tree.
- In real use, productions are strongly dependent on their place in the tree.

	NP \rightarrow PRP	NP \rightarrow DT NN
	Pronoun	Non-Pronoun
Subject	91%	9%
Object	34%	66%

Problems with PCFG

- $P(T)=\prod_{i=1}^{n} P(\beta \mid A)$
- Strong independence assumptions:

	NP \rightarrow PRP	NP \rightarrow DT NN
	Pronoun	Non-Pronoun
Subject	91%	9%
Object	34%	66%

- With maximum likelihood estimator on Swithboard dataset:

$$
\begin{aligned}
& P(N P \rightarrow D T N N)=0.28 \\
& P(N P \rightarrow P R P)=0.25
\end{aligned}
$$

CIS 410/510: Natural Language Processing

Splitting non-terminals/ Parent annotation

- Rather than having a single rule for each non-terminal $P(N P \rightarrow$ DT NN), we can condition on some context (Johnson 1998)
- $P_{\text {subject }}(N P \rightarrow$ DT NN)
- $\mathrm{P}_{\text {object }}(\mathrm{NP} \rightarrow$ DT NN)
- More generally, we can encode context by annotating each node in a tree with its parent (parent annotation)
- This lets us to learn different probabilities for:
- $N P^{s}$ (subject)
- $\mathrm{NP}_{\mathrm{Vp}}$ (object)

- This dramatically increases the size of the grammar \rightarrow less training data for each production (data sparsity)
- Modern approaches search for best splits that maximize the training data likelihood (Petrov et al 2006)

Problems with PCFGs

- Lack of lexical dependency: Lexical information in a PCFG has little influence on the overall parse structure
- The identity of the verbs, nouns, and prepositions might be crucial to disambiguate the parses.

Figure 14.5 Two possible parse trees for a prepositional phrase attachment ambiguity. The left parse is the sensible one, in which "into a bin" describes the resulting location of the sacks. In the right incorrect parse, the sacks to be dumped are the ones which are already "into a bin", whatever that might mean.

Figure 14.7 An instance of coordination ambiguity. Although the left structure is intuitively the correct one, a PCFG will assign them identical probabilities since both structures use exactly the same set of rules. After Collins (1999).

Lexicalized PCFG

- Annotate each node with its head + POS tag of head

Figure 14.10 A lexicalized tree, including head tags, for a WSJ sentence, adapted from Collins (1999). Below we show the PCFG rules needed for this parse tree, internal rules on the left, and lexical rules on the right.

Lexicalized PCFG

- Annotate each node with its head + POS tag of head
- We can't estimate probabilities for such fine-grained productions well:

$$
\frac{\operatorname{Count}(V P(\text { dumped }, V B D) \rightarrow V B D(\text { dumped }, V B D) N P(\text { sacks, } N N S) P P(\text { into }, P))}{\operatorname{Count}(V P(\text { dumped }, V B D))}
$$

- Different models make different independent assumptions to make this quantity tractable (Collins 1999, Charniak 1997)

