
CIS 410/510: Natural Language Processing

Natural Language Processing: CIS 410/510

Dependency Parsing

Instructor: Thien Huu Nguyen

Based on slides from: Ralph Grishman, David
Bamman, Dan Jurasky, Chris Manning and others

CIS 410/510: Natural Language Processing

Dependency syntax

• “Between the word and its neighbors, the
mind perceives connections, the totality of
which forms the structure of the sentence.
The structural connections establish
dependency relations between the words.
Each connection in principle unites a superior
and an inferior term.”

Tesnier 1959; Nivre 2005

CIS 410/510: Natural Language Processing

Dependency syntax

• Dependency syntax doesn’t have non-terminal structure like a
CFG; words are directly linked to each other.

• Syntactic structure = asymmetric, binary relations between
words.

CIS 410/510: Natural Language Processing

Dependency structures/trees
• A dependency structure is a directed graph 𝐺	 = 	 (𝑉, 𝐴) consisting of a set

of vertices 𝑉 and arcs 𝐴 between them. Typically constrained to form a
tree:
– Each vertex corresponds to a word in the sentence
– Single root vertex with no incoming arcs
– Every vertex has exactly one incoming arc except root (single head

constraint), defining the parent/children or governor/dependent or
head/tail relations

– Each arc is associated with one label to indicate the dependency
relation between the two ends (e.g., nsubj, dobj, det) (i.e., typed arcs)

– There is a unique path from the root to each vertex in V (acyclic
constraint)

CIS 410/510: Natural Language Processing

Dependency trees
• Unlike phrase-structure trees, dependency trees aren’t tied to the linear

order of the words in a sentence.

• Dependency relations belong to the structural order of a sentence, not the
linear order.
– This is different from a phrase-structure tree, where the syntax is

constrained by the linear order of the sentence (a different linear
order yields a different parse tree).

CIS 410/510: Natural Language Processing

Dependency trees

From: http://corenlp.run/

CIS 410/510: Natural Language Processing

Dependencies vs constituents
• Dependency links are closer to semantic relationships; no need to infer

the relationships from the structure of a tree

• A dependency tree contains one edge for each word, no intermediate
hidden structures that also need to be learned for parsing.

• Easier to represent languages with free word order.

CIS 410/510: Natural Language Processing

Dependencies vs constituents

subject: S → NP VP
direct object: S → NP (VP → ... NP ...)

CIS 410/510: Natural Language Processing

Dependencies vs constituents

People can write arrows in this or the other way

CIS 410/510: Natural Language Processing

Dependency grammar
• Captures binary relations between words

– nsubj(NBC, suspended)
– dobj(Williams, suspended)

CIS 410/510: Natural Language Processing

Universal Dependencies
• Developing cross-linguistically

consistent treebank annotation for
many languages

• Goals:
– Facilitating multilingual parser

development
– Cross-lingual learning
– Parsing research from a

language typology perspective.

• Check out our Trankit tool for
multilingual dependency parsers:
– http://nlp.uoregon.edu/trankit

http://universaldependencies.org

http://nlp.uoregon.edu/trankit

CIS 410/510: Natural Language Processing

Universal Dependencies

http://universaldependencies.org

CIS 410/510: Natural Language Processing

Dependency grammar

CIS 410/510: Natural Language Processing

Some examples

CIS 410/510: Natural Language Processing

Dependency parsing
• A sentence is parsed by choosing for each word what other word

(including ROOT) is it a dependent of

• Usually some constraints:

– Only one word is a dependent of ROOT
– Don’t want cycles A → B, B → A

I shot an elephant in my pajamas

CIS 410/510: Natural Language Processing

Methods for dependency parsing
• Dynamic programming

– Eisner (1996) gives a clever algorithm with complexity O(n3), by producing parse
items with heads at the ends rather than in the middle

• Graph algorithms
– You create a Minimum Spanning Tree for a sentence
– (McDonald et al. 2005) MSTParser scores dependencies independently using an ML

classifier (he uses MIRA, for online learning, but it can be something else)

• Constraint Satisfaction
– Edges are eliminated if don’t satisfy hard constraints (Karlsson 1990)

• “Transition-based parsing” or “deterministic dependency parsing”
– Greedy choice of attachments guided by good machine learning classifiers

(i.e., MaltParser (Nivre et al. 2008)). Has proven highly effective.

CIS 410/510: Natural Language Processing

Greedy transition-based dependency parsing

• The parser starts in an initial configuration.

• At each step, it asks a guide to choose between one of several
transitions (actions) into new configurations.

• Parsing stops if the parser reaches a terminal configuration.

• The parser returns the dependency tree associated with the
terminal configuration.

CIS 410/510: Natural Language Processing

Greedy transition-based dependency parsing

• Eisner’s algorithm runs in time 𝑂(𝑛3).
This may be too much if a lot of data is involved.

• Idea: Design a dumber but really fast algorithm and let the machine
learning do the rest.

• Eisner’s algorithm searches over many different dependency trees
at the same time.

• A transition-based dependency parser only builds one tree, in one
left-to-right sweep over the input.

CIS 410/510: Natural Language Processing

Generic parsing algorithm

Transition-based dependency parsers differ with respect to the configurations
and the transitions that they use.

CIS 410/510: Natural Language Processing

The arc-standard algorithm
• The arc-standard algorithm is a simple algorithm for transition-

based dependency parsing.

• It is very similar to shift–reduce parsing as it is known for context-
free grammars.

• It is implemented in most practical transition- based dependency
parsers, including MaltParser.

CIS 410/510: Natural Language Processing

Configurations
• A configuration for a sentence 𝑤 =	𝑤!, … ,𝑤" consists of

three components:

– A buffer containing words of 𝑤
– A stack containing words of 𝑤
– The dependency tree constructed so far

CIS 410/510: Natural Language Processing

Configurations
• Initial configuration:

– All words are in the buffer
– The stack is empty
– The dependency tree is empty

• Terminal configuration:
– The buffer is empty
– The stack contains a single word

CIS 410/510: Natural Language Processing

Possible transitions
• shift(sh): push the next word in the buffer onto the stack

• left-arc(la): add an arc from the topmost word on the stack, 𝑠1,
to the second-topmost word, 𝑠2, and pop 𝑠2

• right-arc(ra): add an arc from the second-topmost word on the
stack, 𝑠2, to the topmost word, 𝑠1, and pop 𝑠1

CIS 410/510: Natural Language Processing

Configurations and transitions
• Initial configuration: ([], [0, … , 𝑛], [])

• Terminal configuration: ([0], [], 𝐴)

• shift (sh):
(𝜎, [𝑖|𝛽], 𝐴) 	⇒ 	 ([𝜎|𝑖], 𝛽, 𝐴)	

• left-arc (la):
 ([𝜎|𝑖|𝑗], 𝐵, 𝐴) 	⇒ 	 ([𝜎|𝑗], 𝐵, 𝐴 ∪ {𝑗, 𝑙, 𝑖}) only if 𝑖 ≠ 0

• right-arc (ra):
 ([𝜎|𝑖|𝑗], 𝐵, 𝐴) 	⇒ 	 ([𝜎|𝑖], 𝐵, 𝐴 ∪ {𝑖, 𝑙, 𝑗})	

CIS 410/510: Natural Language Processing

Example

I booked a flight from LA

I booked a flight from LA

CIS 410/510: Natural Language Processing

Example

I booked a flight from LA

I booked a flight from LA

sh

CIS 410/510: Natural Language Processing

Example

I booked a flight from LA

I booked a flight from LA

CIS 410/510: Natural Language Processing

Example

I booked a flight from LA

I booked a flight from LA

sh

CIS 410/510: Natural Language Processing

Example

I booked a flight from LA

I booked a flight from LA

CIS 410/510: Natural Language Processing

Example

I booked a flight from LA

I booked a flight from LA

la-subj

CIS 410/510: Natural Language Processing

Example

booked a flight from LA

I booked a flight from LA

subj

CIS 410/510: Natural Language Processing

Example

booked a flight from LA

I booked a flight from LA

subj

sh

CIS 410/510: Natural Language Processing

Example

booked a

I booked a flight from LA

subj

flight from LA

CIS 410/510: Natural Language Processing

Example

booked a flight from LA

I booked a flight from LA

subj

sh

CIS 410/510: Natural Language Processing

Example

booked a

I booked a flight from LA

subj

flight from LA

CIS 410/510: Natural Language Processing

Example

booked a

I booked a flight from LA

subj

flight from LA

la-det

CIS 410/510: Natural Language Processing

Example

booked

I booked a flight from LA

subj

flight from LA

det

CIS 410/510: Natural Language Processing

Example

booked

I booked a flight from LA

subj

flight from LA

det

sh

CIS 410/510: Natural Language Processing

Example

booked

I booked a flight from LA

subj

flight from LA

det

CIS 410/510: Natural Language Processing

Example

booked

I booked a flight from LA

subj

flight from LA

det

ra-pmod

CIS 410/510: Natural Language Processing

Example

booked

I booked a flight from LA

subj

flight

det pmod

CIS 410/510: Natural Language Processing

Example

booked

I booked a flight from LA

subj

flight

det pmod

ra-dobj

CIS 410/510: Natural Language Processing

Example

booked

I booked a flight from LA

subj det pmod

dobj

CIS 410/510: Natural Language Processing

Example

booked

I booked a flight from LA

subj det pmod

dobj

done!

CIS 410/510: Natural Language Processing

Complexity and optimality
• Time complexity is linear, 𝑂(𝑛), since we only have to treat each word

once

• This can be achieved since the algorithm is greedy, and only builds one
tree, in contrast to Eisner’s algorithm, where all trees are explored

• There is no guarantee that we will even find the best tree given the model,
with the arc-standard model

• There is a risk of error propagation

• An advantage is that we can use very informative features, for the ML
algorithm

CIS 410/510: Natural Language Processing

Guides
• We need a guide that tells us what the next transition should

be.

• The task of the guide can be understood as classification:
Predict the next transition (class), given the current
configuration.

CIS 410/510: Natural Language Processing

Training a guide
• We let the parser run on gold-standard trees.

• We collect all (configuration, transition) pairs and train a classifier on them.

• When parsing unseen sentences, we use the trained classifier as a guide.

• The number of (configuration, transition) pairs is far too large.

• We define a set of features of configurations that we consider to be relevant
for the task of predicting the next transition.
– Example: word forms of the topmost two words on the stack and the

next two words in the buffer

• We can then describe every configuration in terms of a feature vector (feature
engineering).

CIS 410/510: Natural Language Processing

Training a guide
• In practical systems, we have thousands of features and hundreds of

transitions.

• There are several machine-learning paradigms that can be used to train a
guide for such a task:
– SVM, Logistic Regression, Deep Neural Networks

CIS 410/510: Natural Language Processing

Example features

• Combinations of addresses and attributes (e.g. those marked in the table)
• Other features, such as distances, number of children, ...

CIS 410/510: Natural Language Processing

Conventional feature representation

binary, sparse
dim =106 ~ 107

Feature templates: usually a combination of 1 ~ 3 elements from the configuration.

Indicator features

CIS 410/510: Natural Language Processing

Problems with the conventional feature representation

• Sparse
• Expensive (more than 95% of parsing time is consumed by

feature computation)
• So, use neural networks/deep learning to learn a dense and

compact feature representation

dense
dim =1000

CIS 410/510: Natural Language Processing

A neural dependency parser
• We represent each word as with its (dense) word

embeddings.

• Meanwhile, POS tags and dependency labels (relations) are
also represented as d-dimensional dense vectors.
– The smaller discrete sets also exhibit many semantic similarities.

• NNS (plural noun) should be close to NN (singular noun)
• num (numerical modifier) should be close to amod (adjective modifier).

• We extract the tokens for the configurations based on the
stack/buffer positions and use their vectors to obtain the
representation for the configurations

CIS 410/510: Natural Language Processing

A neural dependency parser

• Extract a set of tokens for the configuration based on the positions on the
stack and buffer, and then concatenate their representation vectors.

CIS 410/510: Natural Language Processing

A neural dependency parser

CIS 410/510: Natural Language Processing

Alternative transition models
• There is another version of the arc-standard model, where arcs are

added between the topmost word on the stack and the topmost
word on the buffer

• There are actually many other alternatives

• Arc-eager model
– Contain four transitions:

• Shift
• Reduce
• Left-arc
• Right-arc

– Advantage: not strictly bottom-up, can create arcs earlier than in the
arc-standard model

CIS 410/510: Natural Language Processing

Evaluation of dependency parsers

• Labelled attachment score (LAS): percentage of correct arcs, relative to the
gold standard

• Labelled exact match (LEM): percentage of correct dependency trees,
relative to the gold standard

• Unlabelled attachment score/exact match (UAS/ UEM): the same, but
ignoring arc labels

CIS 410/510: Natural Language Processing

Word-vs sentence-level AS
• Example:2 sentence corpus

– sentence 1: 9/10 arcs correct
– sentence 2: 15/45 arcs correct

• Word-level (micro-average):
– (9+15) / (10+45) = 0.436

• Sentence-level (macro-average):
– (9/10+15/45)/2 = 0.617

• Word-level evaluation is normally used

CIS 410/510: Natural Language Processing

Evaluation of dependency parsers

CIS 410/510: Natural Language Processing

Projectivity
• A dependency tree is projective if:

– For every arc in the tree, there is a directed path from the head of the
arc to all words occurring between the head and the dependent (that
is, the arc (𝑖, 𝑙, 𝑗) implies that 𝑖	 →∗ 	𝑘	for every 𝑘 such that
min(𝑖, 𝑗) 	< 	𝑘	 < 	max(𝑖, 𝑗)).

– Or equivalently: There are no crossing dependency arcs when the
words are laid out in their linear order, with all arcs above the words

CIS 410/510: Natural Language Processing

Projectivity and dependency parsing

• Many dependency parsing algorithms can only handle
projective trees
– Including all algorithms we have discussed so far

• Non-projective trees do occur in natural language
– How often depends on language (and treebank)

CIS 410/510: Natural Language Processing

Non-projective dependency parsing

• Variants of transition-based parsing
– Using a swap-transition to allow non-projective parsing

• Contain four transitions: Shift, Swap, Left-arc, and Right-arc
• Runtime is 𝑂(𝑛2)	in the worst case (but usually less in practice)

– Using more than one stack
– Pseudo-projective parsing

• Graph-based parsing
– Minimum spanning tree algorithms

