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Dependency syntax

• “Between the word and its neighbors, the 
mind perceives connections, the totality of 
which forms the structure of the sentence. 
The structural connections establish 
dependency relations between the words. 
Each connection in principle unites a superior 
and an inferior term.”

Tesnier 1959; Nivre 2005



CIS 410/510: Natural Language Processing

Dependency syntax

• Dependency syntax doesn’t have non-terminal structure like a 
CFG; words are directly linked to each other.

• Syntactic structure = asymmetric, binary relations between 
words.
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Dependency structures/trees
• A dependency structure is a directed graph 𝐺	 = 	 (𝑉, 𝐴) consisting of a set 

of vertices 𝑉 and arcs 𝐴 between them. Typically constrained to form a 
tree:
– Each vertex corresponds to a word in the sentence
– Single root vertex with no incoming arcs
– Every vertex has exactly one incoming arc except root (single head 

constraint), defining the parent/children or governor/dependent or 
head/tail relations

– Each arc is associated with one label to indicate the dependency 
relation between the two ends (e.g., nsubj, dobj, det) (i.e., typed arcs)

– There is a unique path from the root to each vertex in V (acyclic 
constraint)
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Dependency trees
• Unlike phrase-structure trees, dependency trees aren’t tied to the linear 

order of the words in a sentence.

• Dependency relations belong to the structural order of a sentence, not the 
linear order.
– This is different from a phrase-structure tree, where the syntax is 

constrained by the linear order of the sentence (a different linear 
order yields a different parse tree).
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Dependency trees

From: http://corenlp.run/
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Dependencies vs constituents
• Dependency links are closer to semantic relationships; no need to infer 

the relationships from the structure of a tree

• A dependency tree contains one edge for each word, no intermediate 
hidden structures that also need to be learned for parsing.

• Easier to represent languages with free word order.
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Dependencies vs constituents

subject: S → NP VP
direct object: S → NP (VP → ... NP ... )



CIS 410/510: Natural Language Processing

Dependencies vs constituents

People can write arrows in this or the other way
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Dependency grammar
• Captures binary relations between words

– nsubj(NBC, suspended)
– dobj(Williams, suspended)



CIS 410/510: Natural Language Processing

Universal Dependencies
• Developing cross-linguistically 

consistent treebank annotation for 
many languages

• Goals:
– Facilitating multilingual parser 

development
– Cross-lingual learning
– Parsing research from a 

language typology perspective.

• Check out our Trankit tool for 
multilingual dependency parsers: 
– http://nlp.uoregon.edu/trankit 

http://universaldependencies.org

http://nlp.uoregon.edu/trankit
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Universal Dependencies

http://universaldependencies.org
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Dependency grammar



CIS 410/510: Natural Language Processing

Some examples
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Dependency parsing
• A sentence is parsed by choosing for each word what other word 

(including ROOT) is it a dependent of

• Usually some constraints:

– Only one word is a dependent of ROOT
– Don’t want cycles A → B, B → A

I shot an elephant in my pajamas
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Methods for dependency parsing
• Dynamic programming

– Eisner (1996) gives a clever algorithm with complexity O(n3), by producing parse 
items with heads at the ends rather than in the middle

• Graph algorithms
– You create a Minimum Spanning Tree for a sentence 
– (McDonald et al. 2005) MSTParser scores dependencies independently using an ML 

classifier (he uses MIRA, for online learning, but it can be something else)

• Constraint Satisfaction
– Edges are eliminated if don’t satisfy hard constraints (Karlsson 1990)

• “Transition-based parsing” or “deterministic dependency parsing”
– Greedy choice of attachments guided by good machine learning classifiers 

(i.e., MaltParser (Nivre et al. 2008)). Has proven highly effective.
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Greedy transition-based dependency parsing

• The parser starts in an initial configuration. 

• At each step, it asks a guide to choose between one of several 
transitions (actions) into new configurations. 

• Parsing stops if the parser reaches a terminal configuration.

• The parser returns the dependency tree associated with the 
terminal configuration. 
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Greedy transition-based dependency parsing

• Eisner’s algorithm runs in time 𝑂(𝑛3).
This may be too much if a lot of data is involved. 

• Idea: Design a dumber but really fast algorithm and let the machine 
learning do the rest. 

• Eisner’s algorithm searches over many different dependency trees 
at the same time. 

• A transition-based dependency parser only builds one tree, in one 
left-to-right sweep over the input. 
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Generic parsing algorithm 

Transition-based dependency parsers differ with respect to the configurations 
and the transitions that they use. 
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The arc-standard algorithm 
• The arc-standard algorithm is a simple algorithm for transition-

based dependency parsing.

• It is very similar to shift–reduce parsing as it is known for context-
free grammars.

• It is implemented in most practical transition- based dependency 
parsers, including MaltParser. 
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Configurations 
• A configuration for a sentence 𝑤 =	𝑤!, … ,𝑤" consists of 

three components:

– A buffer containing words of 𝑤
– A stack containing words of 𝑤
– The dependency tree constructed so far
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Configurations
• Initial configuration:

– All words are in the buffer
– The stack is empty
– The dependency tree is empty

• Terminal configuration:
– The buffer is empty
– The stack contains a single word
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Possible transitions 
• shift(sh): push the next word in the buffer onto the stack 

• left-arc(la): add an arc from the topmost word on the stack, 𝑠1,
to the second-topmost word, 𝑠2, and pop 𝑠2 

• right-arc(ra): add an arc from the second-topmost word on the 
stack, 𝑠2, to the topmost word, 𝑠1, and pop 𝑠1 
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Configurations and transitions
• Initial configuration: ([], [0, … , 𝑛], []) 

• Terminal configuration: ([0], [], 𝐴) 

• shift (sh):
(𝜎, [𝑖|𝛽], 𝐴) 	⇒ 	 ([𝜎|𝑖], 𝛽, 𝐴)	

• left-arc (la):
 ([𝜎|𝑖|𝑗], 𝐵, 𝐴) 	⇒ 	 ([𝜎|𝑗], 𝐵, 𝐴 ∪ {𝑗, 𝑙, 𝑖}) only if 𝑖 ≠ 0 

• right-arc (ra):
 ([𝜎|𝑖|𝑗], 𝐵, 𝐴) 	⇒ 	 ([𝜎|𝑖], 𝐵, 𝐴 ∪ {𝑖, 𝑙, 𝑗})	
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Example

I booked a flight from LA

I                            booked                             a                            flight                          from LA     
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Example

I booked a flight from LA

I                            booked                             a                            flight                          from LA     

sh
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Example

I booked a flight from LA

I                            booked                             a                            flight                          from LA     
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Example

I booked a flight from LA

I                            booked                             a                            flight                          from LA     

sh
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Example

I booked a flight from LA

I                            booked                             a                            flight                          from LA     
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Example

I booked a flight from LA

I                            booked                             a                            flight                          from LA     

la-subj
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Example

booked a flight from LA

I                            booked                             a                            flight                          from LA     

subj
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Example

booked a flight from LA

I                            booked                             a                            flight                          from LA     

subj

sh
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Example

booked a

I                            booked                             a                            flight                          from LA     

subj

flight from LA
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Example

booked a flight from LA

I                            booked                             a                            flight                          from LA     

subj

sh
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Example

booked a

I                            booked                             a                            flight                          from LA     

subj

flight from LA
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Example

booked a

I                            booked                             a                            flight                          from LA     

subj

flight from LA

la-det
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Example

booked

I                            booked                             a                            flight                          from LA     

subj

flight from LA

det
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Example

booked

I                            booked                             a                            flight                          from LA     

subj

flight from LA

det

sh
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Example

booked

I                            booked                             a                            flight                          from LA     

subj

flight from LA

det
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Example

booked

I                            booked                             a                            flight                          from LA     

subj

flight from LA

det

ra-pmod
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Example

booked

I                            booked                             a                            flight                          from LA     

subj

flight

det pmod
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Example

booked

I                            booked                             a                            flight                          from LA     

subj

flight

det pmod

ra-dobj
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Example

booked

I                            booked                             a                            flight                          from LA     

subj det pmod

dobj
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Example

booked

I                            booked                             a                            flight                          from LA     

subj det pmod

dobj

done!
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Complexity and optimality 
• Time complexity is linear, 𝑂(𝑛), since we only have to treat each word 

once 

• This can be achieved since the algorithm is greedy, and only builds one 
tree, in contrast to Eisner’s algorithm, where all trees are explored 

• There is no guarantee that we will even find the best tree given the model, 
with the arc-standard model 

• There is a risk of error propagation 

• An advantage is that we can use very informative features, for the ML 
algorithm 
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Guides
• We need a guide that tells us what the next transition should 

be. 

• The task of the guide can be understood as classification: 
Predict the next transition (class), given the current 
configuration. 
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Training a guide
• We let the parser run on gold-standard trees. 

• We collect all (configuration, transition) pairs and train a classifier on them. 

• When parsing unseen sentences, we use the trained classifier as a guide.

• The number of (configuration, transition) pairs is far too large. 

• We define a set of features of configurations that we consider to be relevant 
for the task of predicting the next transition. 
– Example: word forms of the topmost two words on the stack and the 

next two words in the buffer 

• We can then describe every configuration in terms of a feature vector (feature 
engineering).
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Training a guide
• In practical systems, we have thousands of features and hundreds of 

transitions. 

• There are several machine-learning paradigms that can be used to train a 
guide for such a task:
– SVM, Logistic Regression, Deep Neural Networks
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Example features

• Combinations of addresses and attributes (e.g. those marked in the table) 
• Other features, such as distances, number of children, ... 
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Conventional feature representation

binary, sparse
dim =106 ~ 107

Feature templates: usually a combination of 1 ~ 3 elements from the configuration.

Indicator features
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Problems with the conventional feature representation

• Sparse
• Expensive (more than 95% of parsing time is consumed by 

feature computation)
• So, use neural networks/deep learning to learn a dense and 

compact feature representation

dense
dim =1000
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A neural dependency parser
• We represent each word as with its (dense) word 

embeddings.

• Meanwhile, POS tags and dependency labels (relations) are 
also represented as d-dimensional dense vectors.
– The smaller discrete sets also exhibit many semantic similarities.

• NNS (plural noun) should be close to NN (singular noun)
• num (numerical modifier) should be close to amod (adjective modifier).

• We extract the tokens for the configurations based on the 
stack/buffer positions and use their vectors to obtain the 
representation for the configurations
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A neural dependency parser

• Extract a set of tokens for the configuration based on the positions on the 
stack and buffer, and then concatenate their representation vectors.
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A neural dependency parser
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Alternative transition models
• There is another version of the arc-standard model, where arcs are 

added between the topmost word on the stack and the topmost 
word on the buffer

• There are actually many other alternatives

• Arc-eager model
– Contain four transitions:

• Shift
• Reduce
• Left-arc
• Right-arc

– Advantage: not strictly bottom-up, can create arcs earlier than in the 
arc-standard model 
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Evaluation of dependency parsers 

• Labelled attachment score (LAS): percentage of correct arcs, relative to the 
gold standard 

• Labelled exact match (LEM): percentage of correct dependency trees, 
relative to the gold standard 

• Unlabelled attachment score/exact match (UAS/ UEM): the same, but 
ignoring arc labels 
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Word-vs sentence-level AS 
• Example:2 sentence corpus 

– sentence 1: 9/10 arcs correct 
– sentence 2: 15/45 arcs correct 

• Word-level (micro-average):
– (9+15) / (10+45) = 0.436

• Sentence-level (macro-average):
– (9/10+15/45)/2 = 0.617

• Word-level evaluation is normally used
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Evaluation of dependency parsers
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Projectivity
• A dependency tree is projective if: 

– For every arc in the tree, there is a directed path from the head of the 
arc to all words occurring between the head and the dependent (that 
is, the arc (𝑖, 𝑙, 𝑗) implies that 𝑖	 →∗ 	𝑘	for every 𝑘 such that 
min(𝑖, 𝑗) 	< 	𝑘	 < 	max(𝑖, 𝑗)).

– Or equivalently: There are no crossing dependency arcs when the 
words are laid out in their linear order, with all arcs above the words
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Projectivity and dependency parsing 

• Many dependency parsing algorithms can only handle 
projective trees 
– Including all algorithms we have discussed so far

• Non-projective trees do occur in natural language 
– How often depends on language (and treebank) 
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Non-projective dependency parsing 

• Variants of transition-based parsing
– Using a swap-transition to allow non-projective parsing

• Contain four transitions: Shift, Swap, Left-arc, and Right-arc
• Runtime is 𝑂(𝑛2)	in the worst case (but usually less in practice)

– Using more than one stack
– Pseudo-projective parsing

• Graph-based parsing
– Minimum spanning tree algorithms 


