CIS 410/510: Natural Language Processing

Deep Learning for NLP

Instructor: Thien Huu Nguyen
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Remember Logistic Regression?

P(Y =1|x) =0 (wa +b)




CIS 410/510: Natural Language Processing

The logit loss

O

L(w,b)
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Cross Entropy

We have,

arg ma;)xP(d|W,b)

A 7
~~

L(w,b) :Zi (i, 9 (xi;w,b))

This loss is an instance of the cross-entropy

H(p,q) = Ep[—logg]

forp = Y|x;andq = Y|x;.
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Gradient Descent

Let £(6) denote a loss function defined over model parameters 6 (e.g., w and b).

To minimize £(0), gradient descent uses local linear information to iteratively
move towards a (local) minimum.

Forf, € R?, a first-order approximation around 0, can be defined as

- 1
L(0o +¢€) = L(6o) + € VoL(6o) + 5“6“2'

8, = — 0.50, y = 0.50
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Gradient Descent

A minimizer of the approximation 2(90 5 6) is given for
VeL(0y+€) =0
i
= VoL(6y) + ;6,

which results in the best improvement for the step e = —yVyL(6)).

Therefore, model parameters can be updated iteratively using the update rule
9t+1 = 7V0£(9t)7

where

e 0y are the initial parameters of the model;
e 7yisthelearningrate;

e both arecritical for the convergence of the update rule.
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Stochastic Gradient Descent

In the empirical risk minimization setup, E(é’) and its gradient decompose as

£O) =5 Y Uy f(xi0))

X;,y; €d

VL(0) :% Z Vey;, f(xi;0)).

X, 7yi6d

Therefore, in batch gradient descent the complexity of an update grows linearly
with the size IV of the dataset.

More importantly, since the empirical risk is already an approximation of the
expected risk, it should not be necessary to carry out the minimization with great
accuracy.

O
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Stochastic Gradient Descent

Instead, stochastic gradient descent uses as update rule:

0111 = 0 — ’YVf(yz'(tH), f(xz'(t+1);9t))
e |teration complexity is independent of IV.

e The stochastic process {0;|t = 1, ...} depends on the examples i(t) picked
randomly at each iteration.

»>>

Batch gradient descent

Stochastic gradient descent
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Stochastic Gradient Descent

Why is stochastic gradient descent still a good idea?

e Informally, averaging the update

011 =0, — ’YVf(yvz(tH), f(xi(t+1); 9t))

over all choices i(t + 1) restores batch gradient descent.

e Formally, if the gradient estimate is unbiased, e.g., if

1
Eit+1) [V Yie+1), F(Xige1); 0¢))] = N Z Ve i f(xi50:))

Xi ,yi€d

= VL(6;)

then the formal convergence of SGD can be proved, under appropriate
assumptions (see references).

o Interestingly, if training examples x;, y; ~ Py y arereceived and used in an
online fashion, then SGD directly minimizes the expected risk.
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Layers

So far we considered the logisticunit h = o (WTx 4 b),where heR x e RP,
w € RPandb € R.

These units can be composed in parallel to form a layer with g outputs:
h=0(W'x +b)

whereh € R%,x € RP, W € RP*? b € R?andwhere o(-) is upgraded to the
element-wise sigmoid function.

®—> matmul —» add >
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Multi-layer Perceptron/Neural Nets
(MLPs)

Similarly, layers can be composed in series, such that:

h() = X
h; = c(Wihg + by)

hL — O'(W-Cll;hL_l + bL)
f(x;0) =9 =hy
where 6 denotes the model parameters { Wy, by, ...|k =1,..., L}.

This model is the multi-layer perceptron, also known as the fully connected
feedforward network.

O

What if we don’t have the non-linear functions?
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Activation Functions

/’

Also called “link functions’

sign(a) .

o(a) = 1+e@

tanh(a) = —
e +e ¢

ReLU(a) = max(a,0)
SoftPlus(a) = log(1 + e%)

a, for a > 0
ELU(a) = { ae® —1), fora<0 }
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Computational Graph
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Classification

For binary classification, the width g of the last layer L is set to 1, which
results in a single output Az, € [0, 1] that models the probability

Pl =155

For multi-class classification, the sigmoid action o in the last layer can be
generalized to produce a (normalized) vectorhy € [O, 1]0 of probability
estimates P(Y = i|x).

This activation is the Softmax function, where its 2-th output is defined as

exp(z;)

25;1 exp(z;)

Softmax(z); = ;

fOr = Linsns (2.

What is the loss function in this multi-class setting?
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Regression

The last activation o can be skipped to produce unbounded output values

hr € R.
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Self-driving cars
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Self-driving cars

Sharp Straight Sharp
Left Ahead Right

30 Output
Units

30x32 Sensor
Input Retina

i

ALVINN: Autonomous Land Vehicle In a Neural Network (1989)
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Automatic Differentiation

To minimize £(6) with stochastic gradient descent, we need the gradient

Vol(6,).

Therefore, we require the evaluation of the (total) derivatives

d¢ dl
dW,,’ dby,

of the loss £ with respect to all model parameters Wy, by, fork =1, ..., L.

These derivatives can be evaluated automatically from the computational graph
of £ using automatic differentiation.

O
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Chain Rule

_,@

—) gm

bbb

Let us consider a 1-dimensional output composition f o g, such that

)

u=g(z) = (g:1(x), ..., gm(x))

<
]

e
c

O

UNIVERSITY OF OREGON



CIS 410/510: Natural Language Processing

Chain Rule

The chain rule statesthat (f o g)' = (f' 0 g)g'.

For the total derivative, the chain rule generalizes to

d_y_i 8y duk

dz 240w dz

recursive case
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Reserve Automatic Differentiation

* Since a neural network is a composition of differential
functions, the total derivatives of the loss can be evaluated
backward, by applying the chain rule recursively over its
computational graph.

* The implementation of this procedure is called reserve
automatic differentiation.
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Example

Let us consider a simplified 2-layer MLP and the following loss function:

f(x; W1, W) = 0 (Wyo (W] x))
Uy, §; W1, W3) = cross_ent(y, ) + A (|[[Wi[]2 + |[[W2]|2)

forx € RP,y € R,W; € RP*?7and W, € RY,

UNIVERSITY OF OREGON

O




CIS 410/510: Natural Language Processing

Example

In the forward pass, intermediate values are all computed from inputs to outputs,
which results in the annotated computational graph below:
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Example

The total derivative can be computed through a backward pass, by walking

through all paths from outputs to parameters in the computational graph and

accumulating the terms. For example, for d%l we have:

AW:  Ous AW | Ous AW
d’u,g -

aw,

¥

@zm: ("ug .
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Example

Let us zoom in on the computation of the network output ¢ and of its derivative
with respect to W.

e Forward pass: values w1, us, u3 and ¢ are computed by traversing the graph
from inputs to outputs given x, W and W .

e Backward pass: by the chain rule we have

dg 09 Ouz duz Owu
dW,;  Oug Ouy Ou; OW,
00 (u3) OW3uz 0o (u1) OWT wy
 Oug Ouy ou; O0W;,

Note how evaluating the partial derivatives requires the intermediate values
computed forward.
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Back-propagation
* This algorithm is also known as

* An equivalent procedure can be defined to evaluate
the derivatives in forward mode, from inputs to
outputs.

e Since differentiation is a linear operator, automatic
differentiation can be implemented efficiently in
terms of tensor operations.

O
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Convolutions

Input

0 2 -2 1 3
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Convolutions

32x32x3 image

5x5x3 filter
32 L
Ig Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32
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Convolutions

Filters always extend the full
__——  depth of the input volume

32x32x3 image /

5x5x3 filter

32

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32
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Convolutions

O

32x32x3 image
5x5x3 filter w

o

"~ 1 number:

|
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

wlaz +b
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Convolutions

activation map

32x32x3 image

/ " 5x5x3filter
e
>O convolve (slide) over all

spatial locations
| £
3

O
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Convolutions

let’t add one more filter, the green one

- 32x32x3 image activation maps

/ . Sxox3iter
32 _—

convolve (slide) over all

spatial locations
| %
3
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Convolutions

with 6 separate filters, we’ll get 6 separate

activation maps
activation maps

32

28

Convolution Layer

g .
LA N NN
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Convolutional Neural Networks (CNN)

LeNet-5 (LeCun et al, 1998)

e First convolutional network to use backpropagation.

e Applied to character recognition.

C3: f. maps 16@10x10

INPUT gé 2fg.;:(ltzuare maps S4: f. maps 16@5x5
32x32 S2: f. maps C5: layer :
6@14x14 120 o g

|
Full comLection ’ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.
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CNN for Sentence Classification

Temporal convolution/1D convolution

wait [T T T 1 [ [l
fOI‘ ....................... ‘I_|
............... ...
the ........................................ ——
vi deo - __ .......................................................
and B e %
do T L TN e
n't | | | | | | T —~!l e
rent .................................................... N
it —
I | I | I I I
n x k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

Convolutional Neural Networks for Sentence Classification, Kim et al., 2014 (EMNLP)
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CNN for Sentence Classification

Model MR | SST-1 | SST-2 | Subj | TREC| CR | MPQA
CNN-rand 76.1 45.0 82.7 | 89.6 | 91.2 | 79.8 | 83.4
CNN-static 81.0 | 45.5 86.8 | 93.0 | 92.8 | 84.7 | 89.6
CNN-non-static 81.5 | 48.0 87.2 934 | 93.6 | 84.3 | 89.5
CNN-multichannel 81.1 474 | 88.1 | 93.2 | 92.2 | 85.0 | 894
RAE (Socher et al., 2011) 777 | 43.2 82.4 — — — 86.4
MV-RNN (Socher et al., 2012) 79.0 | 444 82.9 — — — —
RNTN (Socher et al., 2013) — 45.7 85.4 — — — —
DCNN (Kalchbrenner et al., 2014) — 48.5 86.8 — 93.0 — —
Paragraph-Vec (Le and Mikolov, 2014) - 48.7 | 87.8 — — — —
CCAE (Hermann and Blunsom, 2013) || 77.8 — — — — — 87.2
Sent-Parser (Dong et al., 2014) 79.5 — — — — — 86.3
NBSVM (Wang and Manning, 2012) 79.4 - — 93.2 - 81.8 | 86.3
MNB (Wang and Manning, 2012) 79.0 - - 93.6 - 80.0 | 86.3
G-Dropout (Wang and Manning, 2013) || 79.0 — — 93.4 — 82.1 | 86.1
F-Dropout (Wang and Manning, 2013) || 79.1 — — 93.6 — 81.9 | 86.3
Tree-CRF (Nakagawa et al., 2010) 77.3 — — — — 81.4 | 86.1
CRF-PR (Yang and Cardie, 2014) — — — — — 82.7 —
SVMg (Silva et al., 2011) - - - = 95.0 - -

Convolutional Neural Networks for Sentence Classification, Kim et al., 2014 (EMNLP)
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CNN for Relation Extraction

input sentence with marked entities

In the morning, the <e1>President</e1> traveled to <e2>Detroit</e2>

position embeddings matrix

table look-up
in
the
morning
word embedding matrix the R
——» president )
entity 1 traveled
. to
entity 2 _ detroit
< > :
Look-up tables Convolutional layer Max pooling  Fully connected layer
with multiple window sizes with dropout and
for filters softmax output

Relation Extraction: Perspective from Convolutional Neural Networks, Nguyen and Grishman, 2015
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