Natural Language Processing: CIS 410/510

Sequence Labeling

Instructor: Thien Huu Nguyen
Based on slides from: Ralph Grishman, David Bamman, Dan Jurasky, Chris Manning and others

Parts of Speech (POS)

- Grammar is stated in terms of parts of speech ('preterminals'):
- classes of words sharing syntactic properties:
noun
verb
adjective

Parts of Speech (POS)

- The distributional hypothesis: Words that appear in similar contexts have similar representations (and similar meanings)
- Substitution test for POS: if a word is replaced by another word, does the sentence remain grammatical?

He noticed the

$$
\begin{array}{ll}
\text { elephant } \quad \text { before anybody else } \\
\text { dog } & \\
\text { cat } & \\
\text { point } & \\
\text { features } & \\
\text { *what } & \\
\text { *and } &
\end{array}
$$

Substitution test

- These can often be too strict; some contexts admit substitutability for some pairs but not others.

He noticed the

elephant
before anybody else

Parts of Speech (POS)

Nouns	People, places, things, actions-made-nouns ("I like swimming"). Inflected for singular/plural
Verbs	Actions, processes. Inflected for tense, aspect, number, person
Adjectives	Properties, qualities. Usually modify nouns
Adverbs	Qualify the manner of verbs ("She ran downhill extremely quickly yesterday")
Determiner	Mark the beginning of a noun phrase ("a dog")
Pronouns	Refer to a noun phrase (he, she, it)
Prepositions	Indicate spatial/temporal relationships (on the table)
Conjunctions	Conjoin two phrases, clauses, sentences (and, or)

POS Tag Sets (Categories)

Most influential tag sets were those defined for projects to produce large POS-annotated corpora:

- Brown corpus
- 1 million words from variety of genres
-87 tags
- UPenn Tree Bank
- initially 1 million words of Wall Street Journal
- later retagged Brown
- first POS tags, then full parses
- 45 tags (some distinctions captured in parses)

Penn Treebank POS Tags

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	
CD	cardinal number	one, two	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb base form	eat
FW	foreign word	mea culpa	VBD	verb past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb gerund	eating
JJ	adjective	yellow	VBN	verb past participle	eaten
JJR	adj., comparative	bigger	VBP	verb non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, sing.	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	\#	pound sign	\#
PDT	predeterminer	all, both	"	left quote	' or "
POS	possessive ending	's	"	right quote	, or
PRP	personal pronoun	I, you, he	(left parenthesis	[, (,,$~<$
PRPS	possessive pronoun	your, one's)	right parenthesis],), \}, >
RB	adverb	quickly, never		comma	
RBR	adverb, comparative	faster	.	sentence-final punc	!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	; ...
RP	particle	up, off			

Verbs

Tag	Description	Examples
VB	base form (found in imperatives, infinities and subjunctives)	- Just do it - You should do it - He wants to do it
VBD	past tense	- He ate the food
VBG	present participle (Verb forms in the gerund or present participle; generally end in-ing)	- He was going to the store - She is implementing the algorithm
VBN	past participle	- The apple was eaten - He had expected to go
VBP	present (non 3rd-sing)	- I am the food - You are tall - We are tall - They do the job
VBZ	present (3rd-sing)	- She is tall - He likes ice cream
MD	modal verbs (All verbs that don't take ending in third-person singular present)	- can, could, dare, may, might, must, ought, shall, should, will, would

Nouns

Tag	Description	Examples
NN	non-proper, singular or mass	the company
NNS	non-proper, plural	the companies
NNP	proper, singular	Carolina
NNPS	proper, plural	Carolinas

RP (particle)

- Used in combination with a verb
- She turned the paper over
- verb + particle = phrasal verb, often non-compositional
- turn down, rule out, find out, go on

774 up/rp
487 out/rp
301 off/rp
209 down/rp
124 in/rp
98 over/rp
81 on/rp
72 back/rp
46 around/rp
25 away/rp

DT and PDT

- DT (Articles)
- Articles (a, the, every, no)
- Indefinite determines (another, any, some, each)
- That, these, this, those when preceding noun
- All, both when not preceding another determiner or possessive pronoun
- PDT (Predeterminer)
- Determiner-like words that precede an article or possessive pronoun
- all his marbles
- both the girls
- such a good time

65548 the/dt 26970 a/dt
4405 an/dt
3115 this/dt
2117 some/dt
2102 that/dt
1274 all/dt
1085 any/dt
953 no/dt
778 those/dt
263 all/pdt 114 such/pdt 84 half/pdt
24 both/pdt
7 quite/pdt
2 many/pdt
1 nary/pdt

PRP and PRP\$

- PRP (personal pronoun)
- Personal pronouns (I, me, you, he, him, it, etc.)
- Reflective pronouns (ending in -self): himself, herself
- Nominal possessive pronouns: mine, yours, hers
- PRP\$ (possessive pronouns)
- Adjectival possessive forms: my, their, its, his, her

2364 their/prp\$
2323 his/prp\$
521 our/prp\$
430 her/prp\$
328 my/prp\$
269 your/prp\$

Adjectives

- JJ (Adjectives)
- General adjectives (happy person, new house)
- Ordinal numbers (fourth cat)

2002	other/jj
1925	new/jj
1563	last/jj
1174	many/jj
1142	such/jj
1058	first/jj
	major/jj
	federal/jj
	next/jj
	financial/jj
1498	more/jjr
	higher/jjr
	lower/jjr
	less/jjr
	better/jjr
	smaller/jjr
	earlier/jjr
	greater/jjr
	larger/jjr
	bigger/jjr
	most/jjs
	least/jjs
	largest/jjs
	latest/jjs
	biggest/jjs
	best/jjs
	highest/jis
	worst/jjs
	lowest/jjs
	greatest/jjs

Adverbs

- RB (Adverbs)
- Most words that end in -ly (highly, heavily)
- Degree words (quite, too, very)
- Negative markers (not, n't, never)
- RBR (Comparative adverbs)
- Adverbs with a comparative ending -er and comparative meaning
- More/less
- RBS (Superlative adverbs)
- Adverbs with a superlative ending -est and superlative meaning.
- Most/least

57 longer/rbr
53 later/rbr
34 faster/rbr
549 most/rbs
21 best/rbs
9 least/rbs
8 hardest/rbs
2 most/rbs|jjs
1 worst/rbs
$1 \mathrm{rbs} / \mathrm{nnp}$
1 highest/rbs
1 earliest/rbs

IN and CC

- IN (preposition, subordinating conjunction)
- All prepositions (except to) and subordinating conjunctions
- He jumped on the table because he was excited

31111 of/in
22967 in/in
11425 for/in
7181 on/in
6684 that/in
6399 at/in
6229 by/in
5940 from/in
5874 with/in
5239 as/in

- CC (coordinating conjunction)
- And, but, not, or
- Math operators (plus, minor, less, times)
- For (meaning "because")
- he asked to be transferred, for he was unhappy

22362 and/cc
4604 but/cc
3436 or/cc
1410 \&/cc
94 nor/cc 68 either/cc
53 yet/cc
53 plus/cc
37 both/cc
32 neither/cc

The POS tagging task

Task: assigning a POS to each word

- not trivial: many words have several tags
- dictionary only lists possible POS, independent of context

Fruit flies like a banana

Time flies like an arrow

Why tag?

- POS tagging can help parsing by reducing ambiguity
- Can resolve some pronunciation ambiguities for text-tospeech ("desert" - noun: /'dzzərt/, verb: /dr'zsrt/)
- Can resolve some semantic ambiguities
subject

subject

Fruit flies like a banana Time flies like an arrow

Some tricky cases

- JJ or VBN
- If it is gradable (can insert "very") = JJ
- He was very surprised JJ
- If can be followed by a "by" phrase = VBN. If that conflicts with \#1 above, then = JJ
- He was invited by some friends of her
- He was very surprised by her remarks \square
- JJ or NP/NPS
- Proper names can be adjectives or nouns
- French cuisine is delicious

```
        JJ
```

- The French tend to be inspired cooks

Some tricky cases

- NN or VBG
- Only nouns can be modified by adjectives; only gerunds can be modified by adverbs
- Good cooking is something to enjoy
- Cooking well is a useful skill \square
- IN or RP
- If it can precede or follow the noun phrase $=$ RP
- She told off her friends
- She told her friends off
- If it must precede the noun phrase $=I N$
- She stepped off the train
- *She stepped the train off

Exercise [SLP2]

- Find the tagging errors in the following sentences:

I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN

Does/VBZ this/DT flight/NN serve/VB dinner/NNS

I/PRP have/VB a/DT friend/NN living/VBG /in/IN Denver/NNP

Can /VBP you/PRP list/VB the/DT nonstop/JJ afternoon/NN flights/NNS

POS tagging methods

- Similar to text classification, we would like to use machine learning methods to do POS tagging.
- Using supervised learning, we need to assemble a text corpus and manually annotate the POS for every word in the corpus (i.e., the Brown corpus) (i.e., the corpus-based methods).
- We can divide the corpus into training data, development data and test data
- To build a good corpus
- we must define a task people can do reliably (choose a suitable POS set)
- we must provide good documentation for the task
- so annotation can be done consistently
- we must measure human performance (through dual annotation and inter-annotator agreement)
- Often requires several iterations of refinement

The simplest POS tagging method

- We tag each word with its most likely part-of-speech (based on the training data)
- this works quite well: about 90\% accuracy when trained and tested on similar texts
- although many words have multiple parts of speech, one POS typically dominates within a single text type
- How can we take advantage of context to do better?

POS tagger as sequence labeling

- Sequence labeling: given a sequence of observations $x=$ $x_{1}, x_{2}, \ldots, x_{n}$, we need to assign a label/type/class y_{i} for each observation $x_{i} \in x$, leading to the sequence label $y=$ $y_{1}, y_{2}, \ldots, y_{n}$ for $x\left(y_{i} \in Y\right)(Y$ is the set of possible POS tags)
- For POS tagging, x can be an input sentence where x_{i} is the i th word in the sentence, and y_{i} can be the POS tag of x_{i} in x (Y is the set of the possible POS tags in our data). E.g.,

$x=$ Does	this	flight	serve	dinner
$y=$ VBZ	DT	NN	VB	NN

Sequence labeling

- As in text classification, we also want to estimate the distribution from the training data:

$$
P(y \mid x)=P\left(y_{1}, y_{2}, \ldots, y_{n} \mid x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- So, we can also obtain the predicted label sequence for x by:

$$
y^{*}=\operatorname{argmax}_{y} P(y \mid x)=\operatorname{argmax}_{y} P\left(y_{1}, y_{2}, \ldots, y_{n} \mid x_{1}, x_{2}, \ldots, x_{n}\right)
$$

CIS 410/510: Natural Language Processing

Hidden Markov Model (HMM)

- Using Bayes's Rule

$$
\begin{aligned}
& \operatorname{argmax}_{y} P(y \mid x)=\operatorname{argmax}_{y} \frac{P(x \mid y) P(y)}{P(x)} \\
= & \operatorname{argmax}_{y} P(x \mid y) P(y) \\
= & \operatorname{argmax}_{c} P\left(x_{1}, x_{2}, \ldots, x_{n} \mid y_{1}, y_{2}, \ldots, y_{n}\right) P\left(y_{1}, y_{2}, \ldots, y_{n}\right)
\end{aligned}
$$

- First-order Markov assumption: the probability of the label for the current step only depends on the label from the previous step, so:

$$
P\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\prod_{t=1}^{n} P\left(y_{t} \mid y_{<t}\right)=\prod_{t=1}^{n} P\left(y_{t} \mid y_{t-1}\right)
$$

- Independency assumption: the probability of the current word is only dependent on its label:

$$
P\left(x_{1}, x_{2}, \ldots, x_{n} \mid y_{1}, y_{2}, \ldots, y_{n}\right)=\prod_{t=1}^{n} P\left(x_{t} \mid x_{<t}, y\right)=\prod_{t=1}^{n} P\left(x_{t} \mid y_{t}\right)
$$

- So, in HMM, we need to obtain two types of probabilities:
- The transition probabilities: $P\left(y_{t} \mid y_{t-1}\right)$
- The emission probabilities: $P\left(x_{t} \mid y_{t}\right)$

Parameter Estimation

- Using Maximum Likelihood Estimators as in Naïve Bayes (i.e., just counting):

$$
\begin{aligned}
& P\left(y_{t} \mid y_{t-1}\right)=\frac{c\left(y_{t-1}, y_{t}\right)}{c\left(y_{t-1}\right)} \\
& P\left(x_{t} \mid y_{t}\right)=\frac{c\left(x_{t}, y_{t}\right)}{c\left(y_{t}\right)} \text { How many times } y_{t-1} \text { appears in the training data? }
\end{aligned}
$$

- With smoothing:

$$
\begin{array}{ll}
P\left(y_{t} \mid y_{t-1}\right)=\frac{\alpha+c\left(y_{t-1}, y_{t}\right)}{|Y| \alpha+c\left(y_{t-1}\right)} & \begin{array}{l}
Y \text { is the set of possible POS tags, } V \text { is the } \\
\text { vocabulary (set of possible words) }
\end{array} \\
P\left(x_{t} \mid y_{t}\right)=\frac{\alpha+c\left(x_{t}, y_{t}\right)}{|V| \alpha+c\left(y_{t}\right)} & \begin{array}{l}
\text { How many transition and emission } \\
\text { probabilities we have? }
\end{array}
\end{array}
$$

Transition probabilities

	NNP	MD	VB	JJ	NN	RB	DT
$\langle s>$	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

Figure 10.5 The A transition probabilities $P\left(t_{i} \mid t_{i-1}\right)$ computed from the WSJ corpus without smoothing. Rows are labeled with the conditioning event; thus $P(V B \mid M D)$ is 0.7968 .

Emission probabilities

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0.000097	0
NN	0	0.000200	0.000223	0.000006	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

Figure 10.6 Observation likelihoods B computed from the WSJ corpus without smoothing.

CIS 410/510: Natural Language Processing

Hidden State Network

Decoding

- Given the transition and emission probabilities $P\left(y_{t} \mid y_{t-1}\right)$ and $P\left(x_{t} \mid y_{t}\right)$, we need to find the best label sequence $y^{*}=y_{1}^{*}, y_{2}^{*}, \ldots, y_{n}^{*}$ for the input sentence $x=x_{1}, x_{2}, \ldots, x_{n}$ via:

$$
\begin{aligned}
y^{*}=\operatorname{argmax}_{y} P(y \mid x) & =\operatorname{argmax}_{y} \frac{P(x, y)}{P(x)}=\operatorname{argmax}_{y} P(x, y) \\
& =\operatorname{argmax}_{y} P\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right)
\end{aligned}
$$

- This requires the enumeration over all the possible label sequences (paths) y which are exponentially large
- E.g., using Penn Treebank with 45 tags
- A sentence of length 5 would have $45^{5}=184,528,15$ possible sequences
- A sentence of length 20 would have $45^{20}=1.16 e 33$ possible sequences

Greedy Decoder

- simplest decoder (tagger) assign tags deterministically from left to right
- selects y_{t}^{*} to maximize $P\left(x_{t} \mid y_{t}\right) * P\left(y_{t} \mid y_{t-1}\right)$
- does not take advantage of right context
- can we do better?

Viterbi algorithm

- Basic idea: if an optimal path through a sequence uses label L at time t, then it must have used an optimal path to get to label L at time t
- We can thus discard all non-optimal paths up to label L at time t
- Let $v_{t}(s)$ be the probability that the HMM is in state (label) s after seeing the first t observations (words) and passing through the most probable state sequence $y_{1}, y_{2}, \ldots, y_{t-1}$:

$$
v_{t}(s)=\max _{y_{1}, y_{2}, \ldots, y_{t-1}} P\left(x_{1}, x_{2}, \ldots, x_{t}, y_{1}, y_{2}, \ldots, y_{t-1}, y_{t}=s\right)
$$

- Introducing the start and end states to represent the beginning and the end of the sentences $\left(y_{0}=s t a r t, y_{n+1}=e n d\right)$, the probability for the optimal label sequence would be:
$v_{n+1}(e n d)=\max _{y_{1}, y_{2}, \ldots, y_{n}} P\left(x_{1}, x_{2}, \ldots, x_{n}, y_{0}=\operatorname{start}, y_{1}, y_{2}, \ldots, y_{n}, y_{n+1}\right.$ $=$ end)

Viterbi algorithm

- $v_{t}(s)=\max _{y_{1}, y_{2}, \ldots, y_{t-1}} P\left(x_{1}, x_{2}, \ldots, x_{t}, y_{0}=\right.$ start, $y_{1}, y_{2}, \ldots, y_{t-1}, y_{t}=$ $s)$
- Initialization $(t=0)$:

$$
v_{0}(s)=\left\{\begin{array}{l}
1 \text { if } s=\text { start } \\
0 \text { otherwise }
\end{array}\right.
$$

- Recurrence $(t>0)$:

$$
\begin{gathered}
v_{t}(s)=\max _{s^{\prime} \in Y}\left[v_{t-1}\left(s^{\prime}\right) P\left(s \mid s^{\prime}\right) P\left(x_{t} \mid s\right)\right] \\
\operatorname{backtrack}_{t}(s)=\operatorname{argmax}_{s^{\prime} \in Y}\left[v_{t-1}\left(s^{\prime}\right) P\left(s \mid s^{\prime}\right) P\left(x_{t} \mid s\right)\right]
\end{gathered}
$$

- Termination $(t=n+1)$: the optimal probability is v_{n+1} (end), following the backtrack links (starting at backtrack ${ }_{n+1}($ end $)$) to retrieve the optimal path.

CIS 410/510: Natural Language Processing

Example

Fish sleep

Word Emission Probabilities P (word I state)

- A two-word language: "fish" and "sleep"
- Suppose in our training corpus,
- "fish" appears 8 times as a noun and 5 times as a verb
- "sleep" appears twice as a noun and 5 times as a verb
- Emission probabilities:
- Noun
- P(fish|noun): 0.8
- P(sleep | noun) : 0.2
- Verb
- P(fish | verb) : 0.5
- P(sleep | verb) : 0.5

Viterbi Probabilities

0 1
2 3
start
verb
nounend

CIS 410/510: Natural Language Processing

start 1
verb
0
noun 0
end 0

CIS 410/510: Natural Language Processing

start
verb
noun
1
0
0 $\begin{gathered}0 \\ .2 * .5 \\ .8 * .8\end{gathered}$
end
0
0

CIS 410/510: Natural Language Processing

Complexity for Viterbi

$$
\text { time }=O\left(s^{2} n\right)
$$

for s states (labels) and n words
(Relatively fast: for 40 states and 20 words, 32,000 steps)

Named Entity Recognition (NER)

- Identify names of entities (i.e., persons, organizations, locations, proteins, etc.) in text.
- Can be casted as a sequence labeling problem via the BIO (beginning-inside-other) tagging schema, thus can be solved by HMM

CIS 410/510: Natural Language Processing

HMM for sequence labeling

- simple and fast to train and to use
- effective for POS tagging (one POS $\longleftrightarrow \rightarrow$ one state)
- can be made effective for name tagging (can capture context) by splitting states
- but further splitting could lead to sparse data problems

$$
P\left(y_{3} \mid y_{2}\right)
$$

$$
P\left(x_{3} \mid y_{3}\right)
$$

We want

- We want to have a more flexible means of capturing our linguistic intuition that certain conditions lead to the increased likelihood of certain outcomes (i.e., feature engineering)
- that a name on a 'common first name' list increases the chance that this is the beginning of a person name
- that being in a sports story increases the chance of team (organization) names
- Maximum entropy modeling (logistic regression) provides one mathematically well-founded method for combining such features in a probabilistic model.

CIS 410/510: Natural Language Processing

Maximum Entropy Markov Model (MEMM)

- Starting with the conditional probability distribution:

$$
P(y \mid x)=P\left(y_{1}, y_{2}, \ldots, y_{n} \mid x\right)=\prod_{t=1}^{n} P\left(y_{t} \mid y_{<t}, x\right)
$$

- Using the first-order Markov assumption (the probability for the current state only depends on the previous state): The probability for one step depends on the entire input sentence x

$$
\begin{gathered}
P\left(y_{t} \mid y_{<t}, x\right) \approx P\left(y_{t} \mid y_{t-1}, x\right) \\
P(y \mid x ; \theta)=\prod_{t=1}^{n} P\left(y_{t} \mid y_{<t}, x\right) \approx \prod_{t=1}^{n} P\left(y_{t} \mid y_{t-1}, x ; \theta\right)
\end{gathered}
$$

- Using logistic regression to model the probabilities $P\left(y_{t} \mid y_{t-1}, x ; \theta\right)$, allowing flexible feature engineering

CIS 410/510: Natural Language Processing

Maximum Entropy Markov Model (MEMM)

- $P\left(y_{t} \mid y_{t-1}, x\right)$
- In practice, we even simplify: $P\left(y_{t} \mid y_{t-1}, x\right) \approx P\left(y_{t} \mid y_{t-1}, x_{t}\right)$
- Defining K binary features $f_{i}\left(y_{t-1}, x\right)$ over the the prior label y_{t-1} and the entire input sentence x. For examples:
$-f_{i}\left(y_{t-1}, x\right)=\left\{\begin{array}{l}1 \text { if } x_{i}=\text { Smith and } y_{t-1}=\text { B_PER } \\ 0 \text { otherwise }\end{array}\right.$
$-f_{i}\left(y_{t-1}, x\right)=\left\{\begin{array}{l}1 \text { if } x_{i} \text { is capitalized } \\ 0 \text { otherwise }\end{array}\right.$
$-f_{i}\left(y_{t-1}, x\right)=\left\{\begin{array}{l}1 \text { if } x_{i} \text { is in the list of common names and } y_{t-1}=0 \\ 0 \text { otherwise }\end{array}\right.$
- Then:

$$
P\left(y_{t} \mid y_{t-1}, x ; \theta\right)=\frac{\exp \left(\sum_{i=1}^{K} w_{i}^{y_{t}} f_{i}\left(y_{t-1}, x\right)\right)}{Z\left(y_{t-1}, x\right)}
$$

where Z is the normalizing factor and $w^{y_{t}}=\left[w_{1}^{y_{t}}, w_{2}^{y_{t}}, \ldots, w_{K}^{y_{t}}\right]$ is the model parameters specific to y_{t}.

CIS 410/510: Natural Language Processing

Maximum Entropy Markov Model (MEMM)

- In order to train the MEMM model (i.e., finding the model parameters), we can also optimize the likelihood function over the training dataset:

$$
L(\theta)=-\sum_{(x, y) \in D} \log P(y \mid x, \theta)
$$

- There is no closed-form solution for this optimization problem (as HMM); an iterative solver is required.
- The good thing is the function is convex so easier to solve the those in deep learning. E.g.,
- Generalized Iterative Scaling (GIS)
(https://en.wikipedia.org/wiki/Generalized iterative scaling)
- L-BFGS (https://en.wikipedia.org/wiki/Limited-memory BFGS)

Feature Engineering

- The main task when using a MaxEnt classifier (e.g., MEMM) is to select an appropriate set of features
- words in the immediate neighborhood are typical basic features: w_{i-1}, w_{i}, w_{i+1}
- patterns constructed for rule-based taggers are likely candidates: w_{i+1} is an initial
- membership on word lists: w_{i} is a common first name (from Census)

Greedy decoding for MEMM

- At $i=0$, select:

$$
y_{1}^{*}=\operatorname{argmax}_{s} P\left(y_{1}=s \mid y_{0}=s t a r t, x\right)=\operatorname{argmax}_{s} P\left(y_{1}=s \mid x\right)
$$

- At $i>0$, select:

$$
y_{i}^{*}=\operatorname{argmax}_{s} P\left(y_{i}=s \mid y_{i-1}=y_{i-1}^{*}, x\right)
$$

Note that we need to condition on the predicted label from the previous step y_{i-1}^{*} here as this is now known in the inference/test time.

Viterbi decoding for MEMM

- In HMM, we infer the best label sequence via the joint probability $\operatorname{argmax}_{y} P(x, y)$ using the recurrence:

$$
v_{t}(s)=\max _{s^{\prime} \in Y}\left[v_{t-1}\left(s^{\prime}\right) P\left(y_{t}=s \mid y_{t-1}=s^{\prime}\right) P\left(x_{t} \mid y_{t}=s\right)\right]
$$

- In MEMM, we infer the best label sequence via the conditional probability $\operatorname{argmax}_{y} P(y \mid x)$ using the recurrence:

$$
\begin{aligned}
& v_{t}(s)=\max _{y_{1}, y_{2}, \ldots, y_{t-1}} P\left(y_{1}, y_{2}, \ldots, y_{t-1}, y_{t}=s \mid x\right) \\
& v_{t}(s)=\max _{s^{\prime} \in Y}\left[v_{t-1}\left(s^{\prime}\right) P\left(y_{i}=s \mid y_{i-1}=s^{\prime}, x\right)\right] \\
& p^{*}=\max _{s \in Y} v_{n}(s)
\end{aligned}
$$

The label bias problem in MEMM

Observation 1 Observation $2 \quad$ Observation 3

- The scores in the

bracket represent the ability to go from one state to another state given the observation, i.e.,
$\exp \left(\sum_{i=1}^{K} w_{i}^{y_{t}} f_{i}\left(y_{t-1}, x\right)\right)$
- Based on these
scores, the best paths should be: 2 -> 2 -> 2 or 2 -> 2 -> 5
- However, if we normalize at each state to obtain the probabilities, the best paths should be: 1 -> 1 -> 1 or 1 -> 1 -> 2

$$
\begin{aligned}
& 1 \text {-> } 1 \text {-> 1, } 1 \text {-> } 1 \text {-> 2: } 0.4^{*} 0.5=0.2 \\
& 2 \text {-> } 2 \text {-> 2, } 2 \text {-> } 2 \text {-> 5: } 0.2 \text { * } 0.3=0.06
\end{aligned}
$$

The label bias problem in MEMM

Observation $1 \quad$ Observation $2 \quad$ Observation 3

- This is because the

State 1

State 2

State 3

State 4

State 5
0.2 (100)

CIS 410/510: Natural Language Processing

Conditional Random Fields (CRF)

- Both MEMM and CRF directly model $P(y \mid x)$.
- For MEMM:

$$
P(y \mid x ; \theta)=\prod_{t=1}^{n} P\left(y_{t} \mid y_{t-1}, x ; \theta\right)
$$

- For CRF:

$$
P(y \mid x ; \theta)=\frac{\exp \left(\Phi(x, y)^{T} \theta\right)}{\sum_{y^{\prime} \in Y} \exp \left(\Phi\left(x, y^{\prime}\right)^{T} \theta\right)}
$$

CIS 410/510: Natural Language Processing

Conditional Random Fields (CRF)

- $P(y \mid x ; \theta)=\frac{\exp \left(\Phi(x, y)^{T} \theta\right)}{\sum_{y^{\prime} \in Y} \exp \left(\Phi\left(x, y^{\prime}\right)^{T} \theta\right)}=\frac{\exp \left(\Phi(x, y)^{T} \theta\right)}{Z(x)}$
where

$$
\begin{aligned}
& \Phi(x, y)=\left[\Phi_{1}(x, y), \ldots, \Phi_{k}(x, y), \ldots, \Phi_{K}(x, y)\right] \\
& \Phi_{k}(x, y)=\sum_{i=1 . n} \phi_{k}\left(y_{i-1}, y_{i}, x, i\right)
\end{aligned}
$$

with $\phi_{k}\left(y_{i-1}, y_{i}, x, i\right)$ is a function to capture some features of the input sentence x and the transition from state y_{i-1} to state y_{i} at step i (i.e., only capturing features at the edge and node level and similar to those we use for MEMM).

- The element of θ corresponding to $\Phi_{k}(x, y)$ is θ_{k}

CIS 410/510: Natural Language Processing

Conditional Random Fields (CRF)

- $P(y \mid x ; \theta)=\frac{\exp \left(\Phi(x, y)^{T} \theta\right)}{\sum_{y^{\prime} \in Y} \exp \left(\Phi\left(x, y^{\prime}\right)^{T} \theta\right)}=\frac{\exp \left(\Phi(x, y)^{T} \theta\right)}{Z(x)}$
- The normalizing factor $Z(x)$ involve summing over an exponential number of terms (all the possible label sequence for the input sentence -- $|Y|^{n}$)
- Using dynamic programming (i.e., the forward algorithm), we can compute the normalization in $O\left(n|Y|^{2}\right)$

observation

Conditional Random Fields (CRF)

- $\alpha_{i}(s)$: the total score for the length- i subpaths of the paths whose i-th state is s.
- Initialization:

$$
\alpha_{1}(s)=\exp \left(\sum_{k=1 . . K} \theta_{k} \phi_{k}(\text { start }, s, x, 1)\right.
$$

- Recurrence:

$$
\alpha_{i}(s)=\sum_{s^{\prime} \in Y} \alpha_{i-1}\left(s^{\prime}\right) M_{i}\left(s^{\prime}, s\right)
$$

- Final normalization score:

$$
Z(x)=\sum_{s \in Y} \alpha_{n}(s)
$$

CRF Training

- Loss function:

$$
L(\theta)=-\log P(y \mid x ; \theta)=-\log \frac{\exp \left(\Phi(x, y)^{T} \theta\right)}{\Sigma_{y^{\prime} \in Y} \exp \left(\Phi\left(x, y^{\prime}\right)^{T} \theta\right)}=-\Phi(x, y)^{T} \theta+\log Z(x)
$$

- In most of the optimization technique for $L(\theta)$, we will need to compute its gradient:

$$
\frac{\partial L(\theta)}{\partial \theta_{k}}=-\phi_{k}(x, y)+\sum_{y^{\prime} \in Y} \frac{\exp \left(\Phi\left(x, y^{\prime}\right)^{T} \theta\right) \phi_{k}\left(x, y^{\prime}\right)}{Z(x)}=-\phi_{k}(x, y)+\sum_{y^{\prime} \in Y} P\left(y^{\prime} \mid x\right) \phi_{k}\left(x, y^{\prime}\right)
$$

- $\sum_{y^{\prime} \in Y} P\left(y^{\prime} \mid x\right) \phi_{k}\left(x, y^{\prime}\right)=$

$$
\sum_{i=1 \ldots n} \sum_{s^{\prime} \in Y, s \in Y} \phi_{k}\left(s^{\prime}, s, x, i\right) \sum_{y^{\prime}: y_{i-1}^{\prime}=s^{\prime}, y_{i}^{\prime}=s} P\left(y^{\prime} \mid x\right)
$$

- Using this factorization, we can compute this quantity in $O\left(n|Y|^{2}\right)$ using the forward-backward algorithm

For details, see: Collins, "The Forward-Backward Algorithm"

CIS 410/510: Natural Language Processing

Viterbi decoding for CRF

- $v_{t}(s)=\max _{y_{1}, y_{2}, \ldots, y_{t-1}} P\left(y_{1}, y_{2}, \ldots, y_{t-1}, y_{t}=s \mid x\right)$
- Initialization:

$$
v_{1}(s)=\sum_{k=1 . . K} \exp \left(\theta_{k} \phi_{k}(s t a r t, s, x, 1)\right)
$$

- Recurrence:

$$
v_{i}(s)=\max _{s^{\prime} \in Y}\left[\alpha_{i-1}\left(s^{\prime}\right) M_{i}\left(s^{\prime}, s\right)\right]
$$

- Best score:

$$
p^{*}=\max _{s \in Y} v_{n}(s)
$$

Recurrent Neural Networks (RNN)

- $\quad R$: recurrence function
- O: output function
- $\quad s_{i}, y_{i}$: hidden vector and output vector at step i.
- θ : model parameters (to be learned during training)

CIS 410/510: Natural Language Processing

Recurrent Neural Networks (RNN)

- At each step, the R function takes two inputs (i.e., the hidden vector from the previous step s_{t-1} and the input vector from the current step x_{t}) to compute the hidden vector for the current step s_{t} :

$$
s_{t}=R\left(s_{t-1}, x_{t}\right)
$$

- The hidden vector s_{t} can be used as the feature vector to make a prediction about the label for x_{t} (i.e., POS or NER). Essentially, we use the O function to transform s_{t} into a score vector o_{t} whose dimensions quantify the likelihood that x_{t} has the corresponding labels (i.e., $\left|o_{t}\right|=$ $|Y|)$:

$$
o_{t}=O\left(s_{t} W^{o}+b^{o}\right)
$$

- o_{t} can be transformed into a probability distribution via the softmax function: $d_{t}=\operatorname{softmax}\left(o_{t}\right)$
- In the simplest version (i.e., vanilla RNN), O can be just the identity function (i.e., $O(x)=x$), while R can be a simple linear transformation followed by a non-linear function:

$$
s_{t}=\sigma\left(s_{t-1} W^{s}+x_{t} W^{x}+b^{s}\right)
$$

CIS 410/510: Natural Language Processing

Recurrent Neural Networks (RNN)

- The model parameters: $\theta=\left\{W^{s}, W^{x}, b^{s}, W^{o}, b^{o}\right\}$
- The recurrence nature (i.e., using the hidden vector from the previous step for the current computation) allows each hidden vector s_{t} to capture information about all the words before $t: s_{t}=$ $f\left(s_{0}, s_{1}, \ldots, s_{t-1}\right)$
- The use of the same parameters W^{s}, W^{x}, b^{s} in the recurrence function R causes the gradient vanishing problem (i..e, gradient becomes small in long sentences so the models cannot learn)
- In practice, the LSTM cell is often used for R to mitigate this problem.

$$
\begin{aligned}
f_{t} & =\sigma_{g}\left(W_{f} x_{t}+U_{f} h_{t-1}+b_{f}\right) \\
i_{t} & =\sigma_{g}\left(W_{i} x_{t}+U_{i} h_{t-1}+b_{i}\right) \\
o_{t} & =\sigma_{g}\left(W_{o} x_{t}+U_{o} h_{t-1}+b_{o}\right) \\
c_{t} & =f_{t} \circ c_{t-1}+i_{t} \circ \sigma_{c}\left(W_{c} x_{t}+U_{c} h_{t-1}+b_{c}\right) \\
h_{t} & =o_{t} \circ \sigma_{h}\left(c_{t}\right)
\end{aligned}
$$

UNIVERSITY OF OREGON

Training RNN

Bidirectional RNN

A city or a football team?

Liverpool suffered an upset first home league defeat of the season, beaten 1-0 by a Guy
Whittingham goal for Sheffield Wednesday.

- The information on the left is not enough to predict the label for the current word.

CIS 410/510: Natural Language Processing

Bidirectional RNN

- $s_{i}^{f}=\sigma\left(s_{i-1}^{f} W_{s}^{f}+x_{i} W_{x}^{f}+b^{f}\right)$

So, one hidden vector has access to the context information

- $s_{i}^{b}=\sigma\left(s_{i-1}^{b} W_{s}^{b}+x_{i} W_{x}^{b}+b^{b}\right)$ across the whole sentence
- $y_{i}=\operatorname{softmax}\left(\left[s_{i}^{f}, s_{i}^{b}\right] W^{o}+b^{o}\right), \theta=\left[W_{s}^{f}, W_{x}^{f}, b^{f}, W_{s}^{b}, W_{x}^{b}, b^{b}, W^{o}, b^{o}\right]$

Bidirectional RNN

CIS 410/510: Natural Language Processing

We can also go deeper (stacked RNN)

Incorporating CRF

- RNN makes prediction for words independently (the features/representations share the parameters, but the output predictions are independent)
- There are some dependencies between the output labels that we want to exploit (i.e., I_PER can only be preceded by B_PER), so the later predictions can influence the prior predictions (e.g., fixing prior's error)
- CRF can achieve this via the global normalization of the label sequence probabilities
- Idea: Incorporate CRF as the final in the RNN models for sequence labeling

Incorporating CRF

Figure 7: A BI-LSTM-CRF model.

$$
s\left([x]_{1}^{T},[i]_{1}^{T}, \tilde{\theta}\right)=\sum_{t=1}^{T}\left([A]_{[i]_{t-1},[i]_{t}}+\left[f_{\theta}\right]_{[i]_{t}, t}\right)
$$

Huang et al. 2015, "Bidirectional LSTM-CRF Models for Sequence Tagging

Incorporating CRF

Ma and Hovy (2016), "End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF"

Incorporating CRF

Layer	Hyper-parameter	POS	NER
CNN	window size	3	3
	number of filters	30	30
LSTM	state size	200	200
	initial state	0.0	0.0
	peepholes	no	no
Dropout	dropout rate	0.5	0.5
	batch size	10	10
	initial learning rate	0.01	0.015
	decay rate	0.05	0.05
	gradient clipping	5.0	5.0

| Model | POS | | NER | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Dev | Test | | Dev | | | Test | |
| | Acc. | Acc. | Prec. | Recall | F1 | Prec. | Recall | F1 |
| BRNN | 96.56 | 96.76 | 92.04 | 89.13 | 90.56 | 87.05 | 83.88 | 85.44 |
| BLSTM | 96.88 | 96.93 | 92.31 | 90.85 | 91.57 | 87.77 | 86.23 | 87.00 |
| BLSTM-CNN | 97.34 | 97.33 | 92.52 | 93.64 | 93.07 | 88.53 | 90.21 | 89.36 |
| BRNN-CNN-CRF | 97.46 | 97.55 | 94.85 | 94.63 | 94.74 | 91.35 | 91.06 | 91.21 |

