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CIS 410/510: Natural Language Processing

Parts of Speech (POS)

 Grammar is stated in terms of parts of speech
(‘preterminals’):

— classes of words sharing syntactic properties:
noun
verb
adjective
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Parts of Speech (POS)

 The distributional hypothesis: Words that appear in similar contexts have
similar representations (and similar meanings)

for POS: if a word is replaced by another word, does the
sentence remain ?

He noticed the before anybody else
dog
cat
point
features
*what
*and
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Substitution test

 These can often be too strict; some contexts admit substitutability for
some pairs but not others.

He noticed the before anybody else

*Sandy
Both nouns

but common vs. proper

He *arrived the before anybody else

Both verbs

but transitive vs. intransitive
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Parts of Speech (POS)

Nouns People, places, things, actions-made-nouns (“I like
”). Inflected for singular/plural
Verbs Actions, processes. Inflected for tense, aspect,
number, person
Adjectives Properties, qualities. Usually modify nouns
Adverbs Qualify the manner of verbs (“She ran
”)
Determiner Mark the beginning of a noun phrase (“= dog”)
Pronouns Refer to a noun phrase (¢, <1¢, 1)

Prepositions

Indicate spatial/temporal relationships (o the table)

Conjunctions

Conjoin two phrases, clauses, sentences (=1, o)
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POS Tag Sets (Categories)

Most influential tag sets were those defined for projects to
produce large POS-annotated corpora:

* Brown corpus

— 1 million words from variety of genres
— 87 tags

 UPenn Tree Bank
— initially 1 million words of Wall Street Journal
— later retagged Brown
— first POS tags, then full parses
— 45 tags (some distinctions captured in parses)

0/1%/14]NIVERSITY OF OREGON NYU 6
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Penn Treebank POS Tags

Tag  Description Example Tag Description Example
CC  coordin. conjunction and, but, or SYM symbol +,%, &
CD  cardinal number one, two TO “wo” to

DT  determiner a, the UH interjection ah, oops
EX  existential ‘there’ there VB  verb base form eat

FW  foreign word mea culpa VBD verb past tense ate

IN preposition/sub-conj of, in, by VBG verb gerund eating

5] adjective yellow VBN verb past participle eaten

JJR  adj., comparative bigger VBP verb non-3sg pres  eat

JIS adj., superlative wildest VBZ verb 3sg pres eats

LS list item marker 1, 2, One WDT wh-determiner which, that
MD  modal can, should WP  wh-pronoun what, who
NN  noun, sing. or mass llama WPS possessive wh- whose
NNS  noun, plural llamas WRB wh-adverb how, where
NNP proper noun, sing. IBM $ dollar sign $

NNPS proper noun, plural  Carolinas # pound sign #

PDT  predeterminer all, both ” left quote tor"
POS  possessive ending s = right quote for ™

PRP  personal pronoun 1, you, he ( left parenthesis R =
PRPS possessive pronoun  your, one'’s ) right parenthesis  |,), }, >
RB  adverb quickly, never comma :

RBR adverb, comparative faster sentence-final punc . ! ?

RBS adverb, superlative  fastest mid-sentence punc  : ;... —-
RP particle up, off
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Verbs

Tag Description Examples
VB base form e Justooit
(found in imperatives, * Youshould o it
infinities and subjunctives) ® Hewantsto ot
VBD past tense e He the food
VBG present participle e Hewas to the store
(Verb forms in the gerund e Sheis the
or present par_ticiple; algorithm
generally end in )
VBN past participle e The apple was
e He had to go
VBP present (non 3rd-sing) o | the food
e You tall
e We tall
e They o thejob
VBZ present (3rd-sing) e She i« tall
e He ice cream
MD modal verbs °

(All verbs that don’t take
ending in third-person
singular present)

UNIVERSITY OF OREGON
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2973
1483
1233
1066
598
459
332
326
246

will/md
wou ld/md
could/md
can/md
may/md
should/md
might/md
must/md
wo/md
ca/md
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Nouns

Tag Description Examples
NN non-proper, singular or mass the

NNS non-proper, plural the

NNP proper, singular

NNPS proper, plural

O
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RP (particle)

e Used in combination with a verb

— She turned the paper

e verb + particle = phrasal verb,

O

often non-compositional

— turn , rule

UNIVERSITY OF OREGON
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7174
487
301
209
124
08
81
72
46
25

up/rp
out/rp
off/rp
down/rp
in/rp
over/rp
on/rp
back/rp
around/rp
away/rp
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DT and PDT
65548 the/dt
| 26970 a/dt
e DT (Articles) 4405 an/dt
— Articles (3, the, , NO) 3115 this/dt
— Indefinite determines ( , any, , 2117 some/dt
) | 2102 that/dt
) ) ) when preceding 1274 all/dt
noun | 1085 any/dt
, when not preceding another 953 no/dt
determiner or possessive pronoun
778 those/dt
 PDT (Predeterminer) 263 all/pdt

114 such/pdt

— Determiner-like words that precede an

article or possessive pronoun 84 half/pdt
his marbles 24 bOth/pdt

the girls 7 quite/pdt
a good time 2 many/pdt
1 nary/pdt

O
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PRP and PRP$

PRP (personal pronoun)

— Personal pronouns (I, me, ,
, etc.)

— Reflective pronouns (ending in -self):

)
— Nominal possessive pronouns:

’

* PRPS (possessive pronouns)

O

— Adjectival possessive forms:

Vi i
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7854 it/prp

4601

he/prp

3260 they/prp

2323

his/prp$

1792 we/prp
1584 i/prp
1001 you/prp
874 them/prp
694 she/prp

438

5013
2364
2323
521
430
328
269

him/prp

its/prp$
their/prp$
his/prp$
our/prp$
her/prp$
my/prp$
your/prp$
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Adjectives

JJ (Adjectives)
— General adjectives ( person, house)
— Ordinal numbers ( cat)

JIR (Comparative adjectives)
— Adjectives with a comparative ending -er and

comparative meaning ( person)
— More and less (when used as adjectives) (
mail)

JIS (Superlative adjectives)

— Adjectives with a superlative ending and
superlative meaning ( person)

— Most and least (when used as adjectives) (
mail)

UNIVERSITY OF OREGON

2002
1925
1563
1174
1142
1058
824
715
698
644

1498
518
432
285
158
136
122
112

93
75

695
428
315
299
209
194
76
63
31
30

other/jj
new/jj
last/jj
many/jj
such/jj
first/jj
major/jj
federal/jj
next/jj
financial/jj

more/jjr
higher/jjr
lower/jjr
less/jjr
better/jjr
smaller/jjr
earlier/jjr
greater/jjr
larger/jjr
bigger/jjr

most/jjs
least/jjs
largest/jjs
latest/jjs
biggest/jjs
best/jjs
highest/jjs
worst/jjs
lowest/jjs
greatest/jjs
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Adverbs

O

RB (Adverbs)

— Most words that end in
— Degree words (
— Negative markers (

RBR (Comparative adverbs)

— Adverbs with a comparative ending
comparative meaning

/

4

’

]

RBS (Superlative adverbs)

— Adverbs with a superlative ending

superlative meaning.

/
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4410
2071
1858
1109
1070
1027
961
) 839

810

804

1121

516

192

88

and 82
75

65

57

53

34

549
and 21

R R R RN

n't/rb
also/rb
not/rb
now/rb
only/rb
as/rb
even/rb
so/rb
about/rb
still/rb

more/rbr
earlier/rbr
less/rbr
further/rbr
lower/rbr
better/rbr
higher/rbr
longer/rbr
later/rbr
faster/rbr

most/rbs
best/rbs
least/rbs
hardest/rbs
most/rbs|jjs
worst/rbs
rbs/nnp
highest/rbs
earliest/rbs
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IN and CC

31111 of/in

* [N (preposition, subordinating 22967 in/in
conjunction) 11425 for/in
. 7181 on/1n

— All prepositions (except to) and 6684 that/in
subordinating conjunctions 6399 at/in
 He jumped on the table he 6229 by/in

was excited 5940 from/in

5874 with/in
5239 as/in

* CC (coordinating conjunction) 22362 and/cc
, but, not, 4604 but/cc
— Math oper.atolrls( , inor, ) ) iiig g;égc
(meaning “because”) 94 nor/cc

* he asked to be transferred, he was 68 either/cc

unhappy 53 yet/cc

53 plus/cc

37 both/cc

32 neither/cc
UNIVERSITY OF OREGON
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The POS tagging task

Task: assigning a POS to each word

* not trivial: many words have several tags

e dictionary only lists possible POS, independent of context

I

Fruit flies like a banana Time flies like an arrow

UNIVERSITY OF OREGON
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Why tag?

* POS tagging can help parsing by reducing ambiguity
e (Can resolve some pronunciation ambiguities for text-to-
speech (“desert” — noun: /'dezart/, verb: /d1 z3rt/ )

* (Can resolve some semantic ambiguities

subject subject

Fruit flies like a banane Time flies like an arrow

O
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Some tricky cases

* JJorVBN

— If it is gradable (can insert “ "y=1J

— If can be followed by a “by” phrase = VBN. If that conflicts with #1
above, then = JJ

VBN

* He was by some friends of her

* He was very by her remarks )

* JJor NP/NPS

— Proper names can be adjectives or nouns
cuisine is delicious 1]

 The tend to be inspired cooks NNPS

UNIVERSITY OF OREGON
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Some tricky cases

* NN or VBG

— Only nouns can be modified by adjectives; only gerunds can be
modified by adverbs

* Good is something to enjoy NN
well is a useful skill

VBG

* INorRP
— If it can precede or follow the noun phrase = RP
e She told off her friends
e She told her friends off
— If it must precede the noun phrase = IN
e She stepped off the train
e *She stepped the train off

UNIVERSITY OF OREGON
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Exercise [SLP2]

* Find the tagging errors in the following sentences:
|/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN
Does/VBZ this/DT flight/NN serve/VB dinner/NNS
|/PRP have/VB a/DT friend/NN living/VBG /in/IN Denver/NNP

Can /VBP you/PRP list/VB the/DT nonstop/JJ afternoon/NN
flights/NNS

O
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POS tagging methods

Similar to text classification, we would like to use machine learning methods
to do POS tagging.

Using supervised learning, we need to assemble a text corpus and manually
annotate the POS for every word in the corpus (i.e., the Brown corpus) (i.e.,

).

— We can divide the corpus into training data, development data and test data

To build a good corpus
— we must define a task people can do reliably (choose a suitable POS set)
— we must provide good documentation for the task
* so annotation can be done consistently

— we must measure human performance (through dual annotation and
inter-annotator agreement)

— Often requires several iterations of refinement

UNIVERSITY OF OREGON
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The simplest POS tagging method

* We tag each word with its most likely part-of-speech (based
on the training data)

— this works quite well: about 90% accuracy when trained
and tested on similar texts

— although many words have multiple parts of speech, one
POS typically dominates within a single text type

UNIVERSITY OF OREGON
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POS tagger as sequence labeling

e Sequence labeling: given a sequence of observations x =
X1, X9, ..., Xn, We need to assign a label/type/class y; for each
observation x; € x, leading to the sequence label y =

Y1, Vo2, .., Yo for x (y; € Y) (Y is the set of possible POS tags)

* For POS tagging, x can be an input sentence where Xx; is the i-
th word in the sentence, and y; can be the POS tag of x; in x
(Y is the set of the possible POS tags in our data). E.g.,

x = Does this flight serve dinner
y=VBZ DT NN VB NN

O
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Sequence labeling

* Asin text classification, we also want to estimate the
distribution from the training data:

P(ylx) — P(yl' Y2, "'rynlxlle' ---:xn)

e So, we can also obtain the predicted label sequence for x by:

y* = argmax, P(y|x) = argmax,P(y1, Y2, ) YnlX1, X2, oo, Xp)

O
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Hidden Markov Model (HMM)

Using Bayes’s Rule

O

P(x|y)P(y)
P(x)
= argmax, P(x|y)P(y) /
= argmax P (xy, X3, o, Xp|Y1, Y20 s V)P (Y1, Y20 s Yn)

argmax,P(y|x) = argmax,

: the probability of the label for the current step only
depends on the label from the previous step, so:

Py, Y2, oY) = [li=1 POely<e) = [e=1 PUelye-1)
: the probability of the current word is only dependent on its
label:

P(x1, X2, oy Xn Y1, V20 eos Yn) = Tle=1 P(Xelx<r, ¥) = [1=1 P(xelye)
So, in HMM, we need to obtain two types of probabilities:

— The transition probabilities: P(y;|y:—1)
— The emission probabilities: P (x¢|y;)

UNIVERSITY OF OREGON
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Parameter Estimation

e Using Maximum Likelihood Estimators as in Naive Bayes (i.e., just counting):
— How many times y;_4 and y, appear together in the training data?
c(Ye—1,Yt)

P(elye-1) =
tiJ)t-1
CVt-1) e How many times y;_; appears in the training data?
c(Xt,yt)
P (xt |Yt) — c(ve) How many times x; appears with y, in the training data?

 With smoothing:

P(yt |3’t—1) _at c(Ye—1,Y¢) Yis the set of possible I?OS tags, Vis the
Y|a + c(Ye—1) vocabulary (set of possible words)
P(xtly:) = o o)
[Vl + c(ye) How many transition and emission

probabilities we have?

O UNIVERSITY OF OREGON
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Transition probabilities

NNP MD VB JJ NN RB DT
<s> 0.2767 0.0006 0.0031 0.0453 0.0449 0.0510 0.2026
NNP 0.3777 0.0110 0.0009 0.0084 0.0584 0.0090 0.0025
MD 0.0008 0.0002 0.7968 0.0005 0.0008 0.1698 0.0041
VB 0.0322  0.0005 0.0050 0.0837 0.0615 0.0514 0.2231
JJ 0.0366 0.0004 0.0001 0.0733 0.4509 0.0036 0.0036
NN 0.0096 0.0176 0.0014 0.0086 0.1216 0.0177 0.0068
RB 0.0068 0.0102 0.1011 0.1012 0.0120 0.0728 0.0479
DT 0.1147 0.0021 0.0002 0.2157 0.4744 0.0102 0.0017

| TICBRE] The A transition probabilities P(¢;|¢;—1) computed from the WSJ corpus with-
out smoothing. Rows are labeled with the conditioning event; thus P(VB|MD) is 0.7968.

O
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Emission probabilities

Janet will back the bill
NNP 0.000032 0 0 0.000048 0O
MD 0 0.308431 0 0 0
VB 0 0.000028 0.000672 0 0.000028
JJ 0 0 0.000340 0.000097 0O
NN 0 0.000200 0.000223 0.000006 0.002337
RB 0 0 0.010446 0O 0
DT 0 0 0 0.506099 0

13T BUXY  Observation likelihoods B computed from the WSJ corpus without smoothing.
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Hidden State Network

0.2 0.1

0.8 @n\)

[
»

w
0.1

0.7 end
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Decoding

* Given the transition and emission probabilities P(y;|y:-1) and P(x;|y;),
we need to find the best label sequence y* = y{,y5, ..., ¥,, for the input
sentence x = x4, X5, ..., X, Via:

. B P(x,y) _
y* = argmax, P(y|x) = argmax, W = argmaxy,P(x,y)

= argmaxy, P(x1, Xz, .., X, Y1, Y25 o » V)

* This requires the enumeration over all the possible label sequences
(paths) y which are exponentially large

— E.g., using Penn Treebank with 45 tags
A sentence of length 5 would have 45° = 184,528,15 possible sequences
A sentence of length 20 would have 45%° = 1.16e33 possible sequences

O UNIVERSITY OF OREGON
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O

Greedy Decoder

simplest decoder (tagger) assign tags deterministically from
left to right

selects y; to maximize P(x,|y,) * P(y¢|Vi—1)
does not take advantage of right context

can we do better?

UNIVERSITY OF OREGON
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O

Viterbi algorithm

Basic idea: if an optimal path through a sequence uses label L at time ¢, then it
must have used an optimal path to get to label L at time ¢t

We can thus discard all non-optimal paths up to label L at time ¢t

Let v;(s) be the probability that the HMM is in state (label) s after seeing the
first t observations (words) and passing through the most probable state

sequence Y1, Vo, v, Vi—1:
ve(s) = maxy, y, .y P10, X2, 0, X6, Y1, Y2, o, Ye-1, Ve = S)

Introducing the start and end states to represent the beginning and the end
of the sentences (yy = start, y,+1 = end), the probability for the optimal
label sequence would be:

Unyr(end) = maxy, o, P(X1,X2, oo, X, Yo = SEATL, Y1, Y2, s Yo Va1
= end)

UNIVERSITY OF OREGON
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O

Viterbi algorithm

ve(s) = maxy y, 5. P(X1,X3, 0, X, Yo = SLart, Y1, Y2, o0y Yeo1, Ve =
s)
Initialization (t = 0):

1if s = start
Vo(s) =
0(8) {O otherwise

Recurrence (t > 0):

ve(s) = maxgrcy[Ve—1 (S)P(S|s )P (x¢]s)]
backtrack.(s) = argmaxcy[Vi_1(S)P(s|s")P(x¢|s)]

Termination (t = n + 1): the optimal probability is v,,,; (end), following
the backtrack links (starting at backtrack,,,,(end)) to retrieve the
optimal path.

UNIVERSITY OF OREGON



CIS 410/510: Natural Language Processing

Example

Fish sleep

0.7 end

0.1

O
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Word Emission Probabilities
P ( word | state )

 Atwo-word language: “fish” and “sleep”
* Suppose in our training corpus,

e “fish” appears 8 times as a noun and 5 times as a verb

* “sleep” appears twice as a noun and 5 times as a verb

* Emission probabilities:
* Noun
— P(fish | noun): 0.8
— P(sleep | noun) :0.2
* Verb
— P(fish | verb): 0.5
— P(sleep | verb): 0.5

UNIVERSITY OF OREGON
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Viterbi Probabilities

start
verb
noun

end

UNIVERSITY OF OREGON
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Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2
Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5

Init

start 1
verb 0
noun 0
end 0

UNIVERSITY OF OREGON
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Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2
Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5

Token 1: fish
0 1 2 3
start 1 0
verb 0 \.2 .5
noun 0 .8%*.8
end 0 0

UNIVERSITY OF OREGON
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Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2
Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5

Token 1: fish
0 1 2 3
start 1 0
verb ‘\\\.1

0
noun 0 .64
0

end

UNIVERSITY OF OREGON
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Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2
Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5

Token 2: sleep

(if “fish” is verb) O 1 2 3

start 1 0 0
verb

0
noun 0 ‘.64 Cy2r2
0

end

O
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Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2
Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5

Token 2: sleep

(if “fish” is verb) O 1 2 3

start 1 0 0

\® 005

verb 0
noun 0 .64 004
0

end

O
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Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2
Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5

Token 2: sleep

(if “fish’ is a noun) O 1 2 3

start 1 0 0

verb

0
noun 0 %)14*:2
end 0

O
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Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2
Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5

Token 2: sleep

(if “fish’ is a noun) O 1 2 3
start 1 0 0
verb 0 \ 1 005
256
noun 0 .64 004
0128
end 0 0 -

O
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Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2
Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5

Token 2: sleep
take maximum,

set back pointers O 1 2 3
start 1 0 0
PPN =065

S
—604—
noun 0 64 it
end 0 0 -

O
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Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2
Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5

Token 2: sleep
take maximum,

set back pointers O 1 2 3

start 1 0 0

S,

verb 0
noun 0 64 —.0128
0

end

O
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Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2
Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5

Token 3: end
0 1 2 3
start 1 0 0 O
verb 0 \ 1 256 -
noun 0 .64 44.0128 -
end 0 0 . 256%7

0128%*.1

O
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Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2
Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5

Token 3: _end
ot bock poimters 0 1 2 3
start 1 0 0 0
verb 0 \ / 256 -
noun 0 — 0128\ -
end O O - .256*.7
—4285 1

O
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Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2
Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5
Decode:

fish = noun
sleep = verb

start
verb
noun

end

O
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Complexity for Viterbi
time=0 (s?n)

for s states (labels) and n words

(Relatively fast: for 40 states and 20 words,
32,000 steps)

UNIVERSITY OF OREGON
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Named Entity Recognition (NER)

O

Identify names of entities (i.e., persons, organizations, locations, proteins,
etc.) in text.

Can be casted as a sequence labeling problem via the BIO (beginning-
inside-other) tagging schema, thus can be solved by HMM

Person Organization

J
: | |

works for
B _PER | PER @) 0] B_ORG | ORG
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O

HMM for sequence labeling

simple and fast to train and to use
effective for POS tagging (one POS €< - one state)

can be made effective for name tagging (can capture context) by splitting
states

but further splitting could lead to sparse data problems
P(ys3 | y2)

DO ORI
OO

UNIVERSITY OF OREGON P(xs | y3)
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We want ...

 We want to have a more flexible means of capturing our

O

linguistic intuition that certain conditions lead to the
increased likelihood of certain outcomes (i.e., feature
engineering)

— that a name on a ‘common first name’ list increases the
chance that this is the beginning of a person name

— that being in a sports story increases the chance of team
(organization) names

Maximum entropy modeling (logistic regression) provides one
mathematically well-founded method for combining such
features in a probabilistic model.

UNIVERSITY OF OREGON
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Maximum Entropy Markov Model
(MEMM)

O

Starting with the conditional probability distribution:
n
Pyely<e x)
t=1
Using the first-order Markov assumption (the probability for the current
state only depends on the previous state):

P(ylx) = P(y1, Y2, » Ynlx) =

The probability for one step depends
on the entire input sentence x

P(%l}t|Y<t'x) ~ P()’tb’ﬁ—px)

Pl 0) = | [POLly ) ~ | [PORIe-15:6)
t=1 t=1

Using logistic regression to model the probabilities P (y|y;:—1, x; 0),
allowing flexible feature engineering

UNIVERSITY OF OREGON
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Maximum Entropy Markov Model
(MEMM)

* Pelyt-1,%)
In practice, we even simplify: P(y¢|vi—1, %) = P(V¢|Ve—1, Xt)

Defining K binary features f;(y;_1, x) over the the prior label y;_; and the
entire input sentence x. For examples:

_ _J1if x; = Smith and y,_; = B_PER
Jie-1, %) {0 otherwise

_ r _ |1if x; is capitalized
Jie-1, %) {0 otherwise

~ A x) = 1if x; isin the list of common names and y;_1 =0
(U= 0 otherwise
e Then:

exXp (Z{{=1 Wiytfi (Ve-1,%))

Z(yt—l'x)
where Z is the normalizing factor and w?t = [Wyt Jt

= [w)5,w)", ..., wpt| is the model
parameters specific to y;.

O

PWelye—1,%;0) =

UNIVERSITY OF OREGON
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Maximum Entropy Markov Model
(MEMM)

* |In order to train the MEMM model (i.e., finding the model parameters),
we can also optimize the likelihood function over the training dataset:

L(B) = — Z log P(y|x, 0)

(x,y)ED

 There is no closed-form solution for this optimization problem (as HMM);
an iterative solver is required.

 The good thing is the function is convex so easier to solve the those in
deep learning. E.g.,

— Generalized Iterative Scaling (GIS)
(https://en.wikipedia.org/wiki/Generalized iterative scaling)

— L-BFGS (https://en.wikipedia.org/wiki/Limited-memory BFGS)

UNIVERSITY OF OREGON
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Feature Engineering

* The main task when using a MaxEnt classifier (e.g., MEMM) is
to select an appropriate set of features

— words in the immediate neighborhood are typical basic
features: w;_{, w;, w; 1

— patterns constructed for rule-based taggers are likely
candidates: w; 1 is an initial

— membership on word lists: w; is a common first name
(from Census)

O

UNIVERSITY OF OREGON
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Greedy decoding for MEMM

e Ati = 0, select:

y; = argmax,P(y; = s|y, = start,x) = argmax,P(y; = s|x)

e Ati > 0, select:
y; = argmaxsP(y; = s|y;-1 = y;_1,%)

Note that we need to condition on the predicted label from the previous
step y;_, here as this is now known in the inference/test time.

UNIVERSITY OF OREGON
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Viterbi decoding for MEMM

O

In HMM, we infer the best label sequence via the
argmax, P(x,y) using the recurrence:

Ve(s) = maxgrey[Ve—1(s") ]

In MEMM, we infer the best label sequence via the
argmax, P(y|x) using the recurrence:

-----

v (s) = maxs'EY[vt—l(S’) |
p* = maxgey vp(S)

UNIVERSITY OF OREGON
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The label bias problem in MEMM

State 1

State 2
State 3

State 4

State 5

O

Observation 1

0.4 (20)

Observation 2

0.6 (30)

0.5 (10)

Observation 3

0.
0.2 (100)

1

0.2 (100)

0)

0.2 (100)"

0.2 (100)

0.2 (100)

0.2 (100)

UNIVERSITY OF OREGON

0.3 (150)

0.1 (50)

0.1 (50)

0.3 (150)

The scores in the
bracket represent the
ability to go from one
state to another state
given the observation,
i.e.,

exp (Z{il Wiytfi (Ve-1,%))
Based on these

scores, the best paths
should be: 2 ->2->2
or2->2->5

However, if we
normalize at each
state to obtain the
probabilities, the best
paths should be: 1 ->
1>1orl1->1->2

1>1->1,1->1->2:0.4*0.5=0.2
2->2->2,2->2->5:0.2*0.3=0.06
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The label bias problem in MEMM

Observation 1

Observation 2

Observation 3

0.4 (20
State 1 (20) 0.5 (10) >
0.510)
0.6 (30) 0.2 (100) 0.2 (100)
tate 2 0.2 (100) 0.3 (150)
0.2 (100) 0.1 (50)
State 3
0.2 (100) 0.1 (50)
State 4
0.2 (100) 0.3 (150)
State 5

UNIVERSITY OF OREGON

O

This is because the
prediction at each
state/word is modeled by a
probability, thus
necessitating the
normalization at each state

( )

— Impose a preference of
states with lower number
of transitions over the
others.

So, we want to avoid the
normalization at each step
and only normalize once
over the entire input
sequence to obtain the
overall probability P(y|x)

),

—_—

leading to
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Conditional Random Fields (CRF)

* Both MEMM and CRF directly model P(y|x).

* For MEMM:
n
POIx;0) = | | POelyesx;6)
t=1
* For CRF:
exp(P(x,y)"6)
P(ylx;0) = T
Y ey €xp(®(x, y)T6)

UNIVERSITY OF OREGON

O
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Conditional Random Fields (CRF)

exp(P(x,y)"6) exp(P(x,y)"6)

Sy EXP(@YNTO)  Z(x)

* P(ylx;0) =

where
CI)(X, y) — [cbl(xr y); reny cbk(xl Y), ) CDK(X' y)]

O (x,y) = Xic1.n Pk Vi—1, Yir X, 1)

with ¢ (v;_1, yi, x, 1) is a function to capture some features of the input sentence x
and the transition from state y;_, to state y; at step i (i.e., only capturing features at
the edge and node level and ).

* The element of 8 corresponding to @, (x,y) is

~~~~~~ :@””,f
-~
O UNIVERSITY OF OREGON
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Conditional Random Fields (CRF)

exp(®(x,)70)  exp(®@(x,¥)70)
1oy €XP(@(x,y")TO) Z(x)

* P(y|x;0) = >

y

* The normalizing factor Z(x) involve summing over an exponential number
of terms (all the possible label sequence for the input sentence -- |Y|")

e Using dynamic programming (i.e., the forward algorithm), we can compute

the normalization in O(n|Y|?)
observation

| SIS IZ
state "’ ® "’ o ". P ". o
a2 RN RN

Mi(y’;y) = exp( z gk ¢k(y,'yrxJ l)

k=1.K

UNIVERSITY OF OREGON OCOre at one edge

O
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Conditional Random Fields (CRF)

observation

. - -
state G
3 - -

a;(s): the total score for the length-i subpaths of the paths whose i-th state is s.

* |nitialization:

ay(s) = exp(Xg=1.x Ok Pr(start, s, x, 1)
* Recurrence:

a;(s) = Xgrey @i-1(s IM;(s",s)
 Final normalization score:
Z(x) = Ygey an(s)

UNIVERSITY OF OREGON
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CRF Training

O

Loss function:

T
L(B) = —log P(y|x; 8) = —log —2RLEN ) _ 405 3)T9 + log Z(x)

%, ey EXP(@CrY)TO)

In most of the optimization technique for L(60), we will need to compute
its gradient:

JdL(6 D (x,y’ Tg 5! , ,
L) - by, y) + By ZEEEDI D) - gy, (2,3) 4[5y PO 1))

Z(x)

yey PO )¢ (x,y") =
2i=1..n s'ey,sey ¢k(S’,S, X, i) Zy’:yi'_1=s’,yi'=sp(y’|x)

Using this factorization, we can compute this quantity in O(n|Y|?) using
the forward-backward algorithm

For details, see: Collins, “The Forward-Backward Algorithm”

UNIVERSITY OF OREGON
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Viterbi decoding for CRF

O

Ve(s) = maxyl,yz,...,yt_lp(yl»YZ» vy Ye-1, Y = S|X)

Initialization:
v1(S) = Zk=1.x eXp(OxPr(start, s, x, 1))

Recurrence:
v;i(s) = maxgey|a;_1(s)M;(s",s)]

Best score:

*

P = MaXgey vn(S)

UNIVERSITY OF OREGON
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Recurrent Neural Networks (RNN)

y1 y2 y3 Y4 Y5

Initial
vector
(Zero) ——— | ren r-—n r—n r "
o - RO ™ RO ™ RO " RO M KO -s

T T%T T T

Input vectors for words
(e.g., one-hot or distributed vectors)

: recurrence function
: output function
: hidden vector and output vector at step i.
: model parameters (to be learned during training)

UNIVERSITY OF OREGON Goldberg, 2017
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Recurrent Neural Networks (RNN)

dy

e Ateach step, the R function takes two inputs (i.e., the hidden vector
from the previous step s;_1 and the input vector from the current step .
x¢) to compute the hidden vector for the current step s; : I

St = R(S¢—1,X¢)

* The hidden vector s; can be used as the feature vector to make a
prediction about the label for x; (i.e., POS or NER). Essentially, we use O
the O function to transform s; into a score vector o; whose dimensions
quantify the likelihood that x; has the corresponding labels (i.e., |o;| = X

ME U

Ot = O(StWO + bo)
St
* 0 can be transformed into a probability distribution via the softmax WS; R—S>
function: d; = softmax(o;) w
St-1 |
* Inthe simplest version (i.e., vanilla RNN), O can be just the identity Ww#*

function (i.e., 0(x) = x), while R can be a simple linear
transformation followed by a non-linear function:
S = 0(Se W3 + x,W* + b%)

O UNIVERSITY OF OREGON
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Recurrent Neural Networks (RNN)

* The model parameters: 8 = {W?>,W?*,b%, W?°, b°}

 Therecurrence nature (i.e., using the hidden vector from the T
previous step for the current computation) allows each hidden
vector s; to capture information about all the words before t: s, = 0
f(S0) 81, +ees Se-1) O™

* The use of the same parameters W=, W¥*, b® in the recurrence U
function R causes the gradient vanishing problem (i..e, gradient
becomes small in long sentences so the models cannot learn) St

;R‘_,
ws ws
* In practice, the LSTM cell is often used for R to mitigate this

problem. f, = Ug(WfﬂJz + Ushyy + bf) St-1
iy = o,(Wizy + Uihy—1 + b;)

@—' ¢ — + —’@ o = 0g(Woxy +Ushy 1 + b,)

J ¢ =fioci 1+ iy 00e(Wemy + Uhyy + be) X

hy = o OUh(Ct)
O UNIVERSITY OF OREGON
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Training RNN

loss

predict and
calculate loss

predict and
calculate loss

predict and
calculate loss

predict and
calculate loss

predict and
calculate loss

X1 X) X3 X4 X5

UNIVERSITY OF OREGON
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Bidirectional RNN

A city or a football team?

/

Liverpool suffered an upset first home league
defeat of the season, beaten 1-0 by a Guy
Whittingham goal for Sheffield Wednesday.

 The information on the left is not enough to predict the label
for the current word.

UNIVERSITY OF OREGON

O




CIS 410/510: Natural Language Processing

Bidirectional RNN

Yehe ybmwn Yfox Yjamped Y
: v Th T
Backvv%ﬁm{fob }-{ Rbob { RS,0P ’}33——: Ré,0P ‘ Sb { _}—
] r_ys_‘ il
s, ROf —L{ ROf %s_£>| RLOf %s—i ROSf % { RLOSf Ff»\fvgard NN
thhe Lbrow; ALXfox Ljump;l AL X

So, one hidden vector has access to the context information
across the whole sentence

sif = a(slf_lWSf + xl-fo + b))
sP = o (st WP + x,WP + b?)
y; = softmax([s/, sPJwe + b°), 6 = (WS, W/, b5, WP, wb, b, we, b°]

UNIVERSITY OF OREGON
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O

Bidirectional RNN

Yfox Yjumped

! !

/concat\r GOHC&D

—— —
3 ¥

o
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We can also go deeper (stacked RNN)

y1
3 3
Tﬁ Y2

r Ny JR P i O )
- Ry03 Lo Ry |2 Ry,05 FBm Ry0; [ Ry0; |

— ! SEERE. L J g J
2 2 2 2 2
Y1 Y2 y3 Y4 Ys
i}" R3,0, #i* R3,0, %i* R3,0, #i* R3,0, %i*
Y1 Y2 y3 Y4 Ys
| Ca g Ca 1
% R;,0; %1—> R31,0; %i> R;1,0; #3* R;,0; % 4 *‘ R31,0; %—5>

X1 X2 X3 X4 X5

3
S0

5

UNIVERSITY OF OREGON
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O

Incorporating CRF

RNN makes prediction for words independently (the
features/representations share the parameters, but the output predictions
are independent)

There are some dependencies between the output labels that we want to
exploit (i.e., |_PER can only be preceded by B_PER), so the later
predictions can influence the prior predictions (e.g., fixing prior’s error)

CRF can achieve this via the global normalization of the label sequence
probabilities

ldea:

UNIVERSITY OF OREGON
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Incorporating CRF

B-ORG O B-MISC O

-
P e
t - |
- b -

EU rejects German call

Figure 7: A BI-LSTM-CRF model.
T
s([z]1, [i]1 , 0) = Z([A][i]t_l,[i]t + [fol,t)

t=1
Huang et al. 2015, “Bidirectional LSTM-CRF Models for Sequence Tagging
UNIVERSITY OF OREGON
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Incorporating CRF

LaYer ’ ’ ’ ’

Backward
LSTM

Char

Representation [ .

Word
Embedding

We are

Ma and Hovy (2016), “End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF”

playing

O UNIVERSITY OF OREGON

soccer

Padding Padding

Char
Embedding
Convolution 3

Y YYYYYVYY

Max Pooling Tttt

Char
Representation
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Incorporating CRF

Layer Hyper-parameter | POS | NER
CNN window size 3 3
number of filters 30 30
state size 200 200
LSTM | initial state 0.0 0.0
peepholes no no
Dropout | dropout rate 0.5 0.5
batch size 10 10
initial learning rate | 0.01 | 0.015
decay rate 0.05 | 0.05
gradient clipping 5.0 5.0
POS NER
Dev  Test Dev | Test
Model Acc. Acc. | Prec. Recall Fl : Prec. Recall Fl
BRNN 96.56 96.76 | 92.04 89.13 90.56 : 87.05 83.88 85.44
BLSTM 96.88 9693 | 92.31 90.85 91.57 , 87.77 86.23 87.00
BLSTM-CNN 97.34 97.33 | 92.52 93.64 93.07 : 88.53 90.21 89.36
BRNN-CNN-CRF | 97.46  97.55 | 9485 94.63 94.74 1 91.35 91.06 91.21

O
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