
CIS 410/510: Natural Language Processing

Natural Language Processing: CIS 410/510

Sequence Labeling

Instructor: Thien Huu Nguyen

Based on slides from: Ralph Grishman, David 
Bamman, Dan Jurasky, Chris Manning and others



CIS 410/510: Natural Language Processing

Parts of Speech (POS)

• Grammar is stated in terms of parts of speech 
(‘preterminals’):

– classes of words sharing syntactic properties:
noun
verb

adjective
…

2



CIS 410/510: Natural Language Processing

Parts of Speech (POS)
• The distributional hypothesis: Words that appear in similar contexts have 

similar representations (and similar meanings)

• Substitution test for POS: if a word is replaced by another word, does the 
sentence remain grammatical?

   He noticed the                         elephant                     before anybody else
                  dog
           cat
           point
                                                            features
           *what
            *and



CIS 410/510: Natural Language Processing

Substitution test
• These can often be too strict; some contexts admit substitutability for 

some pairs but not others.

 He noticed the                         elephant                     before anybody else
            *Sandy

  He *arrived the                       elephant                     before anybody else

Both nouns
but common vs. proper

Both verbs
but transitive vs. intransitive



CIS 410/510: Natural Language Processing

Parts of Speech (POS)



CIS 410/510: Natural Language Processing

POS Tag Sets (Categories)
Most influential tag sets were those defined for projects to 

produce large POS-annotated corpora:

• Brown corpus
– 1 million words from variety of genres
– 87 tags

• UPenn Tree Bank
– initially 1 million words of Wall Street Journal
– later retagged Brown
– first POS tags, then full parses
– 45 tags (some distinctions captured in parses)

1/16/14 NYU 6



CIS 410/510: Natural Language Processing

Penn Treebank POS Tags



CIS 410/510: Natural Language Processing

Verbs



CIS 410/510: Natural Language Processing

Nouns



CIS 410/510: Natural Language Processing

RP (particle)
• Used in combination with a verb

– She turned the paper over

• verb + particle = phrasal verb, 
often non-compositional
– turn down, rule out, find out, go on



CIS 410/510: Natural Language Processing

DT and PDT

• DT (Articles)
– Articles (a, the, every, no)
– Indefinite determines (another, any, some, 

each)
– That, these, this, those when preceding 

noun
– All, both when not preceding another 

determiner or possessive pronoun

• PDT (Predeterminer)
– Determiner-like words that precede an 

article or possessive pronoun
• all his marbles
• both the girls
• such a good time



CIS 410/510: Natural Language Processing

PRP and PRP$
• PRP (personal pronoun)

– Personal pronouns (I, me, you, he, him, 
it, etc.)

– Reflective pronouns (ending in -self): 
himself, herself

– Nominal possessive pronouns: mine, 
yours, hers

• PRP$ (possessive pronouns)
– Adjectival possessive forms: my, their, 

its, his, her



CIS 410/510: Natural Language Processing

Adjectives
• JJ (Adjectives)

– General adjectives (happy person, new house)
– Ordinal numbers (fourth cat)

• JJR (Comparative adjectives)
– Adjectives with a comparative ending -er and 

comparative meaning (happier person)
– More and less (when used as adjectives) (more 

mail)

• JJS (Superlative adjectives)
– Adjectives with a superlative ending -est and 

superlative meaning (happiest person)
– Most and least (when used as adjectives) (most 

mail)



CIS 410/510: Natural Language Processing

Adverbs
• RB (Adverbs)

– Most words that end in –ly (highly, heavily)
– Degree words (quite, too, very)
– Negative markers (not, n’t, never)

• RBR (Comparative adverbs)
– Adverbs with a comparative ending -er and 

comparative meaning
– More/less

• RBS (Superlative adverbs)
– Adverbs with a superlative ending -est and 

superlative meaning. 
– Most/least



CIS 410/510: Natural Language Processing

IN and CC
• IN (preposition, subordinating 

conjunction)
– All prepositions (except to) and 

subordinating conjunctions
• He jumped on the table because he 

was excited

• CC (coordinating conjunction)
– And, but, not, or 
– Math operators (plus, minor, less, times) 
– For (meaning “because”)

• he asked to be transferred, for he was 
unhappy



CIS 410/510: Natural Language Processing

The POS tagging task
Task:  assigning a POS to each word
• not trivial:  many words have several tags
• dictionary only lists possible POS, independent of context



CIS 410/510: Natural Language Processing

Why tag?
• POS tagging can help parsing by reducing ambiguity
• Can resolve some pronunciation ambiguities for text-to-

speech (“desert” – noun: /ˈdɛzərt/, verb: /dɪˈzɜrt/ )
• Can resolve some semantic ambiguities



CIS 410/510: Natural Language Processing

Some tricky cases
• JJ or VBN

– If it is gradable (can insert “very”) = JJ
• He was very surprised

– If can be followed by a “by” phrase = VBN. If that conflicts with #1 
above, then = JJ
• He was invited by some friends of her
• He was very surprised by her remarks

• JJ or NP/NPS
– Proper names can be adjectives or nouns

• French cuisine is delicious

• The French tend to be inspired cooks

JJ

JJ

VBN

JJ

NNPS



CIS 410/510: Natural Language Processing

Some tricky cases
• NN or VBG

– Only nouns can be modified by adjectives; only gerunds can be 
modified by adverbs
• Good cooking is something to enjoy
• Cooking well is a useful skill

• IN or RP
– If it can precede or follow the noun phrase = RP

• She told off her friends
• She told her friends off

– If it must precede the noun phrase = IN
• She stepped off the train
• *She stepped the train off

NN

VBG



CIS 410/510: Natural Language Processing

Exercise [SLP2]
• Find the tagging errors in the following sentences:

 I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN

 Does/VBZ this/DT flight/NN serve/VB dinner/NNS

 I/PRP have/VB a/DT friend/NN living/VBG /in/IN Denver/NNP

 Can /VBP you/PRP list/VB the/DT nonstop/JJ afternoon/NN 
flights/NNS



CIS 410/510: Natural Language Processing

POS tagging methods
• Similar to text classification, we would like to use machine learning methods 

to do POS tagging.

• Using supervised learning, we need to assemble a text corpus and manually 
annotate the POS for every word in the corpus (i.e., the Brown corpus) (i.e., 
the corpus-based methods).

– We can divide the corpus into training data, development data and test data

• To build a good corpus
– we must define a task people can do reliably (choose a suitable POS set)
– we must provide good documentation for the task

• so annotation can be done consistently
– we must measure human performance (through dual annotation and 

inter-annotator agreement)
– Often requires several iterations of refinement



CIS 410/510: Natural Language Processing

The simplest POS tagging method

• We tag each word with its most likely part-of-speech (based 
on the training data)
– this works quite well:  about 90% accuracy when trained 

and tested on similar texts
– although many words have multiple parts of speech, one 

POS typically dominates within a single text type

• How can we take advantage of context to do better?



CIS 410/510: Natural Language Processing

POS tagger as sequence labeling

• Sequence labeling: given a sequence of observations 𝑥 =
𝑥!, 𝑥", … , 𝑥#, we need to assign a label/type/class 𝑦$	for each 
observation 𝑥$ 	 ∈ 𝑥, leading to the sequence label 𝑦 =
𝑦!, 𝑦", … , 𝑦# for 𝑥 (𝑦$ 	 ∈ 𝑌) (𝑌 is the set of possible POS tags)

• For POS tagging, 𝑥 can be an input sentence where 𝑥$	is the 𝑖-
th word in the sentence, and 𝑦$	can be the POS tag of 𝑥$	in 𝑥 
(𝑌 is the set of the possible POS tags in our data). E.g., 

𝑥 = Does   this    flight    serve    dinner
𝑦 = VBZ    DT      NN        VB         NN



CIS 410/510: Natural Language Processing

Sequence labeling
• As in text classification, we also want to estimate the 

distribution from the training data:

 𝑃 𝑦 𝑥 = 𝑃(𝑦!, 𝑦", … , 𝑦#|𝑥!, 𝑥", … , 𝑥#)

• So, we can also obtain the predicted label sequence for 𝑥 by:

 𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥&𝑃 𝑦 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥&𝑃(𝑦!, 𝑦", … , 𝑦#|𝑥!, 𝑥", … , 𝑥#)



CIS 410/510: Natural Language Processing

Hidden Markov Model (HMM)
• Using Bayes’s Rule

𝑎𝑟𝑔𝑚𝑎𝑥!𝑃(𝑦|𝑥) = 	𝑎𝑟𝑔𝑚𝑎𝑥!
𝑃(𝑥|𝑦)𝑃(𝑦)

𝑃(𝑥)
	 	 	 	 = 𝑎𝑟𝑔𝑚𝑎𝑥!𝑃 𝑥 𝑦 𝑃 𝑦
	 	 	 	 = 𝑎𝑟𝑔𝑚𝑎𝑥"𝑃 𝑥#, 𝑥$, … , 𝑥%|𝑦#, 𝑦$, … , 𝑦% 𝑃(𝑦#, 𝑦$, … , 𝑦%)

• First-order Markov assumption: the probability of the label for the current step only 
depends on the label from the previous step, so:

  𝑃 𝑦#, 𝑦$, … , 𝑦% = ∏&'#
% 𝑃 𝑦&|𝑦(& = ∏&'#

% 𝑃 𝑦&|𝑦&)# 	
• Independency assumption: the probability of the current word is only dependent on its 

label:
   𝑃 𝑥#, 𝑥$, … , 𝑥%|𝑦#, 𝑦$, … , 𝑦% = 	∏&'#

% 𝑃(𝑥&|𝑥(& , 𝑦) = ∏&'#
% 𝑃(𝑥&|𝑦&)

• So, in HMM, we need to obtain two types of probabilities:
– The transition probabilities: 𝑃 𝑦&|𝑦&)#
– The emission probabilities: 𝑃(𝑥&|𝑦&)

Prior probability
of label sequence



CIS 410/510: Natural Language Processing

Parameter Estimation
• Using Maximum Likelihood Estimators as in Naïve Bayes (i.e., just counting):

 𝑃 𝑦!|𝑦!"# = $(&!"#,&!)
$(&!"#)

	

  𝑃 𝑥!|𝑦! = $()!,&!)
$(&!)

• With smoothing:

       𝑃 𝑦!|𝑦!"# = *+	$(&!"#,&!)
- *	+	$(&!"#)

  𝑃 𝑥!|𝑦! = *+	$()!,&!)
. *	+	$(&!)

How many times 𝑦!"# and 𝑦!  appear together in the training data? 

How many times 𝑦!"# appears in the training data? 

How many times	𝑥!  appears with 𝑦!  in the training data? 

How many transition and emission 
probabilities we have?

𝑌is the set of possible POS tags, 𝑉is the 
vocabulary (set of possible words)



CIS 410/510: Natural Language Processing

Transition probabilities



CIS 410/510: Natural Language Processing

Emission probabilities



CIS 410/510: Natural Language Processing

Hidden State Network

start noun verb end0.8

0.2

0.8 0.7

0.1

0.2

0.1 0.1



CIS 410/510: Natural Language Processing

Decoding
• Given the transition and emission probabilities 𝑃 𝑦!|𝑦!"#  and 𝑃(𝑥!|𝑦!), 

we need to find the best label sequence 𝑦∗ = 𝑦#∗, 𝑦%∗, … , 𝑦&∗ for the input 
sentence 𝑥 = 𝑥#, 𝑥%, … , 𝑥&  via:

𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥'𝑃 𝑦 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥'
𝑃(𝑥, 𝑦)
𝑃(𝑥)

= 𝑎𝑟𝑔𝑚𝑎𝑥'𝑃(𝑥, 𝑦)

                   = 𝑎𝑟𝑔𝑚𝑎𝑥'𝑃(𝑥#, 𝑥%, … , 𝑥& , 𝑦#, 𝑦%, … , 𝑦&)

• This requires the enumeration over all the possible label sequences 
(paths) 𝑦 which are exponentially large

– E.g., using Penn Treebank with 45 tags
• A sentence of length 5 would have 455 = 184,528,15 possible sequences
• A sentence of length 20 would have 4520 = 1.16e33 possible sequences



CIS 410/510: Natural Language Processing

Greedy Decoder
• simplest decoder (tagger) assign tags deterministically from 

left to right

• selects 𝑦)∗ to maximize 𝑃(𝑥𝑡|𝑦𝑡) 	∗ 𝑃 𝑦)|𝑦)*!

• does not take advantage of right context

• can we do better?



CIS 410/510: Natural Language Processing

Viterbi algorithm
• Basic idea: if an optimal path through a sequence uses label 𝐿 at time 𝑡, then it 

must have used an optimal path to get to label 𝐿 at time 𝑡

• We can thus discard all non-optimal paths up to label 𝐿 at time 𝑡

• Let 𝑣!(𝑠) be the probability that the HMM is in state (label) s after seeing the 
first t observations (words) and passing through the most probable state 
sequence 𝑦#, 𝑦%, … , 𝑦!"#:

 𝑣! 𝑠 = 	𝑚𝑎𝑥'$,'%,…,'&'$𝑃(𝑥#, 𝑥%, … , 𝑥!, 𝑦#, 𝑦%, … , 𝑦!"#, 𝑦! = 𝑠) 

• Introducing the 𝑠𝑡𝑎𝑟𝑡 and 𝑒𝑛𝑑 states to represent the beginning and the end 
of the sentences (𝑦* = 𝑠𝑡𝑎𝑟𝑡, 𝑦&+# = 𝑒𝑛𝑑), the probability for the optimal 
label sequence would be: 

𝑣&+# 𝑒𝑛𝑑 = 𝑚𝑎𝑥'$,'%,…,'(𝑃(𝑥#, 𝑥%, … , 𝑥&, 𝑦* = 𝑠𝑡𝑎𝑟𝑡, 𝑦#, 𝑦%, … , 𝑦&, 𝑦&+#
= 𝑒𝑛𝑑)



CIS 410/510: Natural Language Processing

Viterbi algorithm
• 𝑣! 𝑠 = 	𝑚𝑎𝑥'*,'+,…,',-*𝑃(𝑥#, 𝑥%, … , 𝑥! , 𝑦* = 𝑠𝑡𝑎𝑟𝑡, 𝑦#, 𝑦%, … , 𝑦!"#, 𝑦! =

𝑠)
• Initialization (𝑡 = 0):

𝑣* 𝑠 = 	 31	𝑖𝑓	𝑠 = 𝑠𝑡𝑎𝑟𝑡
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

• Recurrence (𝑡 > 0):
𝑣! 𝑠 = 𝑚𝑎𝑥,.∈.[𝑣!"# 𝑠/ 𝑃 𝑠 𝑠/ 𝑃(𝑥!|𝑠)]

𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘! 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥,.∈.[𝑣!"# 𝑠/ 𝑃 𝑠 𝑠/ 𝑃(𝑥!|𝑠)]

• Termination (𝑡 = 𝑛 + 1): the optimal probability is 𝑣&+# 𝑒𝑛𝑑 , following 
the backtrack links (starting at 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘&+# 𝑒𝑛𝑑 ) to retrieve the 
optimal path.



CIS 410/510: Natural Language Processing

Example

      Fish sleep

start noun verb end0.8

0.2

0.8 0.7

0.1

0.2

0.1 0.1



CIS 410/510: Natural Language Processing

Word Emission Probabilities
P ( word | state )

• A two-word language:  “fish” and “sleep”
• Suppose in our training corpus,

• “fish” appears 8 times as a noun and 5 times as a verb
• “sleep” appears twice as a noun and 5 times as a verb

• Emission probabilities:
• Noun

– P(fish | noun) : 0.8
– P(sleep | noun) : 0.2

• Verb
– P(fish | verb) : 0.5
– P(sleep | verb) : 0.5



CIS 410/510: Natural Language Processing

Viterbi Probabilities

0 1 2 3

start

verb

noun

end



CIS 410/510: Natural Language Processing

0 1 2 3

start 1

verb 0

noun 0

end 0

start noun verb end0.8

0.2

0.8 0.7

0.1

0.2

0.1 0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5

Init



CIS 410/510: Natural Language Processing

0 1 2 3

start 1 0

verb 0 .2 * .5

noun 0 .8 * .8

end 0 0

Token 1:  fish

start noun verb end0.8

0.2

0.8 0.7

0.1

0.2

0.1 0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



CIS 410/510: Natural Language Processing

0 1 2 3

start 1 0

verb 0 .1

noun 0 .64

end 0 0

Token 1:  fish

start noun verb end0.8

0.2

0.8 0.7

0.1

0.2

0.1 0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



CIS 410/510: Natural Language Processing

0 1 2 3

start 1 0 0

verb 0 .1 .1*.1*.5

noun 0 .64 .1*.2*.2

end 0 0 -

Token 2:  sleep

(if ‘fish’ is verb)

start noun verb end0.8

0.2

0.8 0.7

0.1

0.2

0.1 0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



CIS 410/510: Natural Language Processing

0 1 2 3

start 1 0 0

verb 0 .1 .005

noun 0 .64 .004

end 0 0 -

Token 2:  sleep

(if ‘fish’ is verb)

start noun verb end0.8

0.2

0.8 0.7

0.1

0.2

0.1 0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



CIS 410/510: Natural Language Processing

0 1 2 3

start 1 0 0

verb 0 .1 .005
.64*.8*.5

noun 0 .64 .004
.64*.1*.2

end 0 0 -

Token 2:  sleep

(if ‘fish’ is a noun)

start noun verb end0.8

0.2

0.8 0.7

0.1

0.2

0.1 0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



CIS 410/510: Natural Language Processing

0 1 2 3

start 1 0 0

verb 0 .1 .005
.256

noun 0 .64 .004
.0128

end 0 0 -

Token 2:  sleep

(if ‘fish’ is a noun)

start noun verb end0.8

0.2

0.8 0.7

0.1

0.2

0.1 0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



CIS 410/510: Natural Language Processing

0 1 2 3

start 1 0 0

verb 0 .1 .005
.256

noun 0 .64 .004
.0128

end 0 0 -

Token 2:  sleep
take maximum,
set back pointers

start noun verb end0.8

0.2

0.8 0.7

0.1

0.2

0.1 0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



CIS 410/510: Natural Language Processing

0 1 2 3

start 1 0 0

verb 0 .1 .256

noun 0 .64 .0128

end 0 0 -

Token 2:  sleep
take maximum,
set back pointers

start noun verb end0.8

0.2

0.8 0.7

0.1

0.2

0.1 0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



CIS 410/510: Natural Language Processing

0 1 2 3

start 1 0 0 0

verb 0 .1 .256 -

noun 0 .64 .0128 -

end 0 0 - .256*.7
.0128*.1

Token 3:  end

start noun verb end0.8

0.2

0.8 0.7

0.1

0.2

0.1 0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



CIS 410/510: Natural Language Processing

0 1 2 3

start 1 0 0 0

verb 0 .1 .256 -

noun 0 .64 .0128 -

end 0 0 - .256*.7
.0128*.1

Token 3:  end
take maximum,
set back pointers

start noun verb end0.8

0.2

0.8 0.7

0.1

0.2

0.1 0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



CIS 410/510: Natural Language Processing

0 1 2 3

start 1 0 0 0

verb 0 .1 .256 -

noun 0 .64 .0128 -

end 0 0 - .256*.7

Decode:
fish = noun
sleep = verb

start noun verb end0.8

0.2

0.8 0.7

0.1

0.2

0.1 0.1

Noun
P(fish | noun) : 0.8
P(sleep | noun) : 0.2

Verb
P(fish | verb) : 0.5
P(sleep | verb) : 0.5



CIS 410/510: Natural Language Processing

Complexity for Viterbi

time = 𝑂	(	𝑠2	𝑛)

for 𝑠 states (labels) and 𝑛 words

(Relatively fast:  for 40 states and 20 words,
32,000 steps)



CIS 410/510: Natural Language Processing

Named Entity Recognition (NER)

• Identify names of entities (i.e., persons, organizations, locations, proteins, 
etc.) in text.

• Can be casted as a sequence labeling problem via the BIO (beginning-
inside-other) tagging schema, thus can be solved by HMM

Fred Smith works for Time inc.

B_PER I_PER O O B_ORG I_ORG

Person Organization



CIS 410/510: Natural Language Processing

HMM for sequence labeling
• simple and fast to train and to use

• effective for POS tagging (one POS ßà one state)

• can be made effective for name tagging  (can capture context) by splitting 
states

• but further splitting could lead to sparse data problems



CIS 410/510: Natural Language Processing

We want …
• We want to have a more flexible means of capturing our 

linguistic intuition that certain conditions lead to the 
increased likelihood of certain outcomes (i.e., feature 
engineering)
– that a name on a ‘common first name’ list increases the 

chance that this is the beginning of a person name
– that being in a sports story increases the chance of team 

(organization) names

• Maximum entropy modeling (logistic regression) provides one 
mathematically well-founded method for combining such 
features in a probabilistic model.



CIS 410/510: Natural Language Processing

Maximum Entropy Markov Model 
(MEMM)

• Starting with the conditional probability distribution:

𝑃 𝑦 𝑥 = 𝑃 𝑦#, 𝑦%, … , 𝑦& 𝑥 = 	D
!0#

&

𝑃(𝑦!|𝑦1! , 𝑥)

• Using the first-order Markov assumption (the probability for the current 
state only depends on the previous state):

𝑃 𝑦! 𝑦1! , 𝑥 ≈ 𝑃(𝑦!|𝑦!"#, 𝑥)

𝑃 𝑦 𝑥; 𝜃 = 	D
!0#

&

𝑃(𝑦!|𝑦1! , 𝑥) ≈D
!0#

&

𝑃(𝑦!|𝑦!"#, 𝑥; 𝜃)

• Using logistic regression to model the probabilities 𝑃(𝑦!|𝑦!"#, 𝑥; 𝜃), 
allowing flexible feature engineering  

The probability for one step depends
on the entire input sentence 𝑥 



CIS 410/510: Natural Language Processing

Maximum Entropy Markov Model 
(MEMM)

• 𝑃(𝑦!|𝑦!"#, 𝑥)
• In practice, we even simplify: 𝑃 𝑦! 𝑦!"#, 𝑥 ≈ 𝑃(𝑦!|𝑦!"#, 𝑥!)
• Defining 𝐾 binary features 𝑓2(𝑦!"#, 𝑥) over the the prior label 𝑦!"# and the 

entire input sentence 𝑥. For examples:

– 𝑓)(𝑦!"#, 𝑥) = 	 )
1	𝑖𝑓	𝑥) = 𝑆𝑚𝑖𝑡ℎ	𝑎𝑛𝑑	𝑦!"# = B_PER
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

– 𝑓)(𝑦!"#, 𝑥) = 	 )
1	𝑖𝑓	𝑥)	𝑖𝑠	𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑒𝑑
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

– 𝑓)(𝑦!"#, 𝑥) = 	 )
1	𝑖𝑓	𝑥)	𝑖𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑙𝑖𝑠𝑡	𝑜𝑓	𝑐𝑜𝑚𝑚𝑜𝑛	𝑛𝑎𝑚𝑒𝑠	𝑎𝑛𝑑	𝑦!"# = O
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

• Then:

𝑃 𝑦! 𝑦!"#, 𝑥; 𝜃 =
exp(∑20#3 𝑤2

'&𝑓2(𝑦!"#, 𝑥))
𝑍(𝑦!"#, 𝑥)

where 𝑍 is the normalizing factor and 𝑤'& = 𝑤#
'& , 𝑤%

'& , … , 𝑤3
'&  is the model 

parameters specific to 𝑦!.



CIS 410/510: Natural Language Processing

Maximum Entropy Markov Model 
(MEMM)

• In order to train the MEMM model (i.e., finding the model parameters), 
we can also optimize the likelihood function over the training dataset:

𝐿 𝜃 = − J
4,' ∈5

log 𝑃(𝑦|𝑥, 𝜃)

• There is no closed-form solution for this optimization problem (as HMM); 
an iterative solver is required.

• The good thing is the function is convex so easier to solve the those in 
deep learning. E.g.,

– Generalized Iterative Scaling (GIS) 
(https://en.wikipedia.org/wiki/Generalized_iterative_scaling)

– L-BFGS (https://en.wikipedia.org/wiki/Limited-memory_BFGS)

https://en.wikipedia.org/wiki/Generalized_iterative_scaling
https://en.wikipedia.org/wiki/Limited-memory_BFGS


CIS 410/510: Natural Language Processing

Feature Engineering
• The main task when using a MaxEnt classifier (e.g., MEMM) is 

to select an appropriate set of features

– words in the immediate neighborhood are typical basic 
features: 𝑤$*!, 𝑤𝑖, 𝑤$,!

– patterns constructed for rule-based taggers are likely 
candidates: 𝑤$,! is an initial

– membership on word lists: 𝑤𝑖 is a common first name 
(from Census)



CIS 410/510: Natural Language Processing

Greedy decoding for MEMM
• At 𝑖	 = 	0, select:

𝑦#∗ = 	𝑎𝑟𝑔𝑚𝑎𝑥,𝑃 𝑦# = 𝑠 𝑦* = 𝑠𝑡𝑎𝑟𝑡, 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥,𝑃 𝑦# = 𝑠 𝑥

• At 𝑖	 > 	0, select:

𝑦2∗ = 	𝑎𝑟𝑔𝑚𝑎𝑥,𝑃 𝑦2 = 𝑠 𝑦2"# = 𝑦2"#∗ , 𝑥

Note that we need to condition on the predicted label from the previous 
step 𝑦2"#∗  here as this is now known in the inference/test time.



CIS 410/510: Natural Language Processing

Viterbi decoding for MEMM
• In HMM, we infer the best label sequence via the joint probability 

𝑎𝑟𝑔𝑚𝑎𝑥'𝑃(𝑥, 𝑦) using the recurrence:

 𝑣! 𝑠 = 𝑚𝑎𝑥,.∈.[𝑣!"# 𝑠/ 	 𝑃 𝑦! = 𝑠 𝑦!"# = 𝑠/ 𝑃 𝑥! 𝑦! = 𝑠 ]

• In MEMM, we infer the best label sequence via the conditional probability 
𝑎𝑟𝑔𝑚𝑎𝑥'𝑃(𝑦|𝑥) using the recurrence:

  𝑣! 𝑠 = 	𝑚𝑎𝑥'*,'+,…,',-*𝑃(𝑦#, 𝑦%, … , 𝑦!"#, 𝑦! = 𝑠|𝑥)
 𝑣! 𝑠 = 𝑚𝑎𝑥,.∈.[𝑣!"# 𝑠/ 	 𝑃 𝑦2 = 𝑠 𝑦2"# = 𝑠/, 𝑥 ]
  𝑝∗ = 	𝑚𝑎𝑥,∈.	𝑣& 𝑠



CIS 410/510: Natural Language Processing

The label bias problem in MEMM

0.4 (20) 0.5 (10)

0.2 (100) 0.3 (150)

0.2 (100)

0.2 (100)

0.2 (100)

0.2 (100)

0.6 (30)

0.3 (150)

0.1 (50)

0.1 (50)

0.2 (100)
0.5 (10)

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3
• The scores in the 

bracket represent the 
ability to go from one 
state to another state 
given the observation, 
i.e., 
exp(∑$%&' 𝑤$

(!𝑓$(𝑦)*&, 𝑥))
• Based on these 

scores, the best paths 
should be: 2 -> 2 -> 2 
or 2 -> 2 -> 5

• However, if we 
normalize at each 
state to obtain the 
probabilities, the best 
paths should be: 1 -> 
1 -> 1 or 1 -> 1 -> 2

1 -> 1 -> 1, 1 -> 1 -> 2: 0.4 * 0.5 = 0.2
2 -> 2 -> 2, 2 -> 2 -> 5: 0.2 * 0.3 = 0.06



CIS 410/510: Natural Language Processing

The label bias problem in MEMM

0.4 (20) 0.5 (10)

0.2 (100) 0.3 (150)

0.2 (100)

0.2 (100)

0.2 (100)

0.2 (100)

0.6 (30)

0.3 (150)

0.1 (50)

0.1 (50)

0.2 (100)
0.5 (10)

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3
• This is because the 

prediction at each 
state/word is modeled by a 
probability, thus 
necessitating the 
normalization at each state 
(local normalization)
– Impose a preference of 

states with lower number 
of transitions over the 
others.

• So, we want to avoid the 
normalization at each step 
and only normalize once 
over the entire input 
sequence to obtain the 
overall probability 𝑃(𝑦|𝑥) 
(global normalization), 
leading to Conditional 
Random Fields (CRF)



CIS 410/510: Natural Language Processing

Conditional Random Fields (CRF)
• Both MEMM and CRF directly model 𝑃(𝑦|𝑥).

• For MEMM:

𝑃 𝑦 𝑥; 𝜃 =8
)7!

#

𝑃(𝑦)|𝑦)*!, 𝑥; 𝜃)

• For CRF:

𝑃 𝑦 𝑥; 𝜃 =
exp(Φ(𝑥, 𝑦)8𝜃)

∑&E∈: exp(Φ(𝑥, 𝑦;)8𝜃)
	



CIS 410/510: Natural Language Processing

Conditional Random Fields (CRF)

• 𝑃 𝑦 𝑥; 𝜃 = <=>(?(@,&)FA)
∑GE∈I <=>(?(@,&

E)FA)
= <=>(?(@,&)FA)

B(@)
	

where 
 Φ 𝑥, 𝑦 = Φ& 𝑥, 𝑦 , … , Φ+ 𝑥, 𝑦 , … , Φ' 𝑥, 𝑦
         Φ+ 𝑥, 𝑦 = ∑$%&..-𝜙+(𝑦$*&, 𝑦$ , 𝑥, 𝑖)
     
with 𝜙+(𝑦$*&, 𝑦$ , 𝑥, 𝑖) is a function to capture some features of the input sentence 𝑥 
and the transition from state 𝑦$*& to state 𝑦$  at step 𝑖	(i.e., only capturing features at 
the edge and node level and similar to those we use for MEMM).
• The element of 𝜃 corresponding to Φ+ 𝑥, 𝑦 	is 𝜃+

𝑦& 𝑦.

𝑥

𝑦-



CIS 410/510: Natural Language Processing

Conditional Random Fields (CRF)

• 𝑃 𝑦 𝑥; 𝜃 = 789(;(4,')/=)
∑0.∈2 789(;(4,'

.)/=)
= 789(;(4,')/=)

?(4)

• The normalizing factor 𝑍(𝑥) involve summing over an exponential number 
of terms (all the possible label sequence for the input sentence -- |𝑌|&)

• Using dynamic programming (i.e., the forward algorithm), we can compute 
the normalization in 𝑂(𝑛|𝑌|%)

1 2 3 4 5
observation

1

2

3

state

𝑀$ 𝑦/, 𝑦 = exp( K
+%&..'

𝜃+ 𝜙+(𝑦/, 𝑦, 𝑥, 𝑖)Score at one edge



CIS 410/510: Natural Language Processing

Conditional Random Fields (CRF)

• 𝛼2(𝑠): the total score for the length-𝑖 subpaths of the paths whose 𝑖-th state is 𝑠.

• Initialization:
 𝛼# 𝑠 = exp(∑@0#..3 𝜃@ 𝜙@(𝑠𝑡𝑎𝑟𝑡, 𝑠, 𝑥, 1)
• Recurrence:
  𝛼2 𝑠 = ∑,*∈.𝛼2"# 𝑠/ 𝑀2(𝑠/, 𝑠)
• Final normalization score:
 𝑍 𝑥 = 	∑,∈.𝛼&(𝑠)

1 2 3 4 5
observation

1

2

3

state



CIS 410/510: Natural Language Processing

CRF Training
• Loss function:

 𝐿 𝜃 = − log 𝑃 𝑦 𝑥; 𝜃 = − log 012(4(5,()"8)
∑#$∈& 012(4(5,(

$)"8)
= −Φ 𝑥, 𝑦 :𝜃 + log 𝑍(𝑥)

• In most of the optimization technique for 𝐿(𝜃), we will need to compute 
its gradient:
+,(.)
+.!

=	- 𝜙0 𝑥, 𝑦 + ∑1"∈3
456(7(8,1")#.):! 8,1"

;(8)
= −𝜙0 𝑥, 𝑦 +	∑1"∈3 𝑃(𝑦<|𝑥)𝜙0 𝑥, 𝑦<   

• ∑'.∈. 𝑃(𝑦/|𝑥)𝜙@ 𝑥, 𝑦/ =
	∑20#..&∑,.∈.,,∈.𝜙@(𝑠/, 𝑠, 𝑥, 𝑖) ∑'.:'3-*. 0,.,'3

.0, 𝑃(𝑦
/|𝑥)

• Using this factorization, we can compute this quantity in 𝑂(𝑛|𝑌|%) using 
the forward-backward algorithm

For details, see: Collins, “The Forward-Backward Algorithm”



CIS 410/510: Natural Language Processing

Viterbi decoding for CRF
• 𝑣) 𝑠 =	𝑚𝑎𝑥&J,&K,…,&LMJ𝑃(𝑦!, 𝑦", … , 𝑦)*!, 𝑦) = 𝑠|𝑥)

• Initialization:
  𝑣! 𝑠 = ∑U7!..W exp(𝜃U𝜙U(𝑠𝑡𝑎𝑟𝑡, 𝑠, 𝑥, 1))

• Recurrence:
  𝑣$ 𝑠 = 𝑚𝑎𝑥XE∈:[𝛼$*! 𝑠; 𝑀$ 𝑠;, 𝑠 ]

• Best score:
  𝑝∗ =	𝑚𝑎𝑥X∈:	𝑣# 𝑠



CIS 410/510: Natural Language Processing

Recurrent Neural Networks (RNN)

Input vectors for words
(e.g., one-hot or distributed vectors)

Goldberg, 2017

• 𝑅: recurrence function
• 𝑂: output function
• 𝑠𝑖, 𝑦𝑖: hidden vector and output vector at step 𝑖.
• 𝜃: model parameters (to be learned during training)

Initial 
vector 
(zero)



CIS 410/510: Natural Language Processing

Recurrent Neural Networks (RNN)
• At each step, the 𝑅 function takes two inputs (i.e., the hidden vector 

from the previous step 𝑠!"# and the input vector from the current step 
𝑥!) to compute the hidden vector for the current step 𝑠!	:

 𝑠! = 𝑅(𝑠!"#, 𝑥!)

• The hidden vector 𝑠! can be used as the feature vector to make a 
prediction about the label for 𝑥! (i.e., POS or NER). Essentially, we use 
the O function to transform 𝑠! into a score vector 𝑜! whose dimensions 
quantify the likelihood that	𝑥! has the corresponding labels (i.e., 𝑜! =
|𝑌|):

 𝑜! = 𝑂(𝑠!𝑊> +	𝑏>)

• 𝑜! can be transformed into a probability distribution via the softmax 
function: 𝑑! = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑜!)

• In the simplest version (i.e., vanilla RNN), 𝑂 can be just the identity 
function (i.e., 𝑂(𝑥) 	= 	𝑥), while 𝑅 can be a simple linear 
transformation followed by a non-linear function:

𝑠! = 𝜎(𝑠!"#𝑊$ +	𝑥!𝑊% +	𝑏$)

𝑊5

𝑊;

𝑥)

𝑼

𝑠)*&

𝑠)

𝑊;

𝑜)

𝑑)



CIS 410/510: Natural Language Processing

Recurrent Neural Networks (RNN)
• The model parameters: 𝜃 = {𝑊? ,𝑊8 , 𝑏? ,𝑊> , 𝑏>}

• The recurrence nature (i.e., using the hidden vector from the 
previous step for the current computation) allows each hidden 
vector 𝑠! 	to capture information about all the words before 𝑡: 𝑠! =
𝑓(𝑠@, 𝑠#, … , 𝑠!"#)

• The use of the same parameters 𝑊? ,𝑊8 , 𝑏?  in the recurrence 
function 𝑅 causes the gradient vanishing problem (i..e, gradient 
becomes small in long sentences so the models cannot learn)

• In practice, the LSTM cell is often used for R to mitigate this 
problem.

𝑊5

𝑊;

𝑥)

𝑼

𝑠)*&

𝑠)

𝑊;

𝑜)



CIS 410/510: Natural Language Processing

Training RNN



CIS 410/510: Natural Language Processing

Bidirectional RNN

Liverpool suffered an upset first home league 
defeat of the season, beaten 1-0 by a Guy 
Whittingham goal for Sheffield Wednesday.
• The information on the left is not enough to predict the label 

for the current word.

A city or a football team?



CIS 410/510: Natural Language Processing

Bidirectional RNN

Forward RNN

Backward RNN

• 𝑠'
( = 𝜎(𝑠')*

( 𝑊+
( + 𝑥'𝑊,

( + 𝑏()
• 𝑠'- = 𝜎(𝑠')*- 𝑊+- + 𝑥'𝑊,- + 𝑏-)                            
• 𝑦' = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥( 𝑠'

(, 𝑠'- 𝑊. + 𝑏.), 𝜃 = [𝑊+
(,𝑊,

(, 𝑏(,𝑊+-,𝑊,-, 𝑏-,𝑊., 𝑏.]

So, one hidden vector has access to the context information
across the whole sentence



CIS 410/510: Natural Language Processing

Bidirectional RNN



CIS 410/510: Natural Language Processing

We can also go deeper (stacked RNN)



CIS 410/510: Natural Language Processing

Incorporating CRF
• RNN makes prediction for words independently (the 

features/representations share the parameters, but the output predictions 
are independent)

• There are some dependencies between the output labels that we want to 
exploit (i.e., I_PER can only be preceded by B_PER), so the later 
predictions can influence the prior predictions (e.g., fixing prior’s error)

• CRF can achieve this via the global normalization of the label sequence 
probabilities

• Idea: Incorporate CRF as the final in the RNN models for sequence labeling



CIS 410/510: Natural Language Processing

Incorporating CRF

Huang et al. 2015, “Bidirectional LSTM-CRF Models for Sequence Tagging



CIS 410/510: Natural Language Processing

Incorporating CRF

Ma and Hovy (2016), “End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF”



CIS 410/510: Natural Language Processing

Incorporating CRF


