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Words

• The primary elements of natural languages

• Each word carries some unit meaning depending on 
its context

• The unit meanings of the words are 
composed/combined to produce new and more 
complicated meanings/concepts (e.g., sentences, 
documents)
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Word Meanings
• The fundamental of NLP is to be able to allow 

computers to understand meanings of text

𝑀𝑒𝑎𝑛𝑖𝑛𝑔 “I	have	a	cat” = 	𝑓(	𝑀𝑒𝑎𝑛𝑖𝑛𝑔 “I” ,	
	 𝑀𝑒𝑎𝑛𝑖𝑛𝑔 “have” ,	

	 𝑀𝑒𝑎𝑛𝑖𝑛𝑔 “a” ,	
	 𝑀𝑒𝑎𝑛𝑖𝑛𝑔 “cat” 	)

How do we capture/approximate the composition 
function 𝑓 and the 𝑀𝑒𝑎𝑛𝑖𝑛𝑔 function for words?
We will discuss the word meanings in this talk!
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What are meanings?

Definition (Webster dictionary)

• The idea that is represented by a word, phrase, etc.

• The idea that a person wants to express by using 
words, signs, etc.

• The idea that is expressed in a word of writing, art, 
etc.
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How to represent the meanings of 
a word in computers?

Common solution: Use the sets of synonyms and hypernyms of 
the word by querying some thesaurus (e.g., WordNet)
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Problems with resources like 
WordNet

• Great as a resource but missing nuance
– e.g., “proficient” is listed as a synonym for “good”, but 

this is only true in some contexts.
• Missing new meanings of words
– e.g., wicked, badass, nifty, wizard, genius, ninja, 

bombast
– very challenging to keep up-to-date.

• Subjective
• Require human labor to create and adapt
• Impossible to compute word similarity
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Representing words as discrete symbols

• In traditional NLP, words are considered as discrete symbols
• Mathematically, a words are represented by a one-hot vector, 

where:
– The dimension of the vector = the number of words in some given 

vocabulary (e.g., 500,000)
– Only the bit corresponding to the word is set to 1 (i.e, 0 otherwise)

   hotel  = [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
   motel = [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]

– This is called the localist representation (to be distinguished with 
distributed representation in cognitive science later)



CIS 410/510: Natural Language Processing

Problems with words as discrete symbols

• The size of the vectors is large
• The vectors for any pair of words are orthogonal (i.e., cosine 

similarity = 0), but for similar words like “hotel” and “motel”, we 
expect their vectors to exhibit some level of similarity (i.e., the 
cosine similarity should be non-zero).
– e.g., in web search, a search for “Seattle hotel” should return documents 

with “Seattle motel” as well.

• Solution for this?
– Can we use the idea of synonyms and hyponyms for such one-hot vectors?

• Not working well in practice (e.g., incompleteness)

– Learn to explicitly encode similarity in the word vectors themselves, 
reduce the size of the vectors, go from binary vectors to continuous 
vectors



CIS 410/510: Natural Language Processing

Representing words by their contexts

• Distributional semantics: a word’s meaning is given by the 
words that frequently appear close-by
– “You shall know a word by the company it keeps” (J. R. Firth 

1957: 11)
– One of the most successful ideas of modern statistical NLP

• When a word w appears in a text, its context is the set of 
words that appear nearby (within a fixed-size window).

• Use the many contexts of w to build up a representation of 
w
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Word vectors
• We will introduce a dense vector for each word, chosen so 

that it is similar to vectors of words appearing in similar 
contexts.

• Word vectors are also called word embeddings or word 
representations. They are a distributed representation, e.g.,
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Localist representation 
vs. distributed representation

• In cognitive science, distributed representation has the 
following property (Hilton et al., 1986; Plate, 2012):
– A concept is represented by a pattern of activity over a collection of 

neurons (i.e., more than one neuron is required to represent a 
concept.)

– Each neuron participates in the representation of more than one 
concept.

• By contrast, in localist representation, each neuron represents 
a single concept on a stand-alone basis. The critical distinction 
is that localist units have “meaning and interpretation” 
whereas units in distributed representation don’t. 
– “These representations are distributed, which typically has the 

consequence that interpretable information cannot be obtained by 
examining activity of single hidden units.” – Elman, 1995.

Roy, Asim. “A theory of the brain: localist representation is used widely in the brain.” Frontiers in psychology vol. 3 551
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Word meaning as a neural word vector
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How do we obtain such word vectors?

• Word2vec (Mikolove et al. 2013) is a popular 
framework to learn word vectors (although many other 
efforts have been made before it)

• Idea:
– We start with a large corpus of text
– Every word in a fixed vocabulary is represented by a vector
– Go through each position 𝑡 in the text, which has a center 

word 𝑐 and context words 𝑜 (surrounding words)
– Use the similarity of the word vectors for 𝑐 and 𝑜 to 

compute the probability of 𝑐 given 𝑜 (𝑃(𝑐|𝑜)) (or vice 
versa)

– Keep updating the word vectors to maximize this 
probability
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Two variants of word2vec

Continuous Bag of Words (CBOW):
predicting the center words using 
the context words (𝑃(𝑤!|𝑤!"#, 𝑤!"$, 𝑤!%$, 𝑤!%#))

Context words: windows of size 2 before and after the center word

Skip-grams (SG):
predicting the context words using
the center word (𝑃 𝑤!%& 𝑤! , 𝑖 ∈ {−2,−1,1,2})

We will only discuss Skip-grams due to its popularity
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Two variants of word2vec

Continuous Bag of Words (CBOW):
predicting the center words using 
the context words (𝑃(𝑤!|𝑤!"#, 𝑤!"$, 𝑤!%$, 𝑤!%#))

Context words: windows of size 2 before and after the center word

Skip-grams (SG):
predicting the context words using
the center word (𝑃 𝑤!%& 𝑤! , 𝑖 ∈ {−2,−1,1,2})

We will only discuss Skip-grams due to its popularity

Can we concatenate here?
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Wovd2vec: SG objective function
• For each position 𝑖 = 1, … , 𝑁, predict the context words within a window 

of fixed size 𝑚, given the the center word 𝑤!:

Likelihood = 𝐿 𝜃 = 	4
!"#

$

4
%&'('&

()*

𝑃(𝑤!+(|𝑤!; 𝜃)

• The objective/loss function is the (average) negative log likelihood:

loss = 	𝐽 𝜃 = −
1
𝑁
=
!"#

$

=
%&'('&

()*

log 𝑃(𝑤!+(|𝑤!; 𝜃)

• 𝜃 is the parameter used to define 𝑃(𝑤!+(|𝑤!; 𝜃). It is the model 
parameters

• Minimizing the loss function amounts to maximizing the predictive 
accuracy
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Wovd2vec: SG objective function

• How do we compute 𝑃(𝑤!"#|𝑤!; 𝜃)?
• We will use two vectors per word w:

– 𝑣𝑤 when w is a center word
– 𝑢𝑤 when w is a context word
– Using two vectors makes the later optimization easier, average 

both at the end to obtain final word vectors
– Although using one vector per word is possible too

• Then:

𝑃 𝑤?@A 𝑤?; 𝜃 =
exp(𝑢B./0

C 𝑣B.)
∑B∈E exp(𝑢BC 𝑣B.)

Dot product measures similarity of two vectors

𝑢!𝑣 = 𝑢. 𝑣 = 	)𝑢"𝑣"

What is 𝜃 in this case?
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Wovd2vec: SG objective function

• We compute the probability using the softmax function that 
maps a vector 𝑥 = [𝑥1, … , 𝑥𝑛] of arbitrary values into a 
probability distribution:

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑥! =
exp(𝑥!)

∑#*+, exp(𝑥#)
– “max” because it amplifies the probability for the largest 𝑥𝑖
– “soft” because it still assigns some probability to the smaller 𝑥𝑖
– frequently used in deep learning

Exponentiation makes anything positive
Normalization over the dimensions to produce 
a probability distribution
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Optimization: Gradient Descent
• So, we have a loss function 𝐽 𝜃  with the word vectors as the parameters. 

We want to find the parameters (word vectors) that can optimize 
(minimize) this loss/objective function.

• This is an optimization problem, often solved by (stochastic) gradient 
descent in deep learning

• Idea: for the current value 𝜃, calculate gradient of 𝐽 𝜃 , then take small 
step in the direction of negative gradient. Repeat until some convergence 
condition is met.

The loss functions in 
practice are often 
more complicated (i.e., 
non-convex) than this.
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Gradient Descent

• Update rule (in matrix notation):
𝜃!"# =	𝜃$%& − 𝛼∇'𝐽(𝜃)

– where 𝛼	is the step size or learning rate

• Update rule (for a single parameter):

𝜃(!"# = 𝜃($%& − 𝛼
𝜕
𝜕𝜃(

𝐽(𝜃)

• Algorithm:
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Stochastic Gradient Descent
• Problem: 𝐽(𝜃) is a function of all windows in the corpus (potentially 

billions!)
– So, ∇'𝐽(𝜃) is very expensive to compute
– We might need to wait for a very long time before making a single update!
– We want to be able to update the models more frequently.

• In practice, for deep learning we use Stochastic Gradient Descent:
– Repeatedly sample windows, and update the model after each sampling
– Just an approximation of batch gradient descent, but have the potential ability to escape 

local minima (good for non-convex functions)
– Algorithm:



CIS 410/510: Natural Language Processing

Negative Sampling

• 𝑃 𝑤!"# 𝑤!; 𝜃 =
-./(1"#$%

& 2"#)

∑"∈( -./(1"
&2"#)

• The normalization factor needs to enumerate over all the 
words in the vocabulary that can be very large!

• We can instead obtain only a sample of the vocabulary to 
estimate the normalization factor. This is called Negative 
Sampling as every word other than 𝑤!"# is considered as 
negative in this case.
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Negative Sampling in the Original Paper

• Paper: “Distributed Representations of Words and Phrases and their 
Compositionality” (Mikolov et al., 2013).

• Train binary logistic regression for a true pair (a center word and a word in 
its context window) versus several noise pairs (the center word paired 
with a random word)

•  Overall objection function to maximize:

• The sigmoid function (very popular in machine learning):
• In the loss function, we basically maximize the probability of two words 

co-occurring in the first log
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The skip-gram model with
 negative sampling (implementation)

• We take 𝐾 negative samples (using word probabilities)
• Maximize the probability that a real outside word 

appears and minimize the probability that random words 
appear around the center word

• 𝑃 𝑤 = 𝑈(𝑤)!/#/𝑍: the unigram distribution 𝑈(𝑤) 
raised to the ¾ power.

• The power makes frequently words be sampled more 
often
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Co-occurrence counts
• Word2Vec capture the co-occurrence of words via the prediction tasks.

• A simpler approach to capture word co-occurrence is via the direct co-
occurrence counts between words and X

• Two options for X: words in windows and full documents
– Window: Counts are done between pairs of words. Similar to Word2Vec, use window 

around each word -> capturing both syntactic (POS) and semantic information

– Document: The co-occurrence counts are done between words and documents, 
encoding the general topics and leading to “Latent Semantic Analysis”

https://en.wikipedia.org/wiki/Latent_semantic_analysis
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Example: Window based co-occurrence matrix

• Window length 1 (although 5-10 are more common)

• Symmetric (don’t distinguish left or right context)

• Example corpus:
– I like deep learning.
– I like NLP.
– I enjoy flying.
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Example: Window based co-occurrence matrix

• Example corpus:
– I like deep learning.
– I like NLP.
– I enjoy flying.

These are the 
word vectors!
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Problems with simple co-occurrence vectors

• Increase in size with vocabulary
• Very high dimensional: need a lot of storage
• Subsequent classification models have sparsity issues
• Thus, models are less robust

• Solution: Low dimensional vectors
– Idea: store most of the important information in a fixed, small number 

of dimensions: a dense vector
– Usually 25-1000 dimensions (like Word2Vec)
– Main question: How to reduce the dimensionality?
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Method 1: Dimensionality Reduction

• Singular Value Decomposition (SVD) of the co-occurrence matrix 𝐴
• Factorize 𝐴 into 𝑈Σ𝑉,  where 𝑈 and 𝑉 are orthonormal.

• Retain only 𝑘 singular values, in order to generalize.
• 𝐴𝑘 is the best rank 𝑘 approximation to 𝐴, in terms of least squares.
• Classic linear algebra result. Very expensive to compute for large matrices.
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Some tricks for dimensionality reduction 

• Scaling the counts in the cells of 𝐴 can help a lot
– Problem: function words (the, he, has) are too frequent, so syntax has 

too much impact. Some fixes:
• 𝑀𝑖𝑛(𝐴, 𝑡)	with 𝑡	 ≈ 100
• Ignore them all

• Use Pearson correlations instead of counts, then set negative 
values to 0

• …
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Interesting syntactic patterns 
emerging in word vectors

COALS model from: An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence (Rohde et al., 2005)
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Interesting semantic patterns 
emerging in word vectors

COALS model from: An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence (Rohde et al., 2005)
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Count based vs. direct prediction

• LSA, HAL (Lund & Burgess),
• COALS, Hellinger-PCA (Rohde 

et al, Lebret & Collobert)

• Fast training

• Efficient usage of statistics

• Primarily used to capture 
word similarity

• Disproportionate influence 
given to large counts

• Skip-gram/CBOW (Mikolov et al)
• NNLM, HLBL, RNN (Bengio et al; Collobert 

& Weston; Huang et al; Mnih & Hinton)

• Scales with corpus size

• Inefficient usage of statistics

• Generate improved performance on other 
tasks

• Can capture complex patterns beyond 
word similarity
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Method 2: GloVe (Pennington et al., EMNLP 2014)
Encoding meaning in vector differences

• Crucial insight: Ratios of co-occurrence probabilities can 
encode meaning components (i.e., relationships of words)

Probe words
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Method 2: GloVe (Pennington et al., EMNLP 2014)
Encoding meaning in vector differences

• Crucial insight: Ratios of co-occurrence probabilities can 
encode meaning components (i.e., relationships of words)

Probe words
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Encoding meaning in vector differences (GloVe)

• Question: How can we capture ratios of co-occurrence probabilities as 
linear meaning components in a word vector space?

• Answer: 

– Log-bilinear model

with vector differences
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Encoding meaning in vector differences (GloVe)

• The loss function:

• Fast training

• Scalable to huge corpora

• Good performance even with small corpus and small vectors

• Word2Vec and GloVe were very popular in NLP before the advent of large 
language models. Which one is better depends on their specific applications.

The weighting function Number of times word 𝑗 occur 
in the context of word 𝑖
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GloVe results
• Nearest words to frog:

– frogs
– toad
– litoria
– leptodactylidae
– rana
– lizard
– eleutherodactylus
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How to evaluate word vectors?
• Related to general evaluation in NLP: Intrinsic vs extrinsic
• Intrinsic:

– Evaluation on a specific/intermediate subtask
– Fast to compute
– Helps to understand that system
– Unclear if really helpful unless correlation to real tasks is established

• Extrinsic:
– Evaluation on a real task (things that we will study in this class)
– Can take a long time to evaluate the accuracy
– If a problem occurs, unclear if it is due to the word vectors the system for the real task 

or their interactions
– If replacing exactly one system for the real task with another improves accuracy -> 

Winning!
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Intrinsic word vector evaluation
• Word Vector Analogies

       man:woman :: king:?

• Evaluate word vectors by how well 
their cosine distance after addition 
captures intuitive semantic and 
syntactic analogy questions

• Discarding the input words from the 
search!

• Problem: What if the information is 
there but not linear?
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GloVe visualization
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GloVe visualization: Company - CEO
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GloVe visualization: Superlative
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Intrinsic word vector evaluation
• Word Vector Analogies: Syntactic and Semantic examples from:
 https://code.google.com/archive/p/word2vec/source

https://code.google.com/archive/p/word2vec/source
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Analogy evaluation and hyperparameters

• Accuracy
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Another intrinsic word vector evaluation

• Word vector distances and their correlation with human judgments
• Example dataset: WordSim353 

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
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Correlation evaluation
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Extrinsic word vector evaluation
• Extrinsic evaluation of word vectors: All subsequent tasks in this class
• One example where good word vectors should help directly is Named Entity 

Recognition (i.e., finding names of persons, organization, or locations in text)

• Word vectors/representations have been a major breakthrough in NLP, enabling a novel 
approach for NLP based on deep learning, and leading to a new era for NLP with models 
of better performance, robustness and portability.

• We will study a new generation of word vectors later.


