
CIS 410/510: Natural Language Processing

Word Embeddings

Instructor: Thien Huu Nguyen

Based on slides from: Chris Manning

CIS 410/510: Natural Language Processing

Words

• The primary elements of natural languages

• Each word carries some unit meaning depending on
its context

• The unit meanings of the words are
composed/combined to produce new and more
complicated meanings/concepts (e.g., sentences,
documents)

CIS 410/510: Natural Language Processing

Word Meanings
• The fundamental of NLP is to be able to allow

computers to understand meanings of text

𝑀𝑒𝑎𝑛𝑖𝑛𝑔 “I	have	a	cat” = 	𝑓(𝑀𝑒𝑎𝑛𝑖𝑛𝑔 “I” ,	
	 𝑀𝑒𝑎𝑛𝑖𝑛𝑔 “have” ,	

	 𝑀𝑒𝑎𝑛𝑖𝑛𝑔 “a” ,	
	 𝑀𝑒𝑎𝑛𝑖𝑛𝑔 “cat”)

How do we capture/approximate the composition
function 𝑓 and the 𝑀𝑒𝑎𝑛𝑖𝑛𝑔 function for words?
We will discuss the word meanings in this talk!

CIS 410/510: Natural Language Processing

What are meanings?

Definition (Webster dictionary)

• The idea that is represented by a word, phrase, etc.

• The idea that a person wants to express by using
words, signs, etc.

• The idea that is expressed in a word of writing, art,
etc.

CIS 410/510: Natural Language Processing

How to represent the meanings of
a word in computers?

Common solution: Use the sets of synonyms and hypernyms of
the word by querying some thesaurus (e.g., WordNet)

CIS 410/510: Natural Language Processing

Problems with resources like
WordNet

• Great as a resource but missing nuance
– e.g., “proficient” is listed as a synonym for “good”, but

this is only true in some contexts.
• Missing new meanings of words
– e.g., wicked, badass, nifty, wizard, genius, ninja,

bombast
– very challenging to keep up-to-date.

• Subjective
• Require human labor to create and adapt
• Impossible to compute word similarity

CIS 410/510: Natural Language Processing

Representing words as discrete symbols

• In traditional NLP, words are considered as discrete symbols
• Mathematically, a words are represented by a one-hot vector,

where:
– The dimension of the vector = the number of words in some given

vocabulary (e.g., 500,000)
– Only the bit corresponding to the word is set to 1 (i.e, 0 otherwise)

 hotel = [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
 motel = [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]

– This is called the localist representation (to be distinguished with
distributed representation in cognitive science later)

CIS 410/510: Natural Language Processing

Problems with words as discrete symbols

• The size of the vectors is large
• The vectors for any pair of words are orthogonal (i.e., cosine

similarity = 0), but for similar words like “hotel” and “motel”, we
expect their vectors to exhibit some level of similarity (i.e., the
cosine similarity should be non-zero).
– e.g., in web search, a search for “Seattle hotel” should return documents

with “Seattle motel” as well.

• Solution for this?
– Can we use the idea of synonyms and hyponyms for such one-hot vectors?

• Not working well in practice (e.g., incompleteness)

– Learn to explicitly encode similarity in the word vectors themselves,
reduce the size of the vectors, go from binary vectors to continuous
vectors

CIS 410/510: Natural Language Processing

Representing words by their contexts

• Distributional semantics: a word’s meaning is given by the
words that frequently appear close-by
– “You shall know a word by the company it keeps” (J. R. Firth

1957: 11)
– One of the most successful ideas of modern statistical NLP

• When a word w appears in a text, its context is the set of
words that appear nearby (within a fixed-size window).

• Use the many contexts of w to build up a representation of
w

CIS 410/510: Natural Language Processing

Word vectors
• We will introduce a dense vector for each word, chosen so

that it is similar to vectors of words appearing in similar
contexts.

• Word vectors are also called word embeddings or word
representations. They are a distributed representation, e.g.,

CIS 410/510: Natural Language Processing

Localist representation
vs. distributed representation

• In cognitive science, distributed representation has the
following property (Hilton et al., 1986; Plate, 2012):
– A concept is represented by a pattern of activity over a collection of

neurons (i.e., more than one neuron is required to represent a
concept.)

– Each neuron participates in the representation of more than one
concept.

• By contrast, in localist representation, each neuron represents
a single concept on a stand-alone basis. The critical distinction
is that localist units have “meaning and interpretation”
whereas units in distributed representation don’t.
– “These representations are distributed, which typically has the

consequence that interpretable information cannot be obtained by
examining activity of single hidden units.” – Elman, 1995.

Roy, Asim. “A theory of the brain: localist representation is used widely in the brain.” Frontiers in psychology vol. 3 551

CIS 410/510: Natural Language Processing

Word meaning as a neural word vector

CIS 410/510: Natural Language Processing

How do we obtain such word vectors?

• Word2vec (Mikolove et al. 2013) is a popular
framework to learn word vectors (although many other
efforts have been made before it)

• Idea:
– We start with a large corpus of text
– Every word in a fixed vocabulary is represented by a vector
– Go through each position 𝑡 in the text, which has a center

word 𝑐 and context words 𝑜 (surrounding words)
– Use the similarity of the word vectors for 𝑐 and 𝑜 to

compute the probability of 𝑐 given 𝑜 (𝑃(𝑐|𝑜)) (or vice
versa)

– Keep updating the word vectors to maximize this
probability

CIS 410/510: Natural Language Processing

Two variants of word2vec

Continuous Bag of Words (CBOW):
predicting the center words using
the context words (𝑃(𝑤!|𝑤!"#, 𝑤!"$, 𝑤!%$, 𝑤!%#))

Context words: windows of size 2 before and after the center word

Skip-grams (SG):
predicting the context words using
the center word (𝑃 𝑤!%& 𝑤! , 𝑖 ∈ {−2,−1,1,2})

We will only discuss Skip-grams due to its popularity

CIS 410/510: Natural Language Processing

Two variants of word2vec

Continuous Bag of Words (CBOW):
predicting the center words using
the context words (𝑃(𝑤!|𝑤!"#, 𝑤!"$, 𝑤!%$, 𝑤!%#))

Context words: windows of size 2 before and after the center word

Skip-grams (SG):
predicting the context words using
the center word (𝑃 𝑤!%& 𝑤! , 𝑖 ∈ {−2,−1,1,2})

We will only discuss Skip-grams due to its popularity

Can we concatenate here?

CIS 410/510: Natural Language Processing

Wovd2vec: SG objective function
• For each position 𝑖 = 1, … , 𝑁, predict the context words within a window

of fixed size 𝑚, given the the center word 𝑤!:

Likelihood = 𝐿 𝜃 = 	4
!"#

$

4
%&'('&

()*

𝑃(𝑤!+(|𝑤!; 𝜃)

• The objective/loss function is the (average) negative log likelihood:

loss = 	𝐽 𝜃 = −
1
𝑁
=
!"#

$

=
%&'('&

()*

log 𝑃(𝑤!+(|𝑤!; 𝜃)

• 𝜃 is the parameter used to define 𝑃(𝑤!+(|𝑤!; 𝜃). It is the model
parameters

• Minimizing the loss function amounts to maximizing the predictive
accuracy

CIS 410/510: Natural Language Processing

Wovd2vec: SG objective function

• How do we compute 𝑃(𝑤!"#|𝑤!; 𝜃)?
• We will use two vectors per word w:

– 𝑣𝑤 when w is a center word
– 𝑢𝑤 when w is a context word
– Using two vectors makes the later optimization easier, average

both at the end to obtain final word vectors
– Although using one vector per word is possible too

• Then:

𝑃 𝑤?@A 𝑤?; 𝜃 =
exp(𝑢B./0

C 𝑣B.)
∑B∈E exp(𝑢BC 𝑣B.)

Dot product measures similarity of two vectors

𝑢!𝑣 = 𝑢. 𝑣 =)𝑢"𝑣"

What is 𝜃 in this case?

CIS 410/510: Natural Language Processing

Wovd2vec: SG objective function

• We compute the probability using the softmax function that
maps a vector 𝑥 = [𝑥1, … , 𝑥𝑛] of arbitrary values into a
probability distribution:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑥! =
exp(𝑥!)

∑#*+, exp(𝑥#)
– “max” because it amplifies the probability for the largest 𝑥𝑖
– “soft” because it still assigns some probability to the smaller 𝑥𝑖
– frequently used in deep learning

Exponentiation makes anything positive
Normalization over the dimensions to produce
a probability distribution

CIS 410/510: Natural Language Processing

Optimization: Gradient Descent
• So, we have a loss function 𝐽 𝜃 with the word vectors as the parameters.

We want to find the parameters (word vectors) that can optimize
(minimize) this loss/objective function.

• This is an optimization problem, often solved by (stochastic) gradient
descent in deep learning

• Idea: for the current value 𝜃, calculate gradient of 𝐽 𝜃 , then take small
step in the direction of negative gradient. Repeat until some convergence
condition is met.

The loss functions in
practice are often
more complicated (i.e.,
non-convex) than this.

CIS 410/510: Natural Language Processing

Gradient Descent

• Update rule (in matrix notation):
𝜃!"# =	𝜃$%& − 𝛼∇'𝐽(𝜃)

– where 𝛼	is the step size or learning rate

• Update rule (for a single parameter):

𝜃(!"# = 𝜃($%& − 𝛼
𝜕
𝜕𝜃(

𝐽(𝜃)

• Algorithm:

CIS 410/510: Natural Language Processing

Stochastic Gradient Descent
• Problem: 𝐽(𝜃) is a function of all windows in the corpus (potentially

billions!)
– So, ∇'𝐽(𝜃) is very expensive to compute
– We might need to wait for a very long time before making a single update!
– We want to be able to update the models more frequently.

• In practice, for deep learning we use Stochastic Gradient Descent:
– Repeatedly sample windows, and update the model after each sampling
– Just an approximation of batch gradient descent, but have the potential ability to escape

local minima (good for non-convex functions)
– Algorithm:

CIS 410/510: Natural Language Processing

Negative Sampling

• 𝑃 𝑤!"# 𝑤!; 𝜃 =
-./(1"#$%

& 2"#)

∑"∈(-./(1"
&2"#)

• The normalization factor needs to enumerate over all the
words in the vocabulary that can be very large!

• We can instead obtain only a sample of the vocabulary to
estimate the normalization factor. This is called Negative
Sampling as every word other than 𝑤!"# is considered as
negative in this case.

CIS 410/510: Natural Language Processing

Negative Sampling in the Original Paper

• Paper: “Distributed Representations of Words and Phrases and their
Compositionality” (Mikolov et al., 2013).

• Train binary logistic regression for a true pair (a center word and a word in
its context window) versus several noise pairs (the center word paired
with a random word)

• Overall objection function to maximize:

• The sigmoid function (very popular in machine learning):
• In the loss function, we basically maximize the probability of two words

co-occurring in the first log

CIS 410/510: Natural Language Processing

The skip-gram model with
 negative sampling (implementation)

• We take 𝐾 negative samples (using word probabilities)
• Maximize the probability that a real outside word

appears and minimize the probability that random words
appear around the center word

• 𝑃 𝑤 = 𝑈(𝑤)!/#/𝑍: the unigram distribution 𝑈(𝑤)
raised to the ¾ power.

• The power makes frequently words be sampled more
often

CIS 410/510: Natural Language Processing

Co-occurrence counts
• Word2Vec capture the co-occurrence of words via the prediction tasks.

• A simpler approach to capture word co-occurrence is via the direct co-
occurrence counts between words and X

• Two options for X: words in windows and full documents
– Window: Counts are done between pairs of words. Similar to Word2Vec, use window

around each word -> capturing both syntactic (POS) and semantic information

– Document: The co-occurrence counts are done between words and documents,
encoding the general topics and leading to “Latent Semantic Analysis”

https://en.wikipedia.org/wiki/Latent_semantic_analysis

CIS 410/510: Natural Language Processing

Example: Window based co-occurrence matrix

• Window length 1 (although 5-10 are more common)

• Symmetric (don’t distinguish left or right context)

• Example corpus:
– I like deep learning.
– I like NLP.
– I enjoy flying.

CIS 410/510: Natural Language Processing

Example: Window based co-occurrence matrix

• Example corpus:
– I like deep learning.
– I like NLP.
– I enjoy flying.

These are the
word vectors!

CIS 410/510: Natural Language Processing

Problems with simple co-occurrence vectors

• Increase in size with vocabulary
• Very high dimensional: need a lot of storage
• Subsequent classification models have sparsity issues
• Thus, models are less robust

• Solution: Low dimensional vectors
– Idea: store most of the important information in a fixed, small number

of dimensions: a dense vector
– Usually 25-1000 dimensions (like Word2Vec)
– Main question: How to reduce the dimensionality?

CIS 410/510: Natural Language Processing

Method 1: Dimensionality Reduction

• Singular Value Decomposition (SVD) of the co-occurrence matrix 𝐴
• Factorize 𝐴 into 𝑈Σ𝑉, where 𝑈 and 𝑉 are orthonormal.

• Retain only 𝑘 singular values, in order to generalize.
• 𝐴𝑘 is the best rank 𝑘 approximation to 𝐴, in terms of least squares.
• Classic linear algebra result. Very expensive to compute for large matrices.

CIS 410/510: Natural Language Processing

Some tricks for dimensionality reduction

• Scaling the counts in the cells of 𝐴 can help a lot
– Problem: function words (the, he, has) are too frequent, so syntax has

too much impact. Some fixes:
• 𝑀𝑖𝑛(𝐴, 𝑡)	with 𝑡	 ≈ 100
• Ignore them all

• Use Pearson correlations instead of counts, then set negative
values to 0

• …

CIS 410/510: Natural Language Processing

Interesting syntactic patterns
emerging in word vectors

COALS model from: An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence (Rohde et al., 2005)

CIS 410/510: Natural Language Processing

Interesting semantic patterns
emerging in word vectors

COALS model from: An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence (Rohde et al., 2005)

CIS 410/510: Natural Language Processing

Count based vs. direct prediction

• LSA, HAL (Lund & Burgess),
• COALS, Hellinger-PCA (Rohde

et al, Lebret & Collobert)

• Fast training

• Efficient usage of statistics

• Primarily used to capture
word similarity

• Disproportionate influence
given to large counts

• Skip-gram/CBOW (Mikolov et al)
• NNLM, HLBL, RNN (Bengio et al; Collobert

& Weston; Huang et al; Mnih & Hinton)

• Scales with corpus size

• Inefficient usage of statistics

• Generate improved performance on other
tasks

• Can capture complex patterns beyond
word similarity

CIS 410/510: Natural Language Processing

Method 2: GloVe (Pennington et al., EMNLP 2014)
Encoding meaning in vector differences

• Crucial insight: Ratios of co-occurrence probabilities can
encode meaning components (i.e., relationships of words)

Probe words

CIS 410/510: Natural Language Processing

Method 2: GloVe (Pennington et al., EMNLP 2014)
Encoding meaning in vector differences

• Crucial insight: Ratios of co-occurrence probabilities can
encode meaning components (i.e., relationships of words)

Probe words

CIS 410/510: Natural Language Processing

Encoding meaning in vector differences (GloVe)

• Question: How can we capture ratios of co-occurrence probabilities as
linear meaning components in a word vector space?

• Answer:

– Log-bilinear model

with vector differences

CIS 410/510: Natural Language Processing

Encoding meaning in vector differences (GloVe)

• The loss function:

• Fast training

• Scalable to huge corpora

• Good performance even with small corpus and small vectors

• Word2Vec and GloVe were very popular in NLP before the advent of large
language models. Which one is better depends on their specific applications.

The weighting function Number of times word 𝑗 occur
in the context of word 𝑖

CIS 410/510: Natural Language Processing

GloVe results
• Nearest words to frog:

– frogs
– toad
– litoria
– leptodactylidae
– rana
– lizard
– eleutherodactylus

CIS 410/510: Natural Language Processing

How to evaluate word vectors?
• Related to general evaluation in NLP: Intrinsic vs extrinsic
• Intrinsic:

– Evaluation on a specific/intermediate subtask
– Fast to compute
– Helps to understand that system
– Unclear if really helpful unless correlation to real tasks is established

• Extrinsic:
– Evaluation on a real task (things that we will study in this class)
– Can take a long time to evaluate the accuracy
– If a problem occurs, unclear if it is due to the word vectors the system for the real task

or their interactions
– If replacing exactly one system for the real task with another improves accuracy ->

Winning!

CIS 410/510: Natural Language Processing

Intrinsic word vector evaluation
• Word Vector Analogies

 man:woman :: king:?

• Evaluate word vectors by how well
their cosine distance after addition
captures intuitive semantic and
syntactic analogy questions

• Discarding the input words from the
search!

• Problem: What if the information is
there but not linear?

CIS 410/510: Natural Language Processing

GloVe visualization

CIS 410/510: Natural Language Processing

GloVe visualization: Company - CEO

CIS 410/510: Natural Language Processing

GloVe visualization: Superlative

CIS 410/510: Natural Language Processing

Intrinsic word vector evaluation
• Word Vector Analogies: Syntactic and Semantic examples from:
 https://code.google.com/archive/p/word2vec/source

https://code.google.com/archive/p/word2vec/source

CIS 410/510: Natural Language Processing

Analogy evaluation and hyperparameters

• Accuracy

CIS 410/510: Natural Language Processing

Another intrinsic word vector evaluation

• Word vector distances and their correlation with human judgments
• Example dataset: WordSim353

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

CIS 410/510: Natural Language Processing

Correlation evaluation

CIS 410/510: Natural Language Processing

Extrinsic word vector evaluation
• Extrinsic evaluation of word vectors: All subsequent tasks in this class
• One example where good word vectors should help directly is Named Entity

Recognition (i.e., finding names of persons, organization, or locations in text)

• Word vectors/representations have been a major breakthrough in NLP, enabling a novel
approach for NLP based on deep learning, and leading to a new era for NLP with models
of better performance, robustness and portability.

• We will study a new generation of word vectors later.

