
Lecture Notes on CS 422 Software Methodologies 
By Anthony Hornof

Last updated April 1, 2024

These are Anthony Hornof’s notes from:

	 Sommerville (2015) Software Engineering, 10th edition, Pearson. 
	 Usability.gov, captured March 6, 2023. 
	 Merriam Webster and New Oxford American dictionaries. 
	 van Vliet. (2008). Software Engineering: Principles and Practice.

The notes were taken to (a) learn and organize an understanding of the material

and (b) prepare lectures. The notes summarize some, but not all, of the
required reading. Please do the reading to learn the required course material.

Some of the notes are copied directly from the textbooks.

Part 1 in "Contents at a Glance" provides a good overview of most of the

assigned reading.

These notes are primarily organized around the chapters in Sommerville (2015).

Table of Contents  
(Click on a chapter to go to that chapter.)

The content in boxes, such as this, is not from the book.

Chapter 1 - Introduction 2

Chapter 2 - Software Processes 5

Chapter 4 - Requirements Engineering 11

Chapter 5 - System Modeling 21

Chapter 6 - Architectural Design 27

Lecture on Software Design Principles 32

Section 7.2 - Design Patterns 36

Chapter 8 - Software Testing 37

Chapter 22 - Project Management 46

Section 23.3 - Project Scheduling 51

Hierarchical Task Analysis 54

Sharp 14 - Usability Testing 57
1

Chapter 1 - Introduction

These notes are primarily copied from Sommerville (2015) Software Engineering, 10th edition.

Read the first page in class.

1.0 - Intro to Chapter 1.

Software engineering is essential for the functioning of government, society,
and national and international businesses and institutions....

Software systems are abstract and intangible. They are not constrained by the
properties of materials, nor are they governed by physical laws or by
manufacturing processes....

There are many different types of software system, ranging from simple
embedded systems to complex, worldwide information systems....

There are still many reports of software projects going wrong and of “software
failures.”....

Four themes that pervade all aspects of software engineering. (A. Hornof)

1. Use abstractions. Find ways to summarize detailed specifications of
concepts and ideas, and use these brief summaries in place of the more
complex ideas. It is imperative that all team members understand the
abstractions that other team members are using.

2. Divide and conquer. Break a large problem into smaller pieces that can be
solved one at a time. This permits you to focus your thinking on one problem
at a time.

3. Propose and consider alternatives. Nearly every activity in software
engineering involves some form of design, in which design is the process of
proposing and evaluating alternative solutions to a problem.

4. Collaborate. Most of the processes and techniques developed and used in
software engineering are ultimately aimed at helping groups of people
combine their brainpower to solve problems together.

2

	 1. Increasing system complexity....

	 2. Failure to use software engineering methods....

What is software?

Computer programs and associated documentation, libraries, support websites,
and configuration data that are needed to make these programs useful.

What is software engineering?

Software engineering is an engineering discipline that is concerned with all
aspects of software production from initial conception to operation and
maintenance.

What is the difference between software engineering and computer science?

Computer science focuses on theory and fundamentals; software engineering is
concerned with the practicalities of developing and delivering useful software.

If you are writing a program for yourself, no one else will use it and you don’t
have to worry about writing program guides, documenting the program design,
and so on. However, if you are writing software that other people will use and
other engineers will change, then you usually have to provide additional
information as well as the code of the program.

1.1.1 Software engineering

Software engineering is an engineering discipline that is concerned with all
aspects of software production from the early stages of system specification
through to maintaining the system after it has gone into use. In this definition,
there are two key phrases:

1. Engineering discipline. Engineers make things work. They apply theories,
methods, and tools where these are appropriate...., and they must look for
solutions within constraints.

2. All aspects of software production. Software engineering is not just
concerned with the technical processes of software development. It also
includes activities such as software project management....

3

Software engineers adopt systematic and organized approaches to their work,
but engineering also requires a creative approach to solving problems.

[Skipping 1.1.2 through the end of the chapter. Students read on their own.]

[Note that 1.3 introduces the case studies used throughout the book.]

What is Software Engineering? (from Stuart Faulk)

Software engineering is the process of gaining and maintaining control over
the products and processes of software development. There are two kinds of
control:

• “Intellectual control” means that we make rational choices based on an
understanding of the effects of those choices on the qualities of the product
and process.

Such as understanding the implications of using C++ versus python.

• “Managerial control” is related but different in focus: The purpose is to gain
and maintain control of software development resources (money, time,
personnel).

Such as figuring out whether to try to hire more programmers or delay the
delivery date.

In practice, both are necessary and inseparable. It would difficult to have
managerial control if you do not first have intellectual control.

In contrast to computer science (the broad study of the basis and behavior of
computing machines), software engineering is an inherently pragmatic
discipline.

4

Chapter 2 - Software Processes
These notes are primarily copied from Sommerville (2015).

Overview and Concepts

A software process is a set of activities (or “phases”) that leads to the creation
of a software system.

A software process model (sometimes called a software development lifecycle
model) is an abstracted representation of the major activities required to build a
software system, and the order of those activities.

They are “models” because they are representations, paper-based simulations.

The models are generic, high-level, abstract descriptions that help to explain
different approaches to software development.

Note how the models (the diagrams) in this lecture show fundamentally
different ways to do a project, but do so at a high level of abstraction (with little
detail).

Note how the diagrams (1) use abstractions, (2) divide and conquer, (3) make it
easy to consider alternatives, and (4) support collaboration.

The Major Lifecycle Activities (the rounded boxes in the diagrams)

The models in the chapter typically include the following activities:

1. Software specification. The functionality of the software and constraints on
its operation must be defined. This can be further broken out into: 

(a) Requirements specification. 
(b) Design specification.

2. Software development. The system is implemented to meet the specification.
3. Software validation. The system is tested to ensure that it does what the

customer needs (validation) and that it works correctly (verification).
4. Software evolution. The system is modified to meet changing customer

needs.

5

Three Examples of Software Lifecycle Models

Chapter 2 introduces three general software process models:

1. The waterfall model. The major activities are requirements specification (or
definition), software design, implementation, testing, and evolution. Each
activity is completed separately, in order.

2. Incremental development. Specification, development, and validation are all
done in parallel (interleaved). The system is developed as a series of versions
(increments), which each version adding more functionality.

3. Integration and Configuration. Reusable components or systems are
combined (integrated) and set up (configured) to work together to meet
system requirements.

Key: In each model from Sommerville, the rounded boxes show activities, the
square boxes show deliverables, and the arrows show the order of the activities
and the output of the deliverables.

Example Model #1 - The Waterfall Model

Figure 2.1. The waterfall model.

 2.1 ■ Software process models 47

can be instantiated in different ways to create processes that resemble any of the
general process models discussed here. The RUP has been adopted by some large
software companies (notably IBM), but it has not gained widespread acceptance.

 2.1.1 The waterfall model
The first published model of the software development process was derived from
engineering process models used in large military systems engineering (Royce
1970). It presents the software development process as a number of stages, as shown
in Figure 2.1. Because of the cascade from one phase to another, this model is known
as the waterfall model or software life cycle. The waterfall model is an example of a
plan-driven process. In principle at least, you plan and schedule all of the process
activities before starting software development.

The stages of the waterfall model directly reflect the fundamental software devel-
opment activities:

1. Requirements analysis and definition The system’s services, constraints, and
goals are established by consultation with system users. They are then defined
in detail and serve as a system specification.

2. System and software design The systems design process allocates the require-
ments to either hardware or software systems. It establishes an overall system
architecture. Software design involves identifying and describing the funda-
mental software system abstractions and their relationships.

3. Implementation and unit testing During this stage, the software design is real-
ized as a set of programs or program units. Unit testing involves verifying that
each unit meets its specification.

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenanceFigure 2.1 The

waterfall model

6

In the waterfall model, activities are done in order. Based on the waterfall
model shown in Figure 2.1, you only go back to a previous phase (or activity)
during the maintenance phase.

Example Model #2 - Incremental Development Lifecycle Model

Incremental development is based on the idea of developing an initial
implementation, getting feedback from users and others, and evolving the
software through several versions until the required system has been developed
(Figure 2.2). Specification, development, and validation activities are
interleaved rather than separate, with rapid feedback across activities.

Figure 2.2. Incremental development lifecycle model. 
All activities are interleaved (done in parallel, concurrently). 

All of the deliverables on the right, including the final version, 
are produced by the concurrent execution of all activities.

50 Chapter 2 ■ Software processes

Incremental development in some form is now the most common approach for
the development of application systems and software products. This approach can
be either plan-driven, agile or, more usually, a mixture of these approaches. In a
plan-driven approach, the system increments are identified in advance; if an agile
approach is adopted, the early increments are identified, but the development of
later increments depends on progress and customer priorities.

Incremental software development, which is a fundamental part of agile
development methods, is better than a waterfall approach for systems whose
requirements are likely to change during the development process. This is the
case for most business systems and software products. Incremental development
reflects the way that we solve problems. We rarely work out a complete prob-
lem solution in advance but move toward a solution in a series of steps, back-
tracking when we realize that we have made a mistake. By developing the
software incrementally, it is cheaper and easier to make changes in the software
as it is being developed.

Each increment or version of the system incorporates some of the functional-
ity that is needed by the customer. Generally, the early increments of the system
include the most important or most urgently required functionality. This means
that the customer or user can evaluate the system at a relatively early stage in
the development to see if it delivers what is required. If not, then only the cur-
rent increment has to be changed and, possibly, new functionality defined for
later increments.

Incremental development has three major advantages over the waterfall model:

1. The cost of implementing requirements changes is reduced. The amount of
analysis and documentation that has to be redone is significantly less than is
required with the waterfall model.

2. It is easier to get customer feedback on the development work that has been
done. Customers can comment on demonstrations of the software and see how

Concurrent
activities

Validation
Final

version

Development
Intermediate

versions

Specification
Initial

version

Outline
description

Figure 2.2 Incremental
development

7

Example Model #3 - Integration and Configuration

In the majority of software projects, there is some software reuse. The
integration-and-configuration software-process-model breaks down the steps
involved in looking for code, modules, or components; modifying and
configuring them as needed; and integrating them.

The process produces a working system.

Figure 2.3. Integration and configuration lifecycle model.

Note that, in Figure 2.3, some of the activities are different from the activities
in the other software lifecycle models.

Section 2.2 - The Typical Activities in a Software Development Lifecycle

This important section describes the major activities in the software
development lifecycle. This will be left to the students to read and take notes.

52 Chapter 2 ■ Software processes

 2.1.3 Integration and configuration
In the majority of software projects, there is some software reuse. This often happens
informally when people working on the project know of or search for code that is
similar to what is required. They look for these, modify them as needed, and integrate
them with the new code that they have developed.

This informal reuse takes place regardless of the development process that is
used. However, since 2000, software development processes that focus on the reuse
of existing software have become widely used. Reuse-oriented approaches rely on a
base of reusable software components and an integrating framework for the compo-
sition of these components.

Three types of software components are frequently reused:

1. Stand-alone application systems that are configured for use in a particular envi-
ronment. These systems are general-purpose systems that have many features,
but they have to be adapted for use in a specific application.

2. Collections of objects that are developed as a component or as a package to be
integrated with a component framework such as the Java Spring framework
(Wheeler and White 2013).

3. Web services that are developed according to service standards and that are
available for remote invocation over the Internet.

Figure 2.3 shows a general process model for reuse-based development, based on
integration and configuration. The stages in this process are:

1. Requirements specification The initial requirements for the system are pro-
posed. These do not have to be elaborated in detail but should include brief
descriptions of essential requirements and desirable system features.

2. Software discovery and evaluation Given an outline of the software require-
ments, a search is made for components and systems that provide the func-
tionality required. Candidate components and systems are evaluated to see if

Requirements
specification

Software
discovery

Software
evaluation

Requirements
refinement

Configure
application

system

Adapt
components

Integrate
system

Develop new
components

Application system
available

Components
availableFigure 2.3 Reuse-

oriented software
engineering

8

Section 2.3 - Coping with Change

Change is inevitable in all large software projects. Processes should be
organized to anticipate changes that will likely occur in the project.

The introduction of a new system into an existing workflow often reveals new
possibilities for the system, and thus creates new software requirements.

One way to cope with an anticipated change in system requirements, is to
adopt prototyping lifecycle model.

A prototype is an early version of a software system that is used to
demonstrate concepts, try out design options, and find out more about the
problem and its possible solutions. (from Sommerville, 2015)

Figure 2.9. The prototyping phase of a lifecycle model. Note how this can be
expanded into a full project lifecycle model, as is shown immediately below in
this lecture. 

Real-World Examples of Requirements Changing

Example #1: EyeDraw Version 1 permitted children with severe disabilities
to draw pictures using their eye movements, but also revealed the need for
numerous software improvements, thus leading to Version 2. 
https://dl.acm.org/doi/abs/10.1145/1054972.1054995

Possible Example #2: Facebook causes harm. There is perhaps a need for
some new requirements. https://www.wsj.com/articles/the-facebook-files-11631713039

A system prototype may be used while the system is being designed to carry out
design experiments to check the feasibility of a proposed design. For example, a
database design may be prototyped and tested to check that it supports efficient data
access for the most common user queries. Rapid prototyping with end-user involve-
ment is the only sensible way to develop user interfaces. Because of the dynamic
nature of user interfaces, textual descriptions and diagrams are not good enough for
expressing the user interface requirements and design.

A process model for prototype development is shown in Figure 2.9. The objec-
tives of prototyping should be made explicit from the start of the process. These
may be to develop the user interface, to develop a system to validate functional
system requirements, or to develop a system to demonstrate the application to man-
agers. The same prototype usually cannot meet all objectives. If the objectives are
left unstated, management or end-users may misunderstand the function of the pro-
totype. Consequently, they may not get the benefits that they expected from the
prototype development.

The next stage in the process is to decide what to put into and, perhaps more
importantly, what to leave out of the prototype system. To reduce prototyping costs
and accelerate the delivery schedule, you may leave some functionality out of the
prototype. You may decide to relax non-functional requirements such as response
time and memory utilization. Error handling and management may be ignored unless
the objective of the prototype is to establish a user interface. Standards of reliability
and program quality may be reduced.

The final stage of the process is prototype evaluation. Provision must be
made during this stage for user training, and the prototype objectives should
be used to derive a plan for evaluation. Potential users need time to become
comfortable with a new system and to settle into a normal pattern of usage. Once
they are using the system normally, they then discover requirements errors
and omissions. A general problem with prototyping is that users may not use the
prototype in the same way as they use the final system. Prototype testers may
not be typical of system users. There may not be enough time to train users
 during prototype evaluation. If the prototype is slow, the evaluators may adjust
their way of working and avoid those system features that have slow response
times. When provided with better response in the final system, they may use it in
a different way.

Establish
prototype
objectives

Define
prototype

functionality

Develop
prototype

Evaluate
prototype

Prototyping
plan

Outline
definition

Executable
prototype

Evaluation
reportFigure 2.9 Prototype

development

 2.3 ■ Coping with change 63

9

https://dl.acm.org/doi/abs/10.1145/1054972.1054995
https://www.wsj.com/articles/the-facebook-files-11631713039

Bonus Example Model #4 - Prototyping Lifecycle Model

Figure 3.3, adapted from van Vliet (2008), shows the entire software lifecycle
model in which prototypes are iteratively developed. The prototyping phase
ends when the testing of the prototype reveals that the system is ready for its
final development.

Key: Boxes are activities, and the arrows are the order of activities. The
dashed-line boxes show groups of activities, an additional layer of abstraction.

10

Chapter 4 - Requirements Engineering
(Most of the notes below are copied directly from Sommerville, 2015.)

In short: 
	 Requirements describe what the system will do. 
	 Design describes how the system will work.

Requirements engineering (or requirements analysis) is arguably the hardest
phase, and the most important. The longer it takes to find a problem in a
project, the more costly it will be to recover from that problem. Errors that are
not discovered until after the software is operational cost 10 to 90 times as
much to fix as errors discovered during the requirements analysis phase. If
you are delivering the software and realize your software is not doing what
the customer needs, that is a very costly problem. See the graph below.

SOFTWARE TEST]NG

reported that cheap seats were sold out when this was, in fact, not the case. As
a consequence, clients were referred to other companies. The problems were not
discovered until quarterly results were found to lag considerably behind those of their
competitors.

Testing is often taken to mean executing a program to see whether it produces
the correct output for a given input. This involves testing the end-product, the
software itself. As a consequence, the testing activity often does not get the attention
it deserves. By the time the software has been written, we are often pressed for time,
which does not encourage thorough testing.

Postponing test activities for too long is one of the most severe mistakes often
made in software development projects. This postponement makes testing a rather
costly affair. Figure 13.1 shows the results of a 1980 study by Boehm about the
cost of effor correction relative to the phase in which the error is discovered. This
picture shows that errors which are not discovered until after the software has become

2

Requirements Design Code Development Acceptance Operationtest test
Phase in which error was detected and corrected

Figure 13.1 Relative cost of error correction (Source: Barry B. Boehm, Software engineering
Economics, FiSure 4.2, p.40, @1981, Reprinted by permission of Prentice Hall, tnc. Englewood
cliffs, NJ.)

407

e
ox
o
ooo
o
(d
Etr

1000

500

200

100

50

20

10

5

GTE

H

A

o

..0 A
o

SAFEGUARD

Large software projects

IBM.SSD

H
o

80"/o
Median (TRW survey)
2Oo/o

AAI
+

,I
I A

A 0

Smaller sottware projects

! - teoenm, 19801

11

4.0 INTRODUCTION TO REQUIREMENTS ENGINEERING

The requirements for a system is a description of (a) the services that a system
should provide and (b) the constraints on its operation. These requirements
capture what the customer needs in the system.

Requirements engineering (RE) is the process of finding out, analyzing,
documenting and checking these services and constraints. This is a difficult
process. It is often difficult to figure out, in advance, what the client needs.

One general approach to solving this challenge, as with many challenges in
software engineering, is to break the problem up in to smaller pieces, and solve
each problem, and do it separately. For example…

Example: My Mom worked as an export specialist at Tektronix in Beaverton,
Oregon, from 1975 to 2000. Some time in the 1990s, Tektronix hired a major
consulting company to build a new export order-entry system.

To establish the requirements, the consultants met with the export managers,
but not the export specialists who actually did the order entry.

The system was deployed. On its first day of use, my Mom called the special
hotline to ask how to split an order across two invoices (to accommodate
bureaucratic needs for foreign customers). The consultants told her to just put
it onto one order. My Mom explained “Hmm, I can’t do that. In order for me
to sell this product to this customer in this country, I have to split the order.”

The functionality was not implemented because the consultants did an
inadequate requirements analysis. They only met with the managers, not the
export specialists. And the managers did not know how the export specialists
did their jobs, or even how to enter an order.

The consultants had to re-define the system requirements. They had to go
back and re-implement major portions of the system. It was expensive.

12

(from van Vliet, 2008)

Separate out the user requirements from the system requirements, and be sure
to cover both.

1.	User requirements: The services the system is expected to provide to users,
and the constraints under which the system must operate. The user
requirements should be understandable by any stakeholder familiar with the
application domain. In the SRS Template, this is “2. The Concept of
Operations (ConOps)”.

2.	System requirements: A more detailed descriptions of the software system’s
functions, services, and operational constraints. This is a functional
specification that defines exactly what is to be implemented. In the SRS
Template, this is “3. Specific Requirements”.

See the SRS Template for this class.

…

4.1 FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS

Within the system requirements, you can also “divide and conquer” by
separating the functional requirements from the non-functional requirements.

1.	Functional requirements: Statements of the services that the system must
provide, or descriptions of how computations must be done. For example,
how the system should respond to specific inputs, or compute statistics.

2.	Non-functional requirements: Constraints on the system and the
development process used to build it. For example, timing requirements,
display parameters, ranges of inputs accepted, or the requirement to use a
particular IDE or software development lifecycle model.

See the SRS for the NRL Dual Task software.

13

https://classes.cs.uoregon.edu/22W/cis422/Templates.html
https://www.cs.uoregon.edu/research/cmet/Multimodal/files/SRS/070304/dualtask.html

4.2 REQUIREMENTS ENGINEERING PROCESSES

The requirements engineering process includes:

1. Requirements elicitation (Section 4.3).		 Pulling it out.

2.	Requirements specification (Section 4.4).	 Writing it down.

3.	Requirements validation (Section 4.5).		 Double-checking it.

4.	Requirements management (Section 4.6).	 Updating it.

Each is defined below.

… 

It is useful to separate functional and non-functional requirements, but this
creates the challenge of positioning related requirements near each other in
the SRS, so they can be considered side-by-side. You can solve this problem
by structuring your SRS around major functions, such as shown here, and
listing the functional and non-functional requirements by major function.

System Requirements for the HTML editor.

	 ...

	 3. Editing	

	 	 3.1. Functional

	 	 	 3.1.1. The user can edit the preview of the web page.

	 	 	 ...

	 	 3.2. Nonfunctional:

	 	 	 3.2.1. The preview rendering must be compliant with HTML5.

	 	 	 ...

	 4. Printing	

	 	 4.1. Functional:

	 	 	 4.1.1. The user can send the web page to the printer.

	 	 	 ...

	 	 4.2. Nonfunctional:

	 	 	 4.2.1. The default printer settings (set within the OS) will be used.

	 …

14

4.3 REQUIREMENTS ELICITATION

Requirements elicitation is the process of drawing out information from
relevant stakeholders.

“Elicit” means “to bring out” or “to extract”. For example, raising your hand
and asking a question usually elicits a response from the instructor.

Requirements elicitation is an iterative (repeating) process that includes a spiral
of activities—requirements discovery, requirements classification and
organization, requirements negotiation, and requirements documentation.

Eliciting and understanding requirements from system stakeholders is a
difficult process for several reasons:

1.	Stakeholders often don’t know what they want from a system, have a hard
time expressing it in a useful way, or have unrealistic hopes and dreams.

	 For example, requests might be too general (such as “a system to track our
inventory”) or too specific (such as “a button that prints a report…”) or
unrealistic (such as “a system that permits our daughter to communicate”).

2.	Stakeholders express requirements with implicit knowledge of their work.

	 For example, asking why deejays in Berlin still used vinyl in 2008, a store
owner offered a few reasons including ‘you don’t kill your mother’, ’you can
just look at the vinyl’, and ‘because I can afford my rent’.

3.	Different stakeholders express their requirements in different ways.

	 An assistive technology device can “provide a sense of agency”, “enable her
to do something for herself”, or “help her to learn cause and effect”.

4.	Office politics can influence the requirements of a system.

	 For examples, managers might want reports that make them look good.

5.	The economic and work environment can change.

	 Funds become available or dry up. New stakeholders join the project.

…

15

4.3.1 Requirements elicitation techniques

There are three fundamental approaches to requirements elicitation:

1. Interviewing, in which you ask people about what they do.

	 For example, interview parents of children with severe disabilities.

2. Observation, in which you watch people doing their job to see how they do
their job, what artifacts they use, how they use them, and so on.

	 For example, observe researchers collecting data at a Tetris competition.

2. Ethnography, in which you get a job in the work environment where the
system would be used, and gain first-hand knowledge of exactly how the
work really gets done, and how people truly function in that environment.

	 For example, volunteer at a home for children with severe disabilities.

…

To successfully elicit requirements, you must be curious.

Sommerville does a good job in this section but leaves out a number of big
ways to elicit requirements:

1. Read. Read scholarly articles written by experts, interviews of experts, and
books written by experts. The experts would have first-hand knowledge on
the task your system aims to support.

	 For example, if you want to build a system to track a global pandemic, you
do not start by trying to interview experts. Instead, you start by reading
scholarly literature on how to track global pandemics.

2.	Study existing systems. Acquire software that accomplishes the tasks, or
close to the tasks, that you want your system to support. You can discover
requirements you had not thought of, and identify functionality that is
missing, thus motivating the system you aim to build.

16

http://www.cs.uoregon.edu/~hornof/downloads/CHI17.pdf
https://www.cs.uoregon.edu/research/cm-hci/Tetris_2018/
http://www.cs.uoregon.edu/~hornof/downloads/CHI09.pdf

4.3.1.1 Interviewing

How to prepare for an interview

1. Before the interview, learn everything you can from published materials.

2.	Recruit appropriate people to interview. These will ideally be people who are
established experts at doing exactly the task your system is designed to
support. (But not just any random people for a new social networking app.)

3.	Prepare a script of all of the questions you might like to ask. But don’t follow
the script precisely. Make it a conversation. But be sure to mark the essential
questions that you really want to ask.

Two kinds of questions:

1. Open-ended questions such as: 
“Please tell me about working here.” 
“Please tell me about the people that you interact with here.” 
“Please walk me through a typical day.” 
“Please tell me more about that.”

2. Specific questions such as: 
“How many people do you typically feed in any given day?” 
“What motivates your customers to install solar panels?” 
“Please walk me through the patient intake process.”

Start with open-ended questions and gradually transition to specific questions.

Listen and take short notes on things they say that you want to follow up on.

Get people to talk about how they do their job—the thing they are truly expert
at—not their guesses of what they want in a system, or how it should work.

How to capture the interview:

1.	One team member leads the interview, and other team members furiously
take notes. Review the notes together immediately after the interview.

2.	Audio record the interview and transcribe afterwards (time consuming). 

To do a good interview, you must be curious.

17

…

4.3.2 Stories and Scenarios

People find it easier to relate to real-life examples than abstract descriptions.
Stories and scenarios (the two are essentially the the same thing) are ways of
capturing how a system would work in a specific real-world setting.

…

Figuring out the appropriate requirements for a system is challenging.

You must learn as much as you can about the task, the users, and the
environment in which the system will be used, and figure out ways that a
system could do a good job supporting that task.

…

4.4 REQUIREMENTS SPECIFICATION

Requirements specification is the process of formally documenting the user and
system requirements and creating a software requirements document.

The software requirements document is an agreed statement of the system
requirements. It should be organized so that both system customers and
software developers can use it.

It should be easy to reference, and easy to update.

The SRS Template on the course web site provides an excellent start.

…

18

4.5 REQUIREMENTS VALIDATION

Requirements validation is the process of checking the requirements for
validity, consistency, completeness, realism, and verifiability.

Requirements should be:

1.	Valid. The requirements should reflect the real needs of system users.

2.	Consistent. Requirements should not contradict each other.

3.	Complete. The requirements should define all functions and constraints

needed by the system user.

4.	Realistic. It should be possible to implement the requirements using

existing technologies.

5.	Verifiable. The requirements should be written so that it can be objectively

determined, such as with a defined test, whether each requirement been
met.

Requirements can be validated through:

1.	Requirements reviews. A team systematically analyzes the requirements,
making sure each requirements meets all five of the above criteria.

2. Prototyping. An executable model of the system is built. Customers use it,
ideally in a real-world setting. It is determined whether it meets the user’s
needs and expectations. Requirements can be updated.

3.	Test-case generation. For each requirement, ask “How will I test this?”
and include that test as part of the requirement. If you cannot describe a
test for a requirement, the requirement needs to be revised. 
		 For example, “The system will be easy to use” cannot stand on its
own, but needs to be defined in terms of specific terms, such as the speed
and accuracy with which a typical user can accomplishing specific tasks.

…

4.6 REQUIREMENTS MANAGEMENT

Business, organizational, and technical changes inevitably lead to changes to
the requirements for a software system. Requirements management is the
process of controlling, and making decisions about, these changes.  

19

A problem statement provides a high-level description of the requirements.

————————————————————————————————

Problem Statement for a Library Catalog (van Vliet, Figure 12.24)

————————————————————————————————

————————————————————————————————

Problem Statement for an Automated Teller Machine (from Rumbaugh et al., 1991, p.151)

————————————————————————————————

	 Design the software to support a computerized banking network including
both human cashiers and automatic teller machines (ATMs) to be shared by a
consortium of banks.

	 Each bank provides its own computer to maintain its own accounts and
process transactions against them. Cashier stations are owned by individual
banks and communicate directly with their own bank’s computers. Human
cashiers enter account and transaction data.

	 Automatic teller machines communicate with a central computer which
clears transactions with the appropriate banks. An automatic teller machine
accepts a cash card, interacts with the user, communicates with the central
system to carry out the transaction, dispenses cash, and prints receipts.

	 The system requires appropriate recordkeeping and security provisions.
The system must handle concurrent accesses to the same account correctly.

	 The banks will provide their own software for their own computers.

	 You are to design the software for the ATMs and the network. The cost of
the shared system will be apportioned to the banks according to the number of
customers with cash cards. 

370 SOFTWARE DESIGN

Section 12.2.3. Indeed, the modeling stage of JSD is object-oriented too. The
guidelines presented below are loosely based on (Coad and Yourdon, 1991) and
(Rumbaugh et al., 1991). Their general flavor is similar to that found in other object-
oriented approaches. The global process models of some well-known object-oriented
methods are discussed in Sections 12.3.1and 12.3.2.

The problem statement for a library automation system given in Figure 12.24
will serve as an example to illustrate the major steps in object-oriented analysis and
design. \We will elaborate part of this problem in the text, and leave a number of
detailed issues as exercises.

Problem statement

Design the software to support the operation of a public library. The system has a
number of stations for customer transactions. These stations are operated by library
employees. Vhen a book is borrowed, the identiftcation card of the client is read.
Next, the station's bar code reader reads the book's code. Vhen a book is returned,
the identiffcation card is not needed - only the book's code needs to be read.
Clients may search the library catalog from any of a number of PCs located in the
library. S(hen doing so, the user is ftrst asked to indicate how the search is to be
done' by author, by title, or by keyword.

Special functionality of the system concerns changing the contents of the catalog and
the handling of fines. This functionality is restricted to library personnel. A password
is required for these functions.

Flgure 12.24 problem statement for library automation system

A major guiding principle for identifying objects is to look for important
concepts from the application domain. Objects to be found in a library include
Books, FileCabinets, Cust,omers, etc. In an offtce environment, we may
have Folders, Letters, Clerks, etc. These domain-speciftc entities are our
prime candidates for oblects. They may be real-world objects, such as a book; roles
played, such as the customer of a library; organizational units, such as a department;
locations, such as an offtce; or devices, such as a printer. Potential objects can also
be found by considering existing classiftcation or assembly (whole-part) structures.
From interviews, documentation, and so on, a ftrst inventory of objects can be made.

From the ftrst paragraph of the problem description in Figure 12.24, the following
list of candidate objects can be deduced, simply by listing all the nounS:

software
1 ibrary

20

Chapter 5 - System Modeling
__ Take blank overheads and pens to class. In class, students create dynamic models/diagrams to explain something new about how their project will function.

__ Perhaps print and handout UML quick reference.

__ Take printout of problem statements.

The chapters introduce a number of diagramming techniques that are
commonly used to communicate aspects of a system design.

The diagrams are called “models” because they serve as small-scale
representations, or paper-based simulations, of aspects of the system.

‘The fundamental driver
behind graphical modeling
languages is that
programming languages
are not at a high enough
level of abstraction to
facilitate discussions about
design.’ (Fowler, 2004.)

The models are static or
dynamic.

	 Static show structure.
Dynamic show behavior.

Flowcharts are a classic
dynamic model to show the
flow of control of an
algorithm. UML activity
diagrams are very similar.

UML uses the terms "flow" and
"edge" synonymously. (Fowler)

In any diagram, you generally
need a key that explains what
the boxes and lines represent.

However, if you are correctly
using an established
diagramming technique,
citing a source can suffice.

21

ptg28043920

118 CHAPTER 11 ACTIVITY DIAGRAMS

because processes often occur in parallel. It’s also useful for concurrent algo-
rithms, in which independent threads can do things in parallel.

When you have parallelism, you’ll need to synchronize. We don’t close the
order until it is delivered and paid for. We show this with the join before the Close
Order action. With a join, the outgoing flow is taken only when all the incom-

[priority order]

[else]

Fill Order
Send Invoice

Receive
Payment

initial node

Regular
Delivery

Overnight
Delivery

action
fork

join

merge

decision

activity final

flow/edge

Receive
Order

Close
Order

Figure 11.1 A simple activity diagram

From the Library of Anthony Hornof

, annotated (Fowler, 2004)

The Unified Modeling Language

Diagramming techniques used in OOA and OOD (analysis and design).

Integrates and “unifies” the notations and methods of Booch, Jacobson, and

Rumbaugh (object modeling technique, OMT), late 1980s and early 1990s.

There is also a UML process, but the language is still useful without the

process. 	 	 	 	 	 (UML notes adapted from Sommerville, 2000, Software Engineering.)

There are other standard diagramming (modeling) techniques such as:

	 1. Entity Relationship Diagrams (ERDs) - similar to UML class diagrams.

	 2. Data Flow Diagrams - similar to UML sequence diagrams.

This lecture focuses on UML.

There are 13 different UML Diagrams, in the following hierarchy:

Structure:	 Class

	 Component	 	 	 	 The underlined diagrams are

	 Composite Structure	 	 those that are perhaps most

	 Deployment	 	 	 	 commonly used.

	 Object

	 Package

Behavior:	 Activity

	 Use Case

	 State Machine

	 Interaction:	 Sequence

	 	 Communication

	 	 Interaction Overview

	 	 Timing

Boxes and lines mean different things in each type of model.

Note how there is a fundamental distinction between static and dynamic.

22

Major diagrams used in UML:

Class diagrams: Static. Descriptions of the types of objects in the system, and

the various kinds of static relationships that exist among them.

State-transition diagrams: Dynamic. Show all possible states (modes) that an

object can get into as a result of events that reach that object.

Sequence diagrams: Dynamic. Describe how groups of objects collaborate in

some behavior. Show the sequence of object interactions

	 (UML notes adapted from Sommerville, 2000, Software Engineering.)

UML Class diagrams

Descriptions of the types of objects in the system, and the various kinds of

static relationships that exist among them. Static model.

Include: Name of class, attributes and operations, inheritance (specialization). 

Associations, such as is-a-member-of, cardinalities.

ptg28043920

36 CHAPTER 3 CLASS DIAGRAMS: THE ESSENTIALS

Properties are a single concept, but they appear in two quite distinct nota-
tions: attributes and associations. Although they look quite different on a dia-
gram, they are really the same thing.

Attributes

The attribute notation describes a property as a line of text within the class box
itself. The full form of an attribute is:

visibility name: type multiplicity = default {property-string}

1*
dispatch
close

dateReceived: Date[0..1]
isPrepaid: Boolean[1]
number: String [1]
price: Money

Order

getCreditRating(): String

name [1]
address [0..1]

Customer

billForMonth(Integer)
remind()

contactName
creditRating
creditLimit

Corporate Customer

creditCardNumber

Personal Customer

{if Order.customer.getCreditRating is
"poor" then Order.isPrepaid must be
true}

attributes

operations

constraint

multiplicity

association

classgeneralization

Figure 3.1 A simple class diagram

From the Library of Anthony Hornof

23

A simple class diagram,
annotated (adapted from
Fowler, 2004, Figure 3.1)

But dynamic models are also necessary to describe how a computer program
works because a program executes over time. (A screenshot does not
describe a user interface; you also need to describe the dynamic aspects.)

UML State Diagrams

A dynamic model illustrates the restricted states of an object or system.

The ovals are states and the arcs are events that cause the state to change.

Can have hierarchies of states, introducing abstraction.

Permit stakeholders to understand the of dynamic aspects of the system.

A state diagram for a weather station that, every five minutes, 

collects data, performs some data processing, and transmits this data.

(From Sommerville, 2000, Software Engineering)

UML Sequence Diagrams

Dynamic models that describe how groups of objects collaborate to produce a

system service or behavior. Shows the sequence of object interactions

Objects and users are shown at the top, each with vertical dashed lifelines.

Rectangles on the lifelines show when the object is active. Time moves down.

Solid lines show messages between objects. Dashed lines indicate a return.

Shutdown Waiting Testing

Transmitting

Collecting
Summarising

Calibrating

transmission done

calibrate ()

test ()startup ()

shutdown ()

calibration OK

test complete

weather summary
complete

clock collection
done

Operation

reportWeather ()

24

 	

 		 A UML sequence diagram for		 	 The template or key for a

	 	 reserving a title (vanVliet, 2008)	 	 sequence diagram (Fowler, 2004)

The difference between a State Diagram and a Sequence Diagram

A state diagram says “All allowable sequences must conform to this state

machine” whereas an interaction diagram says “Here is one possible
sequence of actions.” (Prof. Young, 11-9-2010)

Conclusion: UML evolved from earlier OOA and OOD methods, which
evolved from earlier non-OO diagraming and design techniques.

All diagramming (modeling) techniques arrive at roughly the same models.

When you think about a piece of code that you are going to write, you think

about the static and dynamic aspects of how that code will work.

Use standardized diagramming techniques to sketch out your ideas, both for

yourself to think things through, and to communicate, record, and evaluate
ideas with other team members and stakeholders.

Use these techniques to creatively propose and consider alternative designs.

Software design modeling is an important aspect of software engineering, the

study of the full lifecycle of writing the code that run on computers.

user

284 MODELING

1: look up

reserve title

Flgure 10.12 UML sequence diagram: reseruing a title

is sent to the object that handles reservations. Some time later, that title will become
available again and reservations will be notifted. The object reservations
will then send a message to the catalog to hold that book and will notify the user
that the title is now available. The ordering of those two messages is irrelevant, so
they carry the same sequence number. The user may now borrow the title and the
corresponding reservation will be removed.

Again, UML has a rich notational vocabulary for sequence diagrams. It is possible
to distinguish asynchronous message-passing from synchronous message-passing, to
indicate iteration, to show the creation and destruction of objects, and so on. The
main purpose of the sequence diagram however remains the same, an easy-to-read
overview of the passing of messages in a particular interaction sequence.

10.3.4 The Communication Oiagram

The communication diagram is another way to show one possible scenario for the
interaction between a number of related objects. A communication diagram is a
directed graph where the nodes denote entities and the edges denote communication
between those entities.

Figure 10.13 shows the same sequence of interactions as the scenario depicted
in the sequence diagram in Figure 10.12. Comrnunication diagrams emphasize the

start
catalog

2: title data

3: [not availabl

4: title retumed

6: borrow title

6: remove

5: hold title

5: title available

lation

UML Diagrams
Page 4 of 4

From Fowler, M. (2004). UML Distilled: A Brief Guide to the Standard Object Modeling Language. 3rd Edition. Addison-Wesley Professional.

25

Sommerville Chapter 5 	 	 	 (Some material is copied directly from the chapter.)

The chapter is consistent with the lecture above, but just offers a different

presentation of the material.

The chapter focuses on five UML diagrams:

	 1. Activity diagrams.

	 2. Use case diagrams.

	 3. Sequence diagrams.

	 4. Class diagrams.

	 5. State diagrams.

UML diagrams can be developed to show different perspectives of a system.

1.	An external perspective, showing the context or environment of the system.

2.	An interaction perspective, showing the exchanges between a system and its

environment, or between the components of a system.

3.	A structural perspective, showing the organization of a system or of the data

processed by the system.

4.	A behavioral perspective, showing the dynamic occurrences of the system

and how it responds to events.

The following organization is offered:

UML Models

	 Context models: shows the environment of the system.

	 	 	 Activity diagrams

	 	 	 Context model" (which is not UML, but looks like an architecture).

	 Interaction Models: between a system and its environment.

	 	 	 Use case diagrams (overly simple, but do focus on user task)

	 	 	 Sequence diagrams

	 Structural Models

	 	 	 Class diagram

	 Behavioral Models

	 	 	 Activity diagram

	 	 	 Sequence diagram

	 	 	 State diagram.

(Section 5.5 Model-driven engineering can be skipped.) 
26

Chapter 6 - Architectural Design
(Most of the text below is copied directly from Sommerville, 2015.)

Overview

Software architecture: The large-scale (or top-level) decomposition of a system

into its major components together with a characterization of how those
components interact.

We are not talking about building architecture.

In computer science:

	 “Architecture” refers to the the design of the logic circuits in the chips.

	 “Software architecture” is what we are talking about today.

 An architecture is typically a static (not dynamic) diagram.

“Module” implies static.

Specifying a software architecture for a system is an example of modular

programming, which has long been understood as a key component of good
programming.

Sommerville Section 6.0

Section 6.0 provides such a good overview of software architectures that I want

to read it to the entire class, or have students take turns reading it to the class.
(The next sentences are topic statements copied from Sommerville, 2015.)

Architectural design is concerned with understanding how a software system
should be organized and designing the overall structure of that system....
Architectural design is the first stage in the software design process

In agile processes, it is generally accepted that an early stage of an agile
development process should focus on designing an overall system
architecture. Incremental development of architectures is not usually
successful.

To help you understand what I mean by system architecture, look at Figure 6.1.
This diagram shows an abstract model of the architecture for a packing robot
system.

27

Figure 6.1. The architecture of a packing robot control system.

In practice, there is a significant overlap between the processes of requirements
engineering and architectural design. Ideally, a system specification should
not include any design information. This ideal is unrealistic, however, except
for very small systems.

You can design software architectures at two levels of abstraction, which I call
architecture in the small and architecture in the large:

1. Architecture in the small is concerned with the architecture of individual
programs.

2.	Architecture in the large is concerned with the architecture of complex
enterprise systems that include other systems, programs, and program
components.

Software architecture is important because it affects the performance,
robustness, distributability, and maintainability of a system (Bosch 2000). 

Chapter 6 ! Architectural design 149

Vision
System

Object
Identification

System

Arm
Controller

Gripper
Controller

Packaging
Selection
System

Packing
System

Conveyor
Controller

Figure 6.1 The
architecture of a packing
robot control system

Software architecture is important because it affects the performance, robustness,

distributability, and maintainability of a system (Bosch, 2000). As Bosch discusses,

individual components implement the functional system requirements. The non-

functional requirements depend on the system architecture—the way in which these

components are organized and communicate. In many systems, non-functional

requirements are also influenced by individual components, but there is no doubt

that the architecture of the system is the dominant influence.

Bass et al. (2003) discuss three advantages of explicitly designing and document-

ing software architecture:

1. Stakeholder communication The architecture is a high-level presentation of the sys-

tem that may be used as a focus for discussion by a range of different stakeholders.

2. System analysis Making the system architecture explicit at an early stage in the

system development requires some analysis. Architectural design decisions

have a profound effect on whether or not the system can meet critical require-

ments such as performance, reliability, and maintainability.

3. Large-scale reuse A model of a system architecture is a compact, manageable

description of how a system is organized and how the components interoperate.

The system architecture is often the same for systems with similar requirements

and so can support large-scale software reuse. As I explain in Chapter 16, it may

be possible to develop product-line architectures where the same architecture is

reused across a range of related systems.

28

Designing and documenting software architecture has three advantages:

1.	Communication among stakeholders.

	 Stakeholders are all people with an interest in the system. 

Q: Who are the stakeholders in the systems you are building now?

2.	Captures design decisions. 

The global structure of the system. Can provide insights into the software
qualities of the system (reliability, correctness, efficiency, portability, ...) and
work breakdown.

3.	Transferable abstraction of a system. 
A basis for reuse. Captures the essential design decisions. Provide a basis
for a family of similar systems, or a product line, a “valued business entity”
(Faulk).

System architectures are often modeled informally using simple block
diagrams, as in Figure 6.1. Each box in the diagram represents a component.
Boxes within boxes indicate that the component has been decomposed to
subcomponents. Arrows mean that data and or control signals are passed
from component to component in the direction of the arrows.

In spite of their widespread use, Bass et al. (Bass, Clements, and Kazman 2012)
dislike informal block diagrams for describing an architecture. They claim
that these informal diagrams are poor architectural representations....

The apparent contradictions between architectural theory and industrial practice
arise because there are two ways in which an architectural model of a
program is used:

1. As a way of encouraging discussions about the system design. A high-level
architectural view of a system is useful for communication with system
stakeholders and project planning because it is not cluttered with detail. 

2. As a way of documenting an architecture that has been designed. The aim
here is to produce a complete system model.... The argument for such a
model is that such a detailed architectural description makes it easier to
understand and evolve the system.  

Block diagrams are a good way of supporting communications between the
people involved in the software design process. They are intuitive, and
domain experts and software engineers can relate to them....

29

They are widely used in industry.

6.1 Architectural design decisions

“Architectural design is a creative process in which you design a system

organization that will satisfy the functional and non-functional requirements
of a system.”

…

Some Software Architecture Examples from Chapter 6

6.3.2 Repository Architecture

The Repository architecture describes how a set of interacting components can

share data. In this architecture, all system data is managed in a central
repository that is accessible to all system components. Components do not
interact directly, but only through the repository.

Figure 6.11 A repository-based software architecture for an 

integrated development environment (IDE) (Sommerville).

160 Chapter 6 ! Architectural design

Project
Repository

Design
Translator

UML
Editors

Code
Generators

Design
Analyser

Report
Generator

Java
Editor

Python
Editor

Figure 6.9 A repository
architecture for an IDE

data is generated by one component and used by another. Examples of this type of

system include command and control systems, management information systems,

CAD systems, and interactive development environments for software.

Figure 6.9 is an illustration of a situation in which a repository might be used.

This diagram shows an IDE that includes different tools to support model-driven

development. The repository in this case might be a version-controlled environment

(as discussed in Chapter 25) that keeps track of changes to software and allows roll-

back to earlier versions.

Organizing tools around a repository is an efficient way to share large amounts of

data. There is no need to transmit data explicitly from one component to another.

However, components must operate around an agreed repository data model.

Inevitably, this is a compromise between the specific needs of each tool and it may

be difficult or impossible to integrate new components if their data models do not fit

the agreed schema. In practice, it may be difficult to distribute the repository over a

number of machines. Although it is possible to distribute a logically centralized

repository, there may be problems with data redundancy and inconsistency.

In the example shown in Figure 6.9, the repository is passive and control is the

responsibility of the components using the repository. An alternative approach,

which has been derived for AI systems, uses a ‘blackboard’ model that triggers com-

ponents when particular data become available. This is appropriate when the form of

the repository data is less well structured. Decisions about which tool to activate can

only be made when the data has been analyzed. This model is introduced by Nii

(1986). Bosch (2000) includes a good discussion of how this style relates to system

quality attributes.

6.3.3 Client–server architecture

The repository pattern is concerned with the static structure of a system and does not

show its run-time organization. My next example illustrates a very commonly used

run-time organization for distributed systems. The Client–server pattern is described

in Figure 6.10.

30

A Client-Server Software Architecture

A system that follows the Client–Server pattern is organized as a set of services

and associated servers, and clients that access and use the services.

Figure 6.13 A client-server architecture for a film library

“Figure 6.13 is an example of a system that is based on the client–server model.
[Though with a rather complex set of servers.] This is a multiuser, web-based
system for providing a film and photograph library. In this system, several
servers manage and display the different types of media. Video frames need
to be transmitted quickly and in synchrony but at relatively low resolution.
They may be compressed in a store, so the video server can handle video
compression and decompression in different formats. Still pictures, however,
must be maintained at a high resolution, so it is appropriate to maintain them
on a separate server.” (Sommerville, 6.3.3)

Most email usage follows a form of client-server architecture. You use one
central email server, but many email clients to access that server. Each client
needs to be configured for things like (a) the email host name and (b) having
your full name appear in the “From:” header of emails you send. 

182 Chapter 6 ■ Architectural design

Figure 6.13 is an example of a system that is based on the client–server model.
This is a multiuser, web-based system for providing a film and photograph library.
In this system, several servers manage and display the different types of media.
Video frames need to be transmitted quickly and in synchrony but at relatively low
resolution. They may be compressed in a store, so the video server can handle
video compression and decompression in different formats. Still pictures, how-
ever, must be maintained at a high resolution, so it is appropriate to maintain them
on a separate server.

The catalog must be able to deal with a variety of queries and provide links into
the web information system that include data about the film and video clips, and an
e-commerce system that supports the sale of photographs, film, and video clips. The
client program is simply an integrated user interface, constructed using a web
browser, to access these services.

The most important advantage of the client–server model is that it is a distributed
architecture. Effective use can be made of networked systems with many distributed
processors. It is easy to add a new server and integrate it with the rest of the system
or to upgrade servers transparently without affecting other parts of the system. I
cover distributed architectures in Chapter 17, where I explain the client–server
model and its variants in more detail.

 6.3.4 Pipe and filter architecture
My final example of a general Architectural pattern is the Pipe and Filter pattern
(Figure 6.14). This is a model of the runtime organization of a system where
functional transformations process their inputs and produce outputs. Data flows
from one to another and is transformed as it moves through the sequence. Each
processing step is implemented as a transform. Input data flows through these
transforms until converted to output. The transformations may execute sequen-
tially or in parallel. The data can be processed by each transform item by item or
in a single batch.

Catalog
server

Library
catalogue

Video
server

Film store

Picture
server

Photo store

Web
server

Film and
photo info.

Client 1 Client 2 Client 3 Client 4

Internet

Figure 6.13 A client–
server architecture for a
film library

31

Lecture on Software Design Principles
These notes are derived from Chapter 12 of van Vliet. (2008). Software Engineering: Principles and Practice.

This lecture introduces concepts that should help to guide your consideration of
how to best break up a software system into modules.

Design Considerations

1. Abstraction

2. Modularity (coupling and cohesion)

3. Information hiding

4. Complexity (size based, structure based)

5. System structure

Abstraction

Abstraction is the process or outcome of concentrating on the essential

properties of, and ignoring the details of, a set of related things.

Concentrate on the essential features and ignore—abstract from—those

irrelevant to the current level. (For example, a sorting module sorts. You
don’t always care how.)

Procedural abstraction: The process or outcome of concentrating on the
essential properties of, and ignoring the details of, services or functions.
Examples: a read, sort, or compute module.

Data abstraction: The process or outcome of concentrating on the essential
properties of, and ignoring the details of, information or information
structures. Examples: a queue, a customer class. Object-oriented design
identifies an abstract hierarchy in the program’s data. Primitive structures
such as booleans, ints chars, strings, are a form of data abstraction.

More examples of abstractions:	

(This list is possibly from Michal Young.)

Interface	 Provides abstract service	 Abstracts over	 	

TCP	 Reliable communication. 	 Routing, transport, comm. protocols.

(Transmission Control Protocol)

SQL	 Relational database.	 Storage structure, concurrency control.

(Structured Query Language)

Java Swing	 GUI widgets, interaction.	 OSs, window system, graphics toolkits.

32

Modularity

Modules are separable pieces of code. The function of each module and each

interface between modules needs to be defined precisely.

Parnas (1972) states the benefits of modular design:

(1) Managerial: Development time should be shortened because separate
groups can work in parallel, with minimal communication.

(2) Product flexibility: It should be possible to make drastic changes to one
module without changing the others.

(3) Comprehensibility: It should be possible to study and understand one
module at a time.

Comparing different modular decompositions and interfaces reveals two
structural design criteria: Coupling and Cohesion.

Coupling is a measure of the strength or number of intermodule connections. In
general you do not want strong dependence between modules. Rather, you
want “loose” coupling between modules so that modules can be understood
and developed independently. Tight coupling would result in any changes
creating a large ripple effect across other modules.

Loose coupling might be achieved in different ways for different programs,
such as sometimes by grouping similar services (putting all the reading and
writing functions in one module), and sometimes by grouping services for a
particular kind of data (putting all the functions for modifying customer
records in one module).

Cohesion is a measure of the similarity, or mutual affinity, of the components
within a module. You want “strong” cohesion within a module, meaning that
similar components are grouped together. Cohesion is like the “glue” the
holds a module together.

There are many ways to group components into modules: logical (input versus
output), temporal, procedural, communication with other systems. You
should be able to write down a single purpose for each module.

Information Hiding

Using programming language constructs to conceal the representation of data

structures and to control external access to these structures. (Sommerville)

33

Information hiding is the process or outcome of keeping implementation details
secret, or known only within, a module, function, object, or data structure. It
does not relate to data security, such as making sure that certain users don’t
have access to certain data. It does relate to the data and functions in a
component (such as a class or a module) that are made available to other
components, such as through “getters” and “setters”, or through an
application programming interface (API). It helps you to organize your code.

(It is like the hints or mnemonics you use to remember someone’s name. Don’t
tell them! You are the module. Keep that information hidden inside you.)

It is usually easier to use a software interface if its behavior is well-specified,
and you only need to know how to use it, not how it works internally.

When designing a program, you need to decide what can be kept a secret, and
what other objects and components “need to know”.

Information hiding is related to abstraction, cohesion, and coupling.
Information hiding can improve cohesion and decrease coupling.

Complexity (This is not “Big-O” complexity.)

It is a measure of how complicated is the system. For example:

 • intra-module connections (attribute of individual module)

 • inter-module connections

 • size-based (i.e. LOC == lines of code). Perhaps limit the size of modules.

 • structure-based (complicated control structure)

System Structure

An outcome of design: modules and dependencies.

Relations can include:

	 Module A contains Module B

	 Module A follows Module B

	 Module A delivers data to Module B

	 Module A uses Module B ———————>

	 	 The use-relations shown in the "call graph".

	 	 If acyclic, we can identify a hierarchy.

	 	 We can measure the size, depth, and width of graph.

	 	 We (pre)tend to follow a top-down decomposition.

In-class exercise:

34

DESIGN CONSIDERATIONS

have of each other should be kept to a minimum. To be able to assess this, it is important
to know, for each component, which other components it uses, since that tells us which
knowledge of each other they (potentially) use. In a proper design, the information
flow between components is restricted to flow that comes about through method
calls. The graph depicting the 'uses'relation is therefore often termed a call graph.

The call graph may have different shapes. In its most general form it is a directed
graph (see Figure 12.5a).3 If the graph is acyclic, i.e. it does not contain a path
of the form M1 ,M2,...,Mn,M1, the uses relation forms a hierarchy. \fle may then
decompose the graph into a number of distinct layers such that a component at one
layer uses only components from lower layers (Figure 12.5b). Going one step further,
we get a scheme such as the one in Figure 12.5c, where components from level i use

(a)

345

(b)

(c) (d)

Figure 12.5 Component hierarchies: (a) directed graph, (b) directed acyclic graph, (c) layered
graph, (d) tree

3tJ7e assume that the graph is connected, i.e. that there is a path between each pair of nodes if we
ignore the direction of the arrows that link nodes. This assumption is reasonable, since otherwise the graph
can be split into two or more disloint graphs between which there is no information flow. These disioint
graphs then correspond to independent components.

(a) Work in pairs and focus on one or more of these design considerations as
you design or re-design your architecture or a component.

(b) Identify how these design considerations have already influenced your
architectures or the plan for a component. 

35

Section 7.2 - Design Patterns
“Software Design Patterns” are solutions to recurring problems in computer

programming, usually object-oriented computer programming.

"Patterns have made a huge impact on object-oriented software design. As well
as being tested solutions to common problems, they have become a
vocabulary for talking about a design. You can therefore explain your design
by describing the patterns that you have used. This is particularly true for the
best known design patterns that were originally described by the 'Gang of
Four' in their patterns book, published in 1995 (Gamma et al. 1995)." 
(Sommerville Section 7.2)

“Design Patterns” in building architecture refer to an approach to design, and a
book by Christopher Alexander (“A Pattern Language,” 1977). For what it's
worth, the book is embraced by some architects, dismissed by others. 
(See Saunders, 2002, A Pattern Language. Harvard Design Magazine, Winter/Spring 2002, 16.)

Software design patterns, however, are widely accepted by programmers.

The model-view-controller architecture is the archetypal software design

pattern. ("archetypal" == "that which captures the essence of")

The model-view-controller (MVC) software architecture (Sommerville).

Other Patterns: Observer (in the book), State (in CIS 443), Singleton, Factory. 

156 Chapter 6 ! Architectural design

Appleton, 2002), and so on. Architectural patterns were proposed in the 1990s under

the name ‘architectural styles’ (Shaw and Garlan, 1996), with a five-volume series of

handbooks on pattern-oriented software architecture published between 1996 and

2007 (Buschmann et al., 1996; Buschmann et al., 2007a; Buschmann et al., 2007b;

Kircher and Jain, 2004; Schmidt et al., 2000).

In this section, I introduce architectural patterns and briefly describe a selection

of architectural patterns that are commonly used in different types of systems. For

more information about patterns and their use, you should refer to published pattern

handbooks.

You can think of an architectural pattern as a stylized, abstract description of good

practice, which has been tried and tested in different systems and environments. So,

an architectural pattern should describe a system organization that has been success-

ful in previous systems. It should include information of when it is and is not appro-

priate to use that pattern, and the pattern’s strengths and weaknesses.

For example, Figure 6.2 describes the well-known Model-View-Controller pattern.

This pattern is the basis of interaction management in many web-based systems. The

stylized pattern description includes the pattern name, a brief description (with an

associated graphical model), and an example of the type of system where the pattern

is used (again, perhaps with a graphical model). You should also include information

about when the pattern should be used and its advantages and disadvantages.

Graphical models of the architecture associated with the MVC pattern are shown in

Figures 6.3 and 6.4. These present the architecture from different views—Figure 6.3

is a conceptual view and Figure 6.4 shows a possible run-time architecture when this

pattern is used for interaction management in a web-based system.

In a short section of a general chapter, it is impossible to describe all of the

generic patterns that can be used in software development. Rather, I present some

selected examples of patterns that are widely used and which capture good architec-

tural design principles. I have included some further examples of generic architec-

tural patterns on the book’s web pages.

Controller View

Model

View
Selection

Change
Notification

State
Query

User Events

Figure 6.3 The
organization of the MVC

Encapsulates Application State

Notifies Views of State Changes

Maps User Actions to
 View and Model
Updates Model per Input
Selects View

 State
and data
Changes

and application data

Renders Model Updates
Updates Self as Needed
Sends User Events to
 Controller

36

Chapter 8 - Software Testing
The lecture is derived, and copies directly, from: 

A guest lecture in this class on 11-7-04 by from Greg Foltz, a software tester from Microsoft. 
Sommerville (2015) Software Engineering, 10th edition, Pearson.

	 van Vliet. (2008). Software Engineering: Principles and Practice.

Topics:

• Concepts and Terms

• Testing across the lifecycle. (Draw it and check off the boxes.)

• Microsoft interview question.

• Three approaches to testing.

• First Principles

Concepts and Terms

Testing is intended to show that a program does what it is intended to do, and to

discover program defects before it is put into use.

When you test software, you are trying to do two things:

1. Demonstrate to the developer and the customer that the software meets its

requirements. (Validation testing: Show that it does the right thing.)

2. Find inputs or input sequences where the behavior of the software is

incorrect, undesirable, or does not conform to its specification. (Defect
testing: Expose problems.)

	 [Example: helping software developers fix errors with Bookends.app]

“Testing can only show the presence of errors, not their absence.”

Testing cannot demonstrate that the software is free of defects or that it will

behave as specified in every circumstance. It is always possible that a test
you have overlooked could reveal further problems with the system.

Validation and Verification (or V&V):

	 Validation: Are we building the right product?

	 Verification: Are we building the product right?  

37

Commercial software typically goes through three stages of testing:

1.	Development testing, in which the system is evaluated during the

implementation to discover bugs and defects. System designers and
programmers are likely to be involved in the testing process.

2.	Release testing, in which a separate testing team evaluates a complete
version of the system before it is released. The goal is to make sure that the
system meets the system requirements.

3.	User testing, in which real users use the system to do real tasks in a real-
world environment. Acceptance testing is one type of user testing in which
the customer formally tests a system to decide if it should be “accepted”
from the system supplier, or if further development is required.  

Testing across the lifecycle

The conventional breakdown of the software development process puts testing
as a phase that occurs between implementation and maintenance.

The fact is, testing is an activity that occurs throughout the entire process.

The longer it takes to find an error, the more costly it is, and the cost goes up
exponentially with each phase. Excellent graph. Conveys a lot of
information, but is drawn to make a central point. (The median is the value
that separates one half from the other.)

38

The graph reminds us how even the waterfall model has V&V in every phase.

Validation - Are we building the right product? Will it satisfy the requirements,
the customer’s needs?

Verification - Are we building the product right? Will it work? Will it accept
the correct range of inputs, and map them to the correct outputs?

Requirements: What the system will do.

Design: How the system will do it.

Microsoft hires roughly one tester for each developer. The test team becomes

the model user, the lead advocate for the user.

Testing in the Requirements Phase - V&V

Requirements: Is this what the customer wants? Are the features correctly

prioritized? Do we have a good set of requirements to start the design? 
(Validation)

Requirements must be

SOFTWARE TEST]NG

reported that cheap seats were sold out when this was, in fact, not the case. As
a consequence, clients were referred to other companies. The problems were not
discovered until quarterly results were found to lag considerably behind those of their
competitors.

Testing is often taken to mean executing a program to see whether it produces
the correct output for a given input. This involves testing the end-product, the
software itself. As a consequence, the testing activity often does not get the attention
it deserves. By the time the software has been written, we are often pressed for time,
which does not encourage thorough testing.

Postponing test activities for too long is one of the most severe mistakes often
made in software development projects. This postponement makes testing a rather
costly affair. Figure 13.1 shows the results of a 1980 study by Boehm about the
cost of effor correction relative to the phase in which the error is discovered. This
picture shows that errors which are not discovered until after the software has become

2

Requirements Design Code Development Acceptance Operationtest test
Phase in which error was detected and corrected

Figure 13.1 Relative cost of error correction (Source: Barry B. Boehm, Software engineering
Economics, FiSure 4.2, p.40, @1981, Reprinted by permission of Prentice Hall, tnc. Englewood
cliffs, NJ.)

407

e
ox
o
ooo
o
(d
Etr

1000

500

200

100

50

20

10

5

GTE

H

A

o

..0 A
o

SAFEGUARD

Large software projects

IBM.SSD

H
o

80"/o
Median (TRW survey)
2Oo/o

AAI
+

,I
I A

A 0

Smaller sottware projects

! - teoenm, 19801

39

• feasible (can it be built? tested? Easy to develop ≠ easy to test.)

• testable (objectively verifiable),

• consistent (internally (no conflict w/ others) and externally (w/ other

components))

• complete (covers all cases, hardest to accomplish)

(Verification, or at least preparing for verification.)

When I critique your requirements and tell you to make them more objectively
verifiable, it’s not just an exercise in documentation. I’m trying to help you
learn how to build better software systems by showing you how to evaluate,
you might say test, your requirements.

How do you do it with these projects? As a group, have a session where you go
through every single requirement, discuss whether it meets all of the above
criteria. That is what we did with the NRL Dual Task Experiment software. It
had to be implemented, and the main programmer and unit tester was one of
the stakeholders—he or she needed to know what to do.

Verification: Testing in the requirements phase is mostly planning for
verification. For every requirement, you should think ahead and plan on how
to verify that requirement.

Designing test cases is creative work.

A description of the test case can serve as part of the requirement.

This points to the need for requirements to be precise and objectively

verifiable.

Testing in the Design Phase

Design must also be

	 • feasible 

• testable 
• consistent 
• complete

When I critique your designs and ask for more diagrams and specification of
how the system is going to work, how it is going to be built, it’s not (just) an

40

exercise in writing specs or diagrams, it is to give you the opportunity to
evaluate whether the thing will actually work. Many problems that come up
near the end (such as a difficulty in both recording and listening to Skype
audio) could have been identified earlier on through a rigorous design
process, and consistency-checking with external components.

Testing in the Implementation Phase

This is where we typically think of testing being done.

Unit testing: Evaluate individual components such as methods or classes,
called with different input parameters, and in different program states. 
• Use test-case design techniques to develop thorough tests. 
• Usually done individually in conjunction with coding. Usually. 
• Done during implementation.

Component testing: Evaluate multiple components that interact with each

other. Similar to unit testing, but you are now testing some integration.

•	For example: evaluate programming interfaces, shared memory, called
procedures, and messages that get passed.

System (or Integration) testing: Join components together to create a version
of the system, and evaluate that integrated (joined-together) system.  
• Done during the Implementation or Testing phases.

	 • Usually involves multiple team members.

8.1.2 Choosing unit test cases

• Coverage-based: Makes sure that some aspect of the product is evaluated
exhaustively. Such as, every function call is called at least once, or every
requirement is specifically evaluated, or every state-transition gets tried.

• Error-based: Focus on situations or places in which problems are likely to
occur. Such as looking at the boundary conditions (where errors likely
occur).

41

In all cases, you compare the real output to the expected output:

Figure 13.2 Global view of the test process. (vanVliet)

Interview question from Microsoft Interview:

A function takes a description of two rectangles in 2D space, and returns True if

the two rectangles overlap, and False otherwise.

How would you test a function that returns the intersection of two rectangles?

Specifically, what are all the inputs that you would provide to the test
function? Presume that each rectangle is described by either (a) two (x, y)
coordinates or (b) one (x, y) coordinate, an l, and a w. (droppeimage.pdf below in Pages)

	

Coverage-Based Techniques

In principle, every code segment that you write should have at least one

associated test.

Path-testing or control-flow coverage.

Branch coverage.

Data-flow coverage - how variables are treated down various paths.

Coverage of sequences of state transitions:

For example: Every possible path through the states in which every possible

loop occurs 1 time.

Shutdown → Running → Shutdown

Configuring → Running → Testing → Transmitting → Running

Running → Collecting → Running → Summarizing → Transmitting
→ Running

…

[See Chapter 5. System Modeling]

oracle

P
P test

strategy
compare

input

subset of
input

subset of
input

expected
output

real
output

test
results

on top
of
each

Y

N

42

Note how a good design specification helps you to design good coverage-based
tests.

Equivalence partitioning: Break the input into domains and assume that all
inputs in a given range are equivalent. (You can do the same for ranges of
output.)

	 For example, your function expects a number between 1 and 100, inclusive.

	 You test in each region: You assume equivalence within

the partitions, or walls. (For output, you might have three dialog boxes, and
you just make sure that each will appear at one correct time.)

	 Same class: 	

Figure 8.5: Equivalence partitioning. The large shaded oval on the
left represents the set of all possible inputs to the program that is
being tested. The smaller unshaded ovals represent equivalence
partitions. The expectation is that a program being tested will process
all of the members of an input equivalence partition in the same way.
Output partitions are different classes of outputs that are possible. 
[Sommerville, 2015]

1 100

 8.1 ■ Development testing 235

The input data and output results of a program can be thought of as members of
sets with common characteristics. Examples of these sets are positive numbers, negative
numbers, and menu selections. Programs normally behave in a comparable way for
all members of a set. That is, if you test a program that does a computation and
requires two positive numbers, then you would expect the program to behave in the
same way for all positive numbers.

Because of this equivalent behavior, these classes are sometimes called equiva-
lence partitions or domains (Bezier 1990). One systematic approach to test-case
design is based on identifying all input and output partitions for a system or compo-
nent. Test cases are designed so that the inputs or outputs lie within these partitions.
Partition testing can be used to design test cases for both systems and components.

In Figure 8.5, the large shaded ellipse on the left represents the set of all possible
inputs to the program that is being tested. The smaller unshaded ellipses represent
equivalence partitions. A program being tested should process all of the members of
an input equivalence partition in the same way.

Output equivalence partitions are partitions within which all of the outputs have
something in common. Sometimes there is a 1:1 mapping between input and output
equivalence partitions. However, this is not always the case; you may need to define
a separate input equivalence partition, where the only common characteristic of the
inputs is that they generate outputs within the same output partition. The shaded area
in the left ellipse represents inputs that are invalid. The shaded area in the right
ellipse represents exceptions that may occur, that is, responses to invalid inputs.

Once you have identified a set of partitions, you choose test cases from each of
these partitions. A good rule of thumb for test-case selection is to choose test cases
on the boundaries of the partitions, plus cases close to the midpoint of the partition.
The reason for this is that designers and programmers tend to consider typical values
of inputs when developing a system. You test these by choosing the midpoint of the
partition. Boundary values are often atypical (e.g., zero may behave differently from
other non-negative numbers) and so are sometimes overlooked by developers.
Program failures often occur when processing these atypical values.

System

Possible inputs

Input equivalence partitions

Possible outputsCorrect outputs

Output partitions

Figure 8.5 Equivalence
partitioning

43

Guideline-Based Techniques

(Sometimes called “error-based”.)

Complementary to coverage-based.

Identify where errors are likely to occur based on the kinds of errors that

programmers are likely to make.

Such as on the boundaries, “fencepost errors” and other “off by one” errors.

Test right on, and around each boundary:

Faults are likely to occur when two modules developed by different teams

interact, so focus testing on the interaction between the these modules.

Another way to organize testing approaches:

• Black-box testing (functional or specification-based). Test cases derived from

specifications with little consideration of implementation details.

	 	  
Examples: Equivalence classes and boundary testing.

• White-box testing (structural or program-based). Puts more emphasis on how
the software works internally.

	

	 Example: You have to test a function that reverses a string. A naive way to

program the function is to create a new string. A better way is to reverse in
place. What are two different important test cases? Strings of even and odd
length, to make sure the item in the middle is handled correctly in the strings

of odd length.

1 100

systemi o

system
i o

swap

44

Testing in the Test Phase

“Code complete.” All features are implemented. (Jargon. Book by McConnell.)

System testing or Acceptance testing, often driven by use case scenarios, how

the system would likely be used.

System test days - at Microsoft, the developers or testers would try to do a real

project with the system.

Regression testing: After a system is modified, you make sure new bugs were

not introduced, that the code did not regress (go backwards). “Code churn
causes bugs.” 0.5 million bugs in building Microsoft Office.

Testing in the Maintenance Phase

Continue with all of the activities above as long as your software is being used.

If your software is used, it will be modified.

First Principles

• Bugs happen. Faults are an integral part of the s/w development process.

Anticipate them. But...

• Impossible to test everything.

• And... Testing shows the presence of bugs, not their absence.

	 So...

• Develop a plan. Develop a system, an approach to do your testing.

• Test early: Early fault detection is important.

• Test often: In every phase.

45

Chapter 22 - Project Management
These notes are primarily copied from Sommerville (2015), and cover just a subsection of the
assigned reading. Students should do all of the reading on their own following the SQ3R method.

Section 22.2 Managing People

Productivity is achieved when people are respected by the organization and are
assigned responsibilities that reflect their skills and experience.

Four critical factors that influence the relationship between a manager and the
people that he or she manages:

1. Consistency. People are treated the same, and held to the same
expectations (given each individual's ability to contribute).

2. Respect. Different people have different skills. Everyone should be given
the chance to contribute. [In this class, each student should be given a
good opportunity to make a technical contribution.]

3. Inclusion. All ideas from all team members should be considered. Try to
develop participation techniques to elicit contributions from team
members who are more reflective, and less assertive in meetings. 
[Such as a quiet individual brainstorm followed by input from everyone.]

4. Honesty. Everyone should be clear and up front about what is going well,
and what is not going well. 
"The only thing worse than bad news is bad news late."

Section 22.2.1 Motivating People

One way to think about motivating people is in the context of Maslow's
hierarchy of human needs. In this hierarchy, each lower needs must be met
before any of the higher needs can be met.

46

Figure X. Maslow's Hierarchy of Human Needs 
(from https://www.simplypsychology.org/maslow-pyramid.jpg - 1-10-2022)

Human needs, starting from the bottom of the hierarchy.

1. Physiological. Team members must get enough sleep have adequate access
to food. [Randy Pausch's Tips for Working Successfully in a Group.]

2. Safety. This includes team members feeling completely unthreatened in the
workplace. ["Sexual Harassment In Silicon Valley: Still Rampant As Ever".
September 15, 2020. Forbes.]

3. Belongingness. Team members should be recognized and appreciated as
individuals. ["I see you." "I hear you."]

4. Self-esteem. People's contributions to the project, and to meetings, should be
acknowledged.

47

https://www.simplypsychology.org/maslow-pyramid.jpg

5. Self-realization. People should be able to work at their level of ability, and
to learn new things. [This does not mean to "follow your dreams".]

Maslow's hierarchy is a useful framework, but it does take a somewhat self-
centered perspective, which can conflict with the need for a group to be
cohesive and work well together. [Ask instead how you can contribute.]

Section 22.3 Teamwork

Teams need to be managed. 
This is a task unto itself. 
It requires consideration of alternatives.

cohesion means "sticking together tightly" or "forming a united whole".

A cohesive group values the group more highly than individuals in the group.
Members of a well-led cohesive group are loyal to the group.

Benefits to a cohesive group include:

1. When the group makes decisions independently of outside influences, this
contributes to a sense of independence and autonomy, and also of
belonging.

2. Team members learn from each other.

3. Knowledge is shared so that people can help cover each other's tasks.

4. There is continual improvement to the overall product, not just parts of it.

Project Questions on Motivating People:

What are some ways that your group could better address either (a) Maslow's
hierarchy of human needs or (b) Randy Pausch's "Tips for Working
Successfully in a Group"?

Devise a specific proposal or request, and describe exactly how you will
present it to your group.

48

Good project managers encourage group cohesiveness.

[Group cohesion among college football fans 
https://www.nytimes.com/interactive/2014/10/03/upshot/ncaa-football-fan-
map.html]

"One of the most effective ways of promoting cohesion is to be inclusive." 
Treat group members as responsible and trustworthy, and make information
freely available to everyone in the group. Everyone should know what is going
on, should be able to name and contact all other group members, and have in
mind at all times a general idea of what everyone is working on.

Three factors that have a big effect on team work include:

1. Who is in the group. There should be a mix of skills.

2. How the group is organized. People should be able to contribute at their
level of ability, and complete tasks as expected.

3. Technical and management communication. Good communication
among all team members is essential

Project Questions on Teamwork:

What are some activities that your group does to promote cohesion?
inclusion?

Does everyone in the group know everyone else in the group, and have one
or more ways to communicate with that person? Such that the whole group
can see the communication?

Does everyone in the group know what everyone else is working on? If not,
what are a few different ways that could be improved?

What are some ways that any of the above might be improved?

49

https://www.nytimes.com/interactive/2014/10/03/upshot/ncaa-football-fan-map.html
https://www.nytimes.com/interactive/2014/10/03/upshot/ncaa-football-fan-map.html

22.2.3 Group Organization

Important organizational decisions include:

1. Should the project manager and technical lead be the same person?

2. Who will be involved in making critical decisions, and how will the
decisions be made?

3. How will interactions with external stakeholders be managed?

4. How will groups interact with team members who are not co-located?

5. How will knowledge be shared across the group?

Project Questions on Group Organization:

How are decisions being made about who will do what?

How are technical decisions being made?

Are there any policies about how to contact the professor?

How are co-located team members included (during Covid)?

What are some ways that any of the above might be improved?

50

Section 23.3 - Project Scheduling
Some of these notes are from material that is not in Sommerville (2015).

Recall that software engineering is the process of gaining and maintaining
control over the products and processes of software development.

•	 “Intellectual control” ...

•	 “Managerial control” focuses on gaining and maintaining control over

software development resources (money, time, personnel).

This lecture focuses on control of the resources of time and personnel. 
Plans are nothing. Planning is everything. (Attributed to President Eisenhower) 

“Begin with the end in mind”. (Franklin Covey. 1989. The 7 Habits of Highly Effective People)

Project Planning Terminology

 Milestones are distinctly identifiable points in the project timeline,

 named after stones that appear along the side of a road.

 Deliverables are well-defined physical or digital objects that are 
 handed over from one stakeholder to another.

Every deliverable can be a milestone, but every milestone does not necessarily
have a deliverable associated with it (such as simply starting a task).

The critical path is the sequence of activities in a project such that, if any of
these activities is delayed, the entire project is delayed.

	 (Not "the longest sequence of dependent tasks" as in Sommerville, 2015.)

	 (Yes "the longest-in-duration sequence of dependent tasks".)

You should always be working on activities that are on the critical path.

In the PERT chart below: How many days to complete project? What happens

if the steam shovel breaks you have to dig the moat by hand, for 50 days?

Slippage is the time a task (or project) is late compared to the original deadline.
Slippage delays the project if the tasks with slippage are on the critical path.

Slack time is the time that a task can be delayed without delaying the project. 

51

SRS
software

PERT Charts

Process Evaluation and Review Technique

(Developed during the 1950s Polaris missile program.)

The basic idea: Each activity gets a box. Lines indicate the necessary

completion order (because of some kind of constraint).

A PERT chart for building and moving in to a castle.

Questions: How many days to complete the project? What happens if the steam
shovel breaks you have to dig the moat by hand, for 50 days?

PERT charts emphasize the critical path.

Gantt Charts (Timelines)

Named after Henry Gantt. (He developed them around 1910 to maximize the

productivity of factory workers.)

The basic idea is as follows, though they can be drawn in many different ways.

Time moves from left to right.

The time scale depends on the size of the project and the scope of the chart.

A Gantt chart for building and moving in to a castle.

Plan castle
5 days

Dig moat
7 days

Build walls
20 days

Build tower
20 days

Move in
3 days

Activity
duration

Necessary
completion
order (from
left to right)

Key: critical
path

(can be done in parallel)

Task FebruaryJanuary

Plan Castle

Dig Moat

Build Walls

Build Tower

Move In

Staff

QN

KG

PC
QN, KG

All

Days

5

7

20

20

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

now, today
critical

path

slippage

revised timeline
milestones

(if necessary)

completed
(filled bars)

not yet completed
(unfilled bars)

52

The critical path can be drawn, but it is not as salient as it is in the PERT chart.

Other columns can be added, such as start and end dates, resources needed, etc.

A Gantt charts emphasize task duration, start/end dates, and task overlap.

Both diagrams are very useful but can be tedious to keep up-to-date.

Both both can be extremely useful for planning and communicating.

They must be updated regularly. Save a dated copy every time you update.

I recommend using a simple spreadsheet or

direct drawing editor, not a complicated task
management software such as Asana. You
want easy and direct editing on a single page.

(I disagree with Sommerville, 2015, in this regard.)

The diagrams provide well-established conventions.

If you can communicate time and task needs, you can gain power and control.

(LTCB story: 1 week, 2 weeks, 3 weeks, 2 weeks.)

 

Project Questions on Project Scheduling:

Draw a Gantt chart to explain to a student in a different group (and then to
the class) how your group is using its time. This can be explained at the
level of the entire group, or at the level of each individual team member.

Propose two fundamentally different order of activities that could be done
on this project. Each of the two should have real strengths. Start with a
brainstorm of all of the activities that need to get done. Generate a different
graphical view of each order of activities.

Each Gantt chart should include indications of the critical path.

53

55
66
88
99

BB DD EE FF GG
February

Tasks and Milestones 5 6 7 8
Observe Users
Analyze Current Systems

Hierarchical Task Analysis
Notes in part from:	Shepherd, A. (2001). Hierarchical Task Analysis. 
	 	 	 Annett, J. (2003). Hierarchical Task Analysis.

The reading is compiled in a document entitled “HTA_Materials.pdf”.

————————————————————————————————

Notes in part from:	Shepherd, A. (2001). Hierarchical Task Analysis. 
	 	 	 Annett, J. (2003). Hierarchical Task Analysis.

The reading is compiled in a document entitled “HTA_Materials.pdf”.

————————————————————————————————

“Any effort to improve human performance in a work or recreational setting
must start by some understanding of what people are required to do and how
they achieve their goals.” (Shepherd, p.1)

Task analysis is the process of gaining this understanding, and writing it down.

Hierarchical Task Analysis (HTA) is a methodology for describing the
procedural knowledge that a person needs to do a task, and showing that
knowledge in a tree-like structure.

In HTA, tasks are represented in terms of hierarchies of goals and subgoals,
using the idea of plans to show when subgoals need to be carried out.

‘In task analysis, it is always important to think of the reason why the task is
carried out…. Thus, the task has a purpose or goal and criteria against which
the outcome can be judged to be satisfactory or otherwise.’

Just as a task has a purpose, the task analyst (the person doing the analysis)
also has a purpose in doing the task analysis. For example, the analyst might
aim to understand the basic structure of a task, to design or improve a user
interface, to create training materials, or to determine how people can
coordinate activities. Knowing why you are carrying out the analysis affects
how you should do the analysis.

54

For example, if you are trying to use HTA to assist in the design of a user
interface to support a specific task, your analysis should perhaps (a) identify
mid-level subtasks that reveal potential groupings of functionality and (b) take
the analysis down to the level at which individual display and control decisions
could be made, such as to specify exactly what information and inputs needs to
be visible for a specific subtask. (Such as a thumb keyboard, and the text that
you are typing.)

The plan is a very important part of the procedural knowledge. The boxes
(?) tell you the actions to take, but the plans tell you the conditions under which
you should take each action. Such as, if and when to take the action, and for
how long.

A plan for the steps required to make toast. (Figure 0.1 from Shepherd.) (The
dash should be read as “then”.) Note how the plan captures the conditions
under which each step should be taken.

More elaborate versions of this procedural knowledge might include additional
steps such as to scrape the burnt part off and serve it, or to monitor the toast
while it is toasting.

Use the plan to capture the true expertise, the decisions of what to do next.

2 Hierarchical Tlask Analysis

Figure o.1 A sinple illustration of Hierarchical Flask Analysis.

Thus, motor cars are manufactured to be capable of transporting passengers according
to a criterion of speed and acceleration, but this cannot be achieved at the expense of
comfort and safety.

Detailed criteria can rarely be specified at the outset of a design process, even in
product design. As designs are developed and intermediate design problems are solved,
so new aspects of the product and its manufacture are discovered. To achieve a suitable
level of power for a new vehicle, for example, a larger engine than had been initially
envisaged may need to be included. This immediately places greater constraints on the
size .and layout of other components, so detailed design criteria are modified.

This process of refining criteria also arises when tasks are examined. As aspects
of the task are uncovered, so we realise increasingly what needs to be valued in terms
of performance.Forexample,ataskanalysismightcommencewiththeaimofimproving
human performance to gain greater productivity. Notions of safety may be uppemost,
but only when task detail is understood are the implications of safety properly
appreciated.

Just as a task has a purpose, so too does the task analyst's intervention in doing
task analysis. The analyst might be involved in training, or developing a better control
panel, or determining how people can work together most effectively, or several of
these things. Task analysis should not be done for the sake of it; knowing why we are
canying out the analysis affects how the analysis progresses.

P/a!7rsarecrucialtoHTA.Aplanonlymakessenseinconjunctionwiththesubgoals
it is governing. Thus, to operate the toaster, we can use a plan ®1an 0 in Figure 0.1)
which states that first we must ensure power to the toaster, then we must insert the
bread, then we push down the lever, then when the toast pops up, we remove the toast.
If the toast is satisfactory we can terminate the toaster op,eration. If the toast is
unsatisfactory we can adjust the toaster then repeat part of the previous activity.

Carrying out HTA on any task entails similar processes to those described for
using the toaster. HTA works towards understanding what is necessary to achieve the
statedgoal.Theanalystkeepsinmindtheperformancecriteriainvolved.Astheanalysis
proceeds, the criteria for performance and why these different things are important
start to make more sense.

55

Three common types of plans in HTA:

1.	Fixed sequence or routine procedure, such as “do this, then this, then this”.

2.	Selective rule or decision. “If x is the case, do this; if y is the case, do that.

These two types of plan are significant because they imply knowledge on the
part of the operator. It may be simple procedural knowledge, or the plan may
require extensive declarative knowledge of the environment….

3.	Time-sharing or dual task plan. Two or more operations are pursued in
parallel. That is, the superordinate goal cannot be attained unless two or
more subordinate goals are attained at the same time. Not well-defined.

A final example:

 

Use lectures to learn
course material.

1. Prepare for
each lecture.

2. Attend every
lecture, with a

“growth mindset”.

A hierarchical task analysis (HTA) of an expert student’s
procedural knowledge for using lectures to optimize learning.

SQ3R is the active-learning technique survey, question, read, recite, review.
The ellipses (“…”) show where the HTA would be further developed.

Plan: Do 1 in the two days prior to each lecture. Do 2 at
the time of the lecture. Do 3 during the lecture.

1. Review the
schedule to
see what will
be covered.

2. Read the
lecture notes

for the lecture.

3. SQ3R the
chapter.

3. Actively
learn in every

lecture.

Plan: Do 1 and 2 two days prior to lecture (about 30 min.). Do 3 the day before
the lecture (about 60 min.). Do 4 periodically throughout your waking hours.

4. Think about what
you read, how it relates
to other things you are
learning, and questions

to ask in class.

… …

56

Sharp 14 - Usability Testing
Notes in part from Sharp et al. (2019). Interaction Design, Chapter 14.

Much of the following text are direct quotes from the chapter.

————————————————————————————————

Essential Ideas in User Observation Studies.

You want to know: When my system is used in the real world, will people be
able to use it, quickly and accurately, to accomplish their goals?

User observation studies are the “gold standard” of usability testing.

User observation studies are empirical, based on direct observation.

Analytic evaluation techniques also exist. Such as: Count the keystrokes and

mouseclicks necessary to do a task. No users are needed.

But observing users trying to do tasks on your system is the gold standard.

There are Different Names for the Same Thing

“User Observation Studies” is a good phrase to use.

Also: “user testing” as in “testing the system with users”, not “testing the user”.

Remember: You are testing the product, not the user.

Remember the overall goal

Your overall goal is to create, as best as you can, the closest approximation to a

real user doing a real task in a real-world task environment.

It is usually difficult or impossible, but you do your best.

14.3.1 Controlled Settings Involving Users

The studies control what users do, when they do it, and for how long.

User responses are observed and recorded. The observed data can be

quantitative (such as speed and accuracy) and qualitative (such as user
comments).

The primary goal is to determine whether an interface is usable by the intended
user population to carry out the tasks for which it was designed. The first
question is: Could people use the device to do the task?

A system design process produces a software specification (such as the Python
functions that need to be written) as well as a usability specification (such as
the time required to do representative tasks, and number of errors permitted).

A user observation study can determine if the usability specification is met.

57

User observation studies should measure speed and accuracy.

In a user observation study, you want to determine whether sample users, with
appropriate training and instructions, can accomplish sample tasks with the
speed and accuracy specified in the usability requirements in the SRS.

You generally want participants to achieve around 95% accuracy after
appropriate training, instructions, and perhaps practice. At 95% accuracy,
time measurements are relevant, meaningful, and comparable.

You must measure both speed and accuracy because humans exhibit a
naturally-occurring speed-accuracy tradeoff. People will sometimes
emphasize speed over accuracy, and sometimes emphasize accuracy over
speed, even for simple tasks such as pouring a liquid.

The figure above shows the naturally-occurring speed-accuracy tradeoff curve,

and where people land on the curve given their strategic goals.

(From Pachella, 1974, The interpretation of reaction time in information processing research.)

REACTIONTIME 59

subjects are given the usual instructions to respond as fast as possible without making
errors, there are other conditions in which the subjects are induced to work at various
speeds that are either faster or slower than this normal reaction time. Thus, on some
blocks of trials, speed of responding is greatly emphasized; on other blocks, speed is
only moderately emphasized; and on still other blocks, great accuracy and caution are
emphasized.
Figure 4 represents the outcome of such an experiment in idealized fonn. Pew

(1969) has called this type of function a speed-accuracy operating characteristic.
Such a curve plots the average latency of response (e.g., mean reaction time) against
the average accuracy of responses (e.g., the percentage of correct responses) for each
of the various speed emphasis conditions for a particular experimental task. Virtually
all of the speed-accuracy operating characteristics that have been reported in the
literature share the basic properties of the hypothetical data of Fig. 4. They are
monotonically increasing functions and, when accuracy is measured in percentage of
correct responses, they are typically negatively accelerated.
The open circle on Fig. 4 is the point at which subjects are assumed to be operating

according to the common definition of reaction time. It represents the fastest reaction
time at which maximum accuracy is maintained. It is extremely doubtful that
experimental subjects ever adopt this speed-accuracy criterion. Errorless perfor-
mance is a rare occurrence when the usual reaction time instructions are given to
subjects. Even experienced subjects whose data are exemplary in all other respects
(e.g., consistent, low variability) will generally make 2-3% errors in most reaction
time tasks, and much higher rates are often reported in published experiments. Thus,

1;-
e,
u
u

W 0

u .. Ez ~ ,.. ~ E~
::;; 0 ."0. 0'" ~ Efi' ~
'" t;w ~
u, <;
u, u
Oc
>- ~u ~ ~.. 0. U

'" ci>
e

::> ,
u~ tl
u 0.. ~u~

0~
u

theoretical
definition

\ extreme
accuracy

normal emphasis'>. instructions

moderate speed emphasis

------ extreme speed emphasis

fast slow

AVERAGE REACTION TtME
FIG. 4. An idealized speed-accuracy operating characteristic

~:

58

It is impossible to perform a task as quickly as possible and as accurately as
possible at the same time.

A marathon runner drinking
water emphasizes speed
over accuracy. Drinking
coffee on a first date, you
should emphasize accuracy
over speed.

User observation studies
should measure speed and
accuracy.

A User Observation Study Looks for Causal Relationships.

	 	 	 	 	 Changes in Independent Variables 
	 	 	 	 	 ==== CAUSE ====> 
	 	 	 	 Changes in Dependent Variables.

For example: 
A UI design causes a system to be usable to do a set of tasks. 
A button arrangement causes buttons to be clickable quickly and accurately

Experimental design is the creative process of trying to isolate and show causal
relationships. This requires you to demonstrate that your findings are valid.

Validity

In experimental design, validity is the extent to which an experiment

successfully isolates a causal relationship. Validity captures the extent to
which an evaluation method measures what it is intended to measure.

Internal validity is the extent to which the experiment truly measures what it
tries to measure; that is, within the context of this particular experiment.

External validity is the extent to which the experiment measures and shows
something that is true about the world, beyond this one experiment.

59

A marathon runner emphasizes speed over accuracy. (photo by A.H.)

Ecological validity is related to external validity. It is the extent to which the
environment in which an evaluation is conducted influences or even distorts
the results.

An example of validity: If you want to measure how long it takes someone to
solve a Rubik’s cube, you can measure their time by (a) using a stopwatch or
(b) having someone count “one one-thousand, two one-thousand,” 
You would feel more confident in the the stopwatch. It is more valid.

A challenge when learning how to run user-observation studies is developing
your ability to make decisions that contribute to validity. This is not easy.

There are many potential “threats to validity”. You need to guard against them
when designing and executing of a study; and when analyzing and drawing
conclusions from the data.

Every aspect of a user observation study should be done with validity in mind,
even if the word is never mentioned.

Some things to improve validity:

• Get your users into the “mental set” of a real user doing a real task.

• Present them with a real task, and motivate them to really do it.

• Vary the order of presentation of test conditions.

• Remove extraneous variables that may interfere with performance.

• Providing the same instructions to all of the participants.

• Train your users so they have the same expertise needed to start a task.

• Don’t help the user if they get stuck.

• Use many participants.

• Recruit your participants based on the kind of users you need.

• Screen your participants to make sure they have the qualities you need.

• Run your study in an appropriate setting (such as a quiet room, a loud

 room, or in everyday contexts “in the wild”).

• Much of Apple’s Guidelines for Conducting a User Observation Study.

How do you “prove” that your study has good validity?

You cannot. Also, you cannot measure validity.

What you can do is provide information that explains everything that you did to
try to ensure that your study is valid.

60

That is one of the main goals of the Methodology section of a usability report. 
Participants - Describe who participated in your study. 
Setting - Describe the physical and social environment. 
Materials - Describe the devices, instructions, and scripts. 
Experimental Design - Describe the different conditions, and how presented. 
Procedure - Describe the steps that you took to administer the study.

The information provided in these sections can helps to convince the reader of
the validity of the study. Or can leave the reader unable to conclude whether
the study was valid.

Informed consent

Participants must be told what they will be asked to do, the conditions under
which data will be collected, and what will happen to their data when they
finish the task. Participants must also be told their rights, for instance, that
they may withdraw from the study at any time, for any reason, and with no
penalty.

Informed Consent. Request this from your participants.

“Informed consent” refers to your participants permitting you to observe and

record their performance, while knowing how their data will be used, and
knowing their rights during the experiment.

Two important components of informed consent:

1. The participant can quit any time with no penalty whatsoever, including

loss of access to services.

2. The participant will not be identified in the reporting of the data.

Informed consent is necessary for the ethical treatment of experimental
subjects, and also to ensure that your participants can immerse themselves
into the task without fear of retribution if they make a “mistake”.

The goal of a user observation study is to get as close as possible to real
users doing real tasks in a real-world task environment.

61

