Support Vector Machines (SVMs)

Based on slides by Daniel Lowd, Doina Precup and others

Binary Classification Revisited

- Consider a linearly separable binary classification data set $\{\mathbf{x}_i, y_i\}_{i=1}^m$.
- There is an infinite number of hyperplanes that separate the classes:

- Which plane is best?
- Relatedly, for a given plane, for which points should we be most confident in the classification?

The margin, and linear SVMs

• For a given separating hyperplane, the *margin* is two times the (Euclidean) distance from the hyperplane to the nearest training example.

- It is the width of the "strip" around the decision boundary containing no training examples.
- A linear SVM is a perceptron for which we choose \mathbf{w}, w_0 so that margin is maximized

Distance to the decision boundary

• Suppose we have a decision boundary that separates the data.

- Let γ_i be the distance from instance \mathbf{x}_i to the decision boundary.
- How can we write γ_i in term of $\mathbf{x}_i, y_i, \mathbf{w}, w_0$?

Distance to the decision boundary

- The vector ${\bf w}$ is normal to the decision boundary. Thus, $\frac{{\bf w}}{||{\bf w}||}$ is the unit normal.
- The vector from the B to A is $\gamma_i \frac{\mathbf{w}}{||\mathbf{w}||}$.
- B, the point on the decision boundary nearest \mathbf{x}_i , is $\mathbf{x}_i \gamma_i \frac{\mathbf{w}}{||\mathbf{w}||}$.
- As B is on the decision boundary,

$$\mathbf{w} \cdot \left(\mathbf{x}_i - \gamma_i \frac{\mathbf{w}}{||\mathbf{w}||} \right) + w_0 = 0$$

• Solving for γ_i yields, for a positive example:

$$\gamma_i = \frac{\mathbf{w}}{||\mathbf{w}||} \cdot \mathbf{x}_i + \frac{w_0}{||\mathbf{w}||}$$

The margin

- The margin of the hyperplane is 2M, where $M = \min_i \gamma_i$
- The most direct statement of the problem of finding a maximum margin separating hyperplane is thus

$$= \max_{\mathbf{w}, w_0} \min_{i} \gamma_i \\ \equiv \max_{\mathbf{w}, w_0} \min_{i} y_i \left(\frac{\mathbf{w}}{||\mathbf{w}||} \cdot \mathbf{x}_i + \frac{w_0}{||\mathbf{w}||} \right)$$

• This turns out to be inconvenient for optimization, however. . .

Treating γ_i as the constraints

• From the definition of margin, we have:

$$M \le \gamma_i = y_i \left(\frac{\mathbf{w}}{\|\mathbf{w}\|} \cdot \mathbf{x}_i + \frac{w_0}{\|\mathbf{w}\|} \right) \quad \forall i$$

• This suggests:

$$\begin{array}{ll} & \text{maximize} & M \\ \text{with respect to} & \mathbf{w}, w_0 \\ & \text{subject to} & \mathbf{y}_i \left(\frac{\mathbf{w}}{\|\mathbf{w}\|} \cdot \mathbf{x}_i + \frac{w_0}{\|\mathbf{w}\|} \right) \geq M \text{ for all } i \end{array}$$

- Problems:
 - w appears nonlinearly in the constraints.
 - This problem is underconstrained. If (\mathbf{w}, w_0, M) is an optimal solution, then so is $(\beta \mathbf{w}, \beta w_0, M)$ for any $\beta > 0$.

Adding a constraint

- Let's try adding the constraint that $\|\mathbf{w}\|M = 1$.
- This allows us to rewrite the objective function and constraints as: min ||w|| w.r.t. w, w₀

s.t.
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + w_0) \ge 1$$

- This is really nice because the constraints are linear.
- The objective function $\|\mathbf{w}\|$ is still a bit awkward.

Final formulation

- Let's maximize ||w||² instead of ||w||. (Taking the square is a monotone transformation, as ||w|| is postive, so this doesn't change the optimal solution.)
- This gets us to:

 $\begin{array}{ll} \min & \|\mathbf{w}\|^2 \\ \text{w.r.t.} & \mathbf{w}, w_0 \\ \text{s.t.} & y_i (\mathbf{w} \cdot \mathbf{x}_i + w_0) \geq 1 \end{array}$

- This we can solve! How?
 - It is a *quadratic programming* (QP) problem—a standard type of optimization problem for which many efficient packages are available.
 - Better yet, it's a convex (positive semidefinite) QP

https://en.wikipedia.org/wiki/Quadratic_programming

Quadratic programming

The quadratic programming problem with *n* variables and *m* constraints can be formulated as follows.^[1] Given:

- a real-valued, n-dimensional vector c,
- an n × n-dimensional real symmetric matrix Q,
- an m × n-dimensional real matrix A, and
- an m-dimensional real vector b,

the objective of quadratic programming is to find an *n*-dimensional vector **x**, that will

minimize $\frac{1}{2}\mathbf{x}^{\mathrm{T}}Q\mathbf{x} + \mathbf{c}^{\mathrm{T}}\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$,

[1]: https://en.wikipedia.org/wiki/Quadratic_programming

Example

Lagrange multipliers for inequality constraints

• Suppose we have the following optimization problem, called *primal*:

 $\min_{\mathbf{w}} f(\mathbf{w})$ such that $g_i(\mathbf{w}) \leq 0, \ i=1\dots k$

• We define the *generalized Lagrangian*:

$$L(\mathbf{w}, \alpha) = f(\mathbf{w}) + \sum_{i=1}^{k} \alpha_i g_i(\mathbf{w}),$$
(1)

where α_i , $i = 1 \dots k$ are the Lagrange multipliers.

A different formalization

- Consider $\mathcal{P}(\mathbf{w}) = \max_{\alpha:\alpha_i \ge 0} L(\mathbf{w}, \alpha)$
- Observe that the follow is true

$$\mathcal{P}(\mathbf{w}) = \left\{ egin{array}{cc} f(\mathbf{w}) & \mbox{if all constraints are satisfied} \\ +\infty & \mbox{otherwise} \end{array}
ight.$$

• Hence, instead of computing $\min_{\mathbf{w}} f(\mathbf{w})$ subject to the original constraints, we can compute:

$$p^* = \min_{\mathbf{w}} \mathcal{P}(\mathbf{w}) = \min_{\mathbf{w}} \max_{\alpha:\alpha_i \ge 0} L(\mathbf{w}, \alpha)$$

Dual optimization problem

- Let $d^* = \max_{\alpha:\alpha_i \ge 0} \min_{\mathbf{w}} L(\mathbf{w}, \alpha)$ (max and min are reversed)
- We can show that $d^* \leq p^*$.
 - Let $p^* = L(w^p, \alpha^p)$ - Let $d^* = L(w^d, \alpha^d)$
 - Then $d^* = L(w^d, \alpha^d) \le L(w^p, \alpha^d) \le L(w^p, \alpha^p) = p^*.$

Dual optimization problem

- If f, g_i are convex and the g_i can all be satisfied simultaneously for some w, then we have equality: $d^* = p^* = L(\mathbf{w}^*, \alpha^*)$
- Moreover w^{*}, α^{*} solve the primal and dual if and only if they satisfy the following conditions (called Karush-Kunh-Tucker):

$$\frac{\partial}{\partial w_i} L(\mathbf{w}^*, \alpha^*) = 0, \ i = 1 \dots n$$
(2)

$$\alpha_i^* g_i(\mathbf{w}^*) = 0, \ i = 1 \dots k \tag{3}$$

$$g_i(\mathbf{w}^*) \leq 0, \ i=1\dots k$$
 (4)

$$\alpha_i^* \geq 0, \ i = 1 \dots k \tag{5}$$

Back to maximum margin perceptron

• We wanted to solve (rewritten slightly):

- $\begin{array}{ll} \min & \frac{1}{2} \|\mathbf{w}\|^2 \\ \text{w.r.t.} & \mathbf{w}, w_0 \\ \text{s.t.} & 1 y_i (\mathbf{w} \cdot \mathbf{x}_i + w_0) \leq 0 \end{array}$
- The Lagrangian is:

$$L(\mathbf{w}, w_0, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 + \sum_i \alpha_i (1 - y_i (\mathbf{w} \cdot \mathbf{x}_i + w_0))$$

- The primal problem is: $\min_{\mathbf{w},w_0} \max_{\alpha:\alpha_i \ge 0} L(\mathbf{w},w_0,\alpha)$
- We will solve the dual problem: $\max_{\alpha:\alpha_i\geq 0} \min_{\mathbf{w},w_0} L(\mathbf{w},w_0,\alpha)$
- In this case, the optimal solutions coincide, because we have a quadratic objective and linear constraints (both of which are convex).

Solving the dual

- From KKT (2), the derivatives of $L(\mathbf{w}, w_0, \alpha)$ wrt \mathbf{w}, w_0 should be 0
- The condition on the derivative wrt w_0 gives $\sum_i lpha_i y_i = 0$
- The condition on the derivative wrt ${\bf w}$ gives:

$$\mathbf{w} = \sum_i lpha_i y_i \mathbf{x_i}$$

- \Rightarrow Just like for the perceptron with zero initial weights, the optimal solution for w is a linear combination of the x_i , and likewise for w_0 .
 - The output is

$$h_{\mathbf{w},w_0}(\mathbf{x}) = \mathsf{sign}\left(\sum_{i=1}^m lpha_i y_i(\mathbf{x}_i \cdot \mathbf{x}) + w_0
ight)$$

⇒ Output depends on weighted dot product of input vector with training examples

Solving the dual

• By plugging these back into the expression for L, we get:

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} y_{i} y_{j} \alpha_{i} \alpha_{j} (\mathbf{x}_{i} \cdot \mathbf{x}_{j})$$

with constraints: $\alpha_i \geq 0$ and $\sum_i \alpha_i y_i = 0$

The support vectors

- Suppose we find optimal α s (e.g., using a standard QP package)
- The α_i will be > 0 only for the points for which $1 y_i(\mathbf{w} \cdot \mathbf{x}_i + w_0) = 0$
- These are the points lying on the edge of the margin, and they are called support vectors, because they define the decision boundary
- The output of the classifier for query point x is computed as:

$$\operatorname{sgn}\left(\sum_{i=1}^m \alpha_i y_i(\mathbf{x}_i \cdot \mathbf{x}) + w_0\right)$$

Hence, the output is determined by computing the *dot product of the point with the support vectors*!

Example • • 0 •• . . Support vectors are in bold

Non-linearly separable data

- A linear boundary might be too simple to capture the class structure.
- One way of getting a nonlinear decision boundary in the input space is to find a linear decision boundary in an expanded space
- Thus, \mathbf{x}_i is replaced by $\phi(\mathbf{x}_i)$, where ϕ is called a *feature mapping*

Non-linear SVMs: Feature Space

Non-linear SVMs: Feature Space

Margin optimization in feature space

• Replacing \mathbf{x}_i with $\phi(\mathbf{x}_i)$, the optimization problem to find \mathbf{w} and w_0 becomes:

 $\begin{array}{ll} \min & \|\mathbf{w}\|^2\\ \text{w.r.t.} & \mathbf{w}, w_0\\ \text{s.t.} & \mathbf{y}_i (\mathbf{w} \cdot \phi(\mathbf{x}_i) + w_0) \geq 1 \end{array}$

Dual form:

$$\begin{array}{ll} \max & \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \mathbf{y}_i \mathbf{y}_j \alpha_i \alpha_j \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j) \\ \text{w.r.t.} & \alpha_i \\ \text{s.t.} & 0 \leq \alpha_i \\ & \sum_{i=1}^{m} \alpha_i \mathbf{y}_i = 0 \end{array}$$

Feature space solution

- The optimal weights, in the expanded feature space, are $\mathbf{w} = \sum_{i=1}^{m} \alpha_i \mathbf{y}_i \phi(\mathbf{x}_i)$.
- Classification of an input ${\bf x}$ is given by:

$$h_{\mathbf{w},w_0}(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^m \alpha_i \mathbf{y}_i \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}) + w_0\right)$$

⇒ Note that to solve the SVM optimization problem in dual form and to make a prediction, we only ever need to compute *dot-products of feature vectors*.

Kernel functions

- Whenever a learning algorithm (such as SVMs) can be written in terms of dot-products, it can be generalized to kernels.
- A kernel is any function K : ℝⁿ × ℝⁿ → ℝ which corresponds to a dot product for some feature mapping φ:

$$K(\mathbf{x}_1, \mathbf{x}_2) = \phi(\mathbf{x}_1) \cdot \phi(\mathbf{x}_2)$$
 for some ϕ .

- Conversely, by choosing feature mapping $\phi,$ we implicitly choose a kernel function
- Recall that φ(x₁) · φ(x₂) = cos∠(x₁, x₂) where ∠ denotes the angle between the vectors, so a kernel function can be thought of as a notion of *similarity*.

The "kernel trick"

- If we work with the dual, we do not actually have to ever compute the feature mapping ϕ . We just have to compute the similarity K.
- That is, we can solve the dual for the α_i : $\max \quad \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \mathbf{y}_i \mathbf{y}_j \alpha_i \alpha_j K(\mathbf{x}_i, \mathbf{x}_j)$ w.r.t. α_i s.t. $0 \le \alpha_i$ $\sum_{i=1}^{m} \alpha_i \mathbf{y}_i = 0$
- The class of a new input x is computed as:

$$h_{\mathbf{w},w_0}(\mathbf{x}) = \mathsf{sign}\left((\sum_{i=1}^m \alpha_i y_i \phi(\mathbf{x}_i)) \cdot \phi(\mathbf{x}) + w_0 \right) = \mathsf{sign}\left(\sum_{i=1}^m \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}) + w_0 \right)$$

• Often, $K(\cdot, \cdot)$ can be evaluated in O(n) time—a big savings!

Nonlinear SVMs: The Kernel Trick

An example:

2-dimensional vectors $\mathbf{x} = [x_1 \ x_2];$

 $let K(u,v) = (1 + u^T v)^2$,

Need to show that $K(\mathbf{u},\mathbf{v}) = \varphi(\mathbf{u})^{T}\varphi(\mathbf{v})$:

$$K(\mathbf{u},\mathbf{v}) = (1 + \mathbf{u}^{\mathrm{T}}\mathbf{v})^{2},$$

= $1 + u_{1}^{2}v_{1}^{2} + 2 u_{1}v_{1}u_{2}v_{2} + u_{2}^{2}v_{2}^{2} + 2u_{1}v_{1} + 2u_{2}v_{2}$
= $[1 \ u_{1}^{2} \sqrt{2} u_{1}u_{2} \ u_{2}^{2} \sqrt{2}u_{1} \sqrt{2}u_{2}]^{\mathrm{T}} [1 \ v_{1}^{2} \sqrt{2} v_{1}v_{2} \ v_{2}^{2} \sqrt{2}v_{1} \sqrt{2}v_{2}]$
= $\varphi(\mathbf{u})^{\mathrm{T}}\varphi(\mathbf{v}), \text{ where } \varphi(\mathbf{x}) = [1 \ x_{1}^{2} \sqrt{2} x_{1}x_{2} \ x_{2}^{2} \ \sqrt{2}x_{1} \sqrt{2}x_{2}]$

his slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/**svm**_tutorial.**ppt**

Nonlinear SVMs: The Kernel Trick

- Examples of commonly-used kernel functions:
 - Linear kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
 - Polynomial kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$
 - Gaussian (Radial-Basis Function (RBF)) kernel:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{\left\|\mathbf{x}_i - \mathbf{x}_j\right\|^2}{2\sigma^2})$$

Sigmoid:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\beta_0 \mathbf{x}_i^T \mathbf{x}_j + \beta_1)$$

 In general, functions that satisfy *Mercer's condition* can be kernel functions: Kernel matrix should be positive semidefinite.

Example: String kernel

- Very important for DNA matching, text classification, ...
- Example: in DNA matching, we use a sliding window of length k over the two strings that we want to compare
- The window is of a given size, and inside we can do various things:
 - Count exact matches
 - Weigh mismatches based on how bad they are
 - Count certain markers, e.g. AGT
- The kernel is the sum of these similarities over the two sequences
- How do we prove this is a kernel?

Regularization with SVMs

- Kernels are a powerful tool for allowing non-linear, complex functions
- But now the number of parameters can be as high as the number of instances!
- With a very specific, non-linear kernel, each data point may be in its own partition
- With linear and logistic regression, we used regularization to avoid overfitting
- We need a method for allowing regularization with SVMs as well.

Soft margin linear classifier

- For the data that is not linearly separable (noisy data, outliers, etc.)
- Slack variables ξ_i can be added to allow misclassification of difficult or noisy data points

Soft margin classifiers

- Recall that in the linearly separable case, we compute the solution to the following optimization problem:
 - min $\frac{1}{2} \|\mathbf{w}\|^2$
 - w.r.t. \mathbf{w}, w_0
 - s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + w_0) \ge 1$
- If we want to allow misclassifications, we can relax the constraints to:

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + w_0) \ge 1 - \xi_i$$

- If $\xi_i \in (0,1)$, the data point is within the margin
- If $\xi_i \ge 1$, then the data point is misclassified
- We define the *soft error* as $\sum_i \xi_i$
- We will have to change the criterion to reflect the soft errors

New problem formulation with soft errors

- Instead of: $\begin{array}{l} \min \quad \frac{1}{2} \|\mathbf{w}\|^2 \\ \text{w.r.t.} \quad \mathbf{w}, w_0 \\ \text{s.t.} \quad y_i (\mathbf{w} \cdot \mathbf{x}_i + w_0) \geq 1 \\ \text{we want to solve:} \\ \min \quad \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i \xi_i \\ \text{w.r.t.} \quad \mathbf{w}, w_0, \xi_i \\ \text{s.t.} \quad y_i (\mathbf{w} \cdot \mathbf{x}_i + w_0) \geq 1 - \xi_i, \, \xi_i \geq 0 \end{array}$
- Note that soft errors include points that are misclassified, as well as points within the margin
- There is a linear penalty for both categories
- The choice of the *constant* C *controls overfitting*

A built-in overfitting framework

$$\begin{array}{ll} \min & \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i \xi_i \\ \text{w.r.t.} & \mathbf{w}, w_0, \xi_i \\ \text{s.t.} & y_i (\mathbf{w} \cdot \mathbf{x}_i + w_0) \geq 1 - \xi \\ & \xi_i \geq 0 \end{array}$$

- If C is 0, there is no penalty for soft errors, so the focus is on maximizing the margin, even if this means more mistakes
- If C is very large, the emphasis on the soft errors will cause decreasing the margin, if this helps to classify more examples correctly.
- Internal cross-validation is a good way to choose C appropriately

Lagrangian for the new problem

 Like before, we can write a Lagrangian for the problem and then use the dual formulation to find the optimal parameters:

$$L(\mathbf{w}, w_0, \alpha, \xi, \mu) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i$$

+
$$\sum_i \alpha_i \left(1 - \xi_i - y_i (\mathbf{w}_i \cdot \mathbf{x}_i + w_0)\right) + \sum_i \mu_i \xi_i$$

- All the previously described machinery can be used to solve this problem
- Note that in addition to α_i we have coefficients μ_i , which ensure that the errors are positive, but do not participate in the decision boundary

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} y_{i} y_{j} \alpha_{i} \alpha_{j} (\phi(\mathbf{x}_{i}) \cdot \phi(\mathbf{x}_{j}))$$

with constraints: $0 \le \alpha_i \le C$ and $\sum_i \alpha_i y_i = 0$

Soft margin optimization with kernels

- Replacing \mathbf{x}_i with $\phi(\mathbf{x}_i)$, the optimization problem to find \mathbf{w} and w_0 becomes:
 - $\begin{array}{ll} \min & \|\mathbf{w}\|^2 + C \sum_i \zeta_i \\ \text{w.r.t.} & \mathbf{w}, w_0, \zeta_i \\ \text{s.t.} & \mathbf{y}_i (\mathbf{w} \cdot \phi(\mathbf{x}_i) + w_0) \ge (1 \zeta_i) \\ & \zeta_i \ge 0 \end{array}$
- Dual form and solution have similar forms to what we described last time, but in terms of kernels

Getting SVMs to work in practice

• Two important choices:

- Kernel (and kernel parameters)
- Regularization parameter C
- The parameters may interact!

E.g. for Gaussian kernel, the larger the width of the kernel, the more biased the classifier, so low C is better

- Together, these control overfitting: always do an internal parameter search, using a validation set!
- Overfitting symptoms:
 - Low margin
 - Large fraction of instances are support vectors

Solving the quadratic optimization problem

- Many approaches exist
- Because we have constraints, gradient descent does not apply directly (the optimum might be outside of the feasible region)
- Platt's algorithm is the fastest current approach, based on coordinate ascent

Coordinate ascent

- Suppose you want to find the maximum of some function $F(\alpha_1, \dots, \alpha_n)$
- Coordinate ascent optimizes the function by repeatedly picking an α_i and optimizing it, while all other parameters are fixed
- There are different ways of looping through the parameters:
 - Round-robin
 - Repeatedly pick a parameter at random
 - Choose next the variable expected to make the largest improvement

Our optimization problem (dual form)

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} y_{i} y_{j} \alpha_{i} \alpha_{j} (\phi(\mathbf{x}_{i}) \cdot \phi(\mathbf{x}_{j}))$$

is: $0 \le \alpha_{i} \le C$ and $\sum_{i} \alpha_{i} u_{i} = 0$

with constraints: $0 \le \alpha_i \le C$ and $\sum_i \alpha_i y_i = 0$

- Suppose we want to optimize for α_1 while $\alpha_2, \ldots \alpha_n$ are fixed
- We cannot do it because α_1 will be completely determined by the last constraint: $\alpha_1 = -y_1 \sum_{i=2}^m \alpha_i y_i$
- Instead, we have to optimize *pairs of parameters* α_i, α_j together

Sequential minimal optimization (SMO)

- Suppose that we want to optimize α_1 and α_2 together, while all other parameters are fixed.
- We know that $y_1\alpha_1 + y_2\alpha_2 = -\sum_{i=1}^m y_i\alpha_i = \xi$, where ξ is a constant
- So $\alpha_1 = y_1(\xi y_2\alpha_2)$ (because y_1 is either +1 or -1 so $y_1^2 = 1$)
- This defines a line, and any pair α_1,α_2 which is a solution has to be on the line
- We also know that $0 \le \alpha_1 \le C$ and $0 \le \alpha_2 \le C$, so the solution has to be on the line segment inside the rectangle below

Sequential minimal optimization (SMO)

- By plugging α_1 back in the optimization criterion, we obtain a quadratic function of α_2 , whose optimum we can find exactly
- If the optimum is inside the rectangle, we take it.
- If not, we pick the closest intersection point of the line and the rectangle
- This procedure is very fast because all these are simple computations.

Multi-class classification

- one-vs-one
- $\frac{n(n-1)}{2}$ classifiers
- choose the class chosen by most classifiers

- one-vs-all
- *n* classifiers
- choose the class with the largest margin

Complexity

- Quadratic programming is expensive in the number of training examples
- Platt's SMO algorithm is quite fast though, and other fancy optimization approaches are available
- Best packages can handle 50,000+ instances, but not more than 100,000
- On the other hand, number of attributes can be very high (strength compared to neural nets)
- Evaluating a SVM is *slow if there are a lot of support vectors*.
- Dictionary methods attempt to select a subset of the data on which to train.