CS 472/572: Machine Learning

Support Vector Machines (SVMs)

Based on slides by Daniel Lowd, Doina Precup and others
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Binary Classification Revisited

e Consider a linearly separable binary classification data set {x;,y;}™™,.
e There is an infinite number of hyperplanes that separate the classes:

e Which plane is best?

e Relatedly, for a given plane, for which points should we be most confident
in the classification?
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The margin, and linear SVMs

e For a given separating hyperplane, the margin is two times the (Euclidean)
distance from the hyperplane to the nearest training example.

e It is the width of the “strip” around the decision boundary containing no
training examples.

e A linear SVM is a perceptron for which we choose w, wg so that margin
IS maximized
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Distance to the decision boundary

e Suppose we have a decision boundary that separates the data.

>

e Let ~; be the distance from instance x; to the decision boundary.

e How can we write ; in term of x;, y;, w, wq?
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Distance to the decision boundary

e The vector w is normal to the decision boundary. Thus, ﬁ Is the unit
normal.

e The vector from the B to A is 'yz-”‘f"T”.
e B, the point on the decision boundary nearest x;, is x; — ’7i|h;wv_u'
e As B is on the decision boundary,

W

w X; — ’)’zm + wo = 0

e Solving for ~; yields, for a positive example:

fy. = — X
Sl

[Iwli
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The margin

e The margin of the hyperplane is 2M, where M = min;y;

e The most direct statement of the problem of finding a maximum margin
separating hyperplane is thus

max min -y,
W,wq 1
) ( W Wo )
= maxminy; | —  X; + 7—F
wawo g [wll [wll

e This turns out to be inconvenient for optimization, however. . .
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Treating y; as the constraints

From the definition of margin, we have:

M < ;i =y; (l-xﬁ-ﬂ) Vi
[wl| [w|

This suggests:
maximize M

with respect to w,wg
subject to y; (”w” X,; + Tw ”) > M for all ¢

Problems:

— w appears nonlinearly in the constraints.
— This problem is underconstrained. If (w,wq, M) is an optimal solution,

then so is (8w, fwy, M) for any B > 0.
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Adding a constraint

Let's try adding the constraint that ||[w||M = 1.

This allows us to rewrite the objective function and constraints as:
min ||w]|
w.r.t. w,wo
s.t.  y(w-x;+wy) >1
This is really nice because the constraints are linear.

The objective function ||w]|| is still a bit awkward.
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Final formulation

e Let's maximize ||w/||? instead of ||w]|.
(Taking the square is a monotone transformation, as ||w|| is postive, so

this doesn’t change the optimal solution.)
e This gets us to:
min ||w]?
w.rt.  w,wg
s.t.  yi(w-x;+wy) >1
e This we can solve! How?

— It is a quadratic programming (QP) problem—a standard type of
optimization problem for which many efficient packages are available.
— Better yet, it's a convex (positive semidefinite) QP

https://en.wikipedia.org/wiki/Quadratic_programming
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Quadratic programming

The quadratic programming problem with n variables and m constraints can be formulated as follows.!'] Given:

« areal-valued, n-dimensional vector ¢,

« an n X n-dimensional real symmetric matrix Q,
e an m X n-dimensional real matrix 4, and

« an m-dimensional real vector b,

the objective of quadratic programming is to find an n-dimensional vector x, that will
minimize %xT Qx +e'x

subject to Ax < b,

[1]: https://en.wikipedia.org/wiki/Quadratic_programming
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Lagrange multipliers for inequality constraints

e Suppose we have the following optimization problem, called primal:

min f (w)

such that g;(w) < 0,i=1...k

e We define the generalized Lagrangian:

k
L(w,) = f(w) + Y aigi(w), (1

where «;, 2 = 1...k are the Lagrange multipliers.
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A different formalization

e Consider P(w) = maxq:q,>0 L(W, @)

e Observe that the follow is true

| f(w) if all constraints are satisfied
P(w) _{ +o00  otherwise

e Hence, instead of computing miny f(w) subject to the original
constraints, we can compute:

p* = minP(w) = min max L(w,«)
w w  a:a;>0
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Dual optimization problem

o Let d* = maxy:q,>0 miny L(w, a) (max and min are reversed)
e We can show that d* < p*.

— Let p* = L(wP, aP)

— Let d* = L(w?, a?)

— Then d* = L(w?, o) < L(wP, a?) < L(w?, aP) = p*.
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Dual optimization problem

e If f, g; are convex and the g; can all be satisfied simultaneously for some
w, then we have equality: d* = p* = L(w*, a*)

e Moreover w*, a* solve the primal and dual if and only if they satisfy the
following conditions (called Karush-Kunh-Tucker):

8?02_L(w*,a*) = 0 = Lol (2)
a;gi(w”) = 0,i=1...k (3)
gilw*) < 0, 1= L.k (4)

o =2 0,i=1...k ()
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Back to maximum margin perceptron

e We wanted to solve (rewritten slightly):
min  %||w]?
w.rt. w,wg
st. 1 —yz-(w-x,,;—l-'wo) <0
e The Lagrangian is:

1
L(w, wo,) = w2 + 3 au(1 = ya(w - x; + wp))

e The primal problem is: miny ,,, max,.q,>0 L(W, wp, @)
e We will solve the dual problem: max,.q, >0 miny ., L(w, wo, )

e In this case, the optimal solutions coincide, because we have a quadratic
objective and linear constraints (both of which are convex).
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Solving the dual

e From KKT (2), the derivatives of L(w,wq,a) wrt w,wg should be 0
e The condition on the derivative wrt wy gives ) . o,;y; = 0

e The condition on the derivative wrt w gives:
W = Z QiYiXi
i

= Just like for the perceptron with zero initial weights, the optimal solution
for w is a linear combination of the x;, and likewise for wy.

e The output is

hw,’wo(x) — Sign (Z aiyi(xi ’ X) + wO)
=1

= Qutput depends on weighted dot product of input vector with training
examples
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Solving the dual

e By plugging these back into the expression for L, we get:
1
e ; YTy ; Yy o (Xi - X;)

with constraints: o; > 0 and ), a;y; =

O
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The support vectors

e Suppose we find optimal as (e.g., using a standard QP package)
e The a; will be > 0 only for the points for which 1 — y;(w - x; +wo) =0

e These are the points lying on the edge of the margin, and they are called
support vectors, because they define the decision boundary

e The output of the classifier for query point x is computed as:

sgn (Z ayi(X; - X) + wo)
i=1

Hence, the output is determined by computing the dot product of the
point with the support vectors!
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Non-linearly separable data
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e A linear boundary might be too simple to capture the class structure.
e One way of getting a nonlinear decision boundary in the input space is to

find a linear decision boundary in an expanded space

e Thus, x; is replaced by ¢(x;), where ¢ is called a feature mapping
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Non-linear SVMs: Feature Space

v
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Non-linear SVMs: Feature Space
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Margin optimization in feature space

e Replacing x; with ¢(x;), the optimization problem to find w and wyg
becomes:
min  [|wl|*
w.rt. w,w
st yi(w - é(x;) +wo) > 1
e Dual form:

max Y . oy — % Z:3=1 Yiy oo o(x;) - ¢(x;)
w.r.t. «;
s.t. 0<q
D ey iy =0
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Feature space solution

e The optimal weights, in the expanded feature space, are w =

2211 oy p(X;).

e Classification of an input x is given by:
how o (X) = sign (Z aiyip(x:) - p(x) + wo)
i=1

= Note that to solve the SVM optimization problem in dual form and to

make a prediction, we only ever need to compute dot-products of feature
vectors.
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Kernel functions

Whenever a learning algorithm (such as SVMs) can be written in terms
of dot-products, it can be generalized to kernels.

A kernel is any function K : R"™ x R"™ — R which corresponds to a dot
product for some feature mapping ¢:

K(x1,%x2) = ¢(x1) - ¢(x2) for some ¢.

Conversely, by choosing feature mapping ¢, we implicitly choose a kernel
function

Recall that ¢(x;) - ¢(x2) = cos Z(x1,x3) where £ denotes the angle
between the vectors, so a kernel function can be thought of as a notion
of similarity.

UNIVERSITY OF OREGON



CS 472/572: Machine Learning

The “kernel trick”

e If we work with the dual, we do not actually have to ever compute the
feature mapping ¢. We just have to compute the similarity K.

e That is, we can solve the dual Ior the o;:
m ™m
max ) . ;04— > Zi,j:l yiyjoio; K (xi, x;)

w.rt. o
s.t. 0<q
m
Zi:l o;y; =0

e The class of a new input x is computed as:

hw wo (X) = sign ((Z yiP(X:)) - p(x) + ’wo) = sign (Z oy K (x4, %) + ’wo)

e Often, K(-,-) can be evaluated in O(n) time—a big savings!
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Nonlinear SVMs: The Kernel Trick

= Anexample:
2-dimensional vectors x=[x; x;];
let K(u,v)=(1 + u'v)?,
Need to show that K(u,v) = ¢(u) To(v):
K(u,v)=(1 + u'v)?
=1+ uv?+2 uv, uv,+t uv,y?+2uv;, + 2u,v,

= [1 u12 \/2 Uu;u, u22 \/2u1 \/2u2]T [1 VIZ \/2 Vv, V22 \/Zvl \/2‘)2]
=) Te(v), where (x) = [1 x> V2 x;x, x,2 V2x; V2x,]

O h i% slidg is; gQurtesyof wmay fro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt
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Nonlinear SVMs: The Kernel Trick

= Examples of commonly-used kernel functions:
. _ I
o Linear kernel: K(Xl., Xj) =X; X,
: : _ r p
o Polynomial kernel: K(Xi, Xj) = (1 +X; Xj)

0 Gaussian (Radial-Basis Function (RBF) ) kernel:

=

Xi_xj

207"

K(Xiaxj) — eXp(_
o Sigmoid:

K(Xiaxj) = tanh(ﬂoXiTXj +/0)

= In general, functions that satisfy Mercer’s condition can be kernel
functions: Kernel matrix should be positive semidefinite.
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» Solutions:

1) Nonlinear classifiers
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Example: String kernel

e Very important for DNA matching, text classification, ...

e Example: in DNA matching, we use a sliding window of length k& over

the two strings that we want to compare

e The window is of a given size, and inside we can do various things:

— Count exact matches
— Weigh mismatches based on how bad they are
— Count certain markers, e.g. AGT

e The kernel is the sum of these similarities over the two sequences
e How do we prove this is a kernel?
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Regularization with SVMs

e Kernels are a powerful tool for allowing non-linear, complex functions

e But now the number of parameters can be as high as the number of
instances!

e With a very specific, non-linear kernel, each data point may be in its own
partition

e With linear and logistic regression, we used regularization to avoid
overfitting

e We need a method for allowing regularization with SVMs as well.
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Soft margin linear classifier

* For the data that is not
linearly separable (noisy data,
outliers, etc.)

* Slack variables & can be
added to allow mis-

)»

classification of difficult or & %

noisy data points ® denotes +1

\%..

O denotes -1

X1

»
»
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Soft margin classifiers

e Recall that in the linearly separable case, we compute the solution to the
following optimization problem:
min 4w
w.rt. w,wp
st.  y;(w-x;+wy) >1
e If we want to allow misclassifications, we can relax the constraints to:

yi(W - x; +wp) > 1 —&;

o If & € (0,1), the data point is within the margin
e If £, > 1, then the data point is misclassified
e We define the soft error as ). ¢&;

e We will have to change the criterion to reflect the soft errors

UNIVERSITY OF OREGON
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New problem formulation with soft errors

e Instead of:
min  4f/w?
w.rt. w,w
st. yi(w-x;+wy) >1
we want to solve:
min gw[*+CY, &
w.rt. w,wp,&;
st. yi(w-x;+wo) >1-§,& >0
e Note that soft errors include points that are misclassified, as well as
points within the margin
e There is a linear penalty for both categories

e The choice of the constant C' controls overfitting
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A built-in overfitting framework

1 2
min sllw|*+C32 &
w.rt. w,wg,é;
st. yi(w-x;+wy) >1-¢;
£ >0
e If C is 0, there is no penalty for soft errors, so the focus is on maximizing
the margin, even if this means more mistakes
o If C is very large, the emphasis on the soft errors will cause decreasing
the margin, if this helps to classify more examples correctly.

e Internal cross-validation is a good way to choose C' appropriately
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Lagrangian for the new problem

e Like before, we can write a Lagrangian for the problem and then use the
dual formulation to find the optimal parameters:

1
L(Waw07aa£7:u') — §||W||2+CZ£z

+ Zai (1 =& —yi(w; - x; +wp)) + Zﬂz‘fi

e All the previously described machinery can be used to solve this problem

e Note that in addition to «; we have coefficients p;, which ensure that
the errors are positive, but do not participate in the decision boundary

mc.?x Z o; — % Z yz'yjaz'aj(¢(xz') ' (b(xj))
i i,j

with constraints: 0 < o; < C and Zz a;y; =0
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Soft margin optimization with kernels

e Replacing x; with ¢(x;), the optimization problem to find w and wy
becomes:
min ||w|*+C>, ¢
w.r.t. w,w, Cz
st yi(W- (%) + wo) > (1—¢)
G=>0

e Dual form and solution have similar forms to what we described last
time, but in terms of kernels
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Getting SVMs to work in practice

e Two important choices:

— Kernel (and kernel parameters)
— Regularization parameter C

e The parameters may interact!

E.g. for Gaussian kernel, the larger the width of the kernel, the more
biased the classifier, so low C' is better

e Together, these control overfitting: always do an internal parameter
search, using a validation set!

e Overfitting symptoms:

— Low margin
— Large fraction of instances are support vectors

UNIVERSITY OF OREGON
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Solving the quadratic optimization problem

e Many approaches exist

e Because we have constraints, gradient descent does not apply directly
(the optimum might be outside of the feasible region)

e Platt’'s algorithm is the fastest current approach, based on coordinate
ascent
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Coordinate ascent

e Suppose you want to find the maximum of some function F(ay,...ay,)

e Coordinate ascent optimizes the function by repeatedly picking an «;
and optimizing it, while all other parameters are fixed

e There are different ways of looping through the parameters:

— Round-robin
— Repeatedly pick a parameter at random
— Choose next the variable expected to make the largest improvement

25—
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Our optimization problem (dual form)

1
max Y oy — 5 > viyjouas(9(xi) - 4(x;))
i i
with constraints: 0 < o; < C and ). a;y; = 0

e Suppose we want to optimize for oy while as, ..., are fixed

e We cannot do it because «; will be completely determined by the last
constraint: a1 = —y1 Y., 04Y;

e Instead, we have to optimize pairs of parameters o, o; together
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Sequential minimal optimization (SMO)

e Suppose that we want to optimize «; and as together, while all other
parameters are fixed.

e We know that y10q + yoas = — >0, yicy = &, where £ is a constant

e So a; = y1(€ — yaarp) (because y; is either +1 or —1 so y? = 1)

e This defines a line, and any pair a1, as which is a solution has to be on
the line

e We also know that 0 < oy < C and 0 < ap < C, so the solution has to
be on the line segment inside the rectangle below

A

C

Vo 2
H Aoy oyt

L

\J

oy
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Sequential minimal optimization (SMO)

e By plugging o back in the optimization criterion, we obtain a quadratic
function of asy, whose optimum we can find exactly

e If the optimum is inside the rectangle, we take it.
e If not, we pick the closest intersection point of the line and the rectangle

e This procedure is very fast because all these are simple computations.
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Multi-class classification

x2 & . O C2 %
An 950 s Es
1 » 7 030 = -
AA X X - i 7 xy
X X x, T
2 X 2| 2 00 C2
o S }
@
ot 08c y
- -
X, — " x, C3
T X O —
Class 1: /A - 2 ‘O(O ":x @@ =
Class 2: O X s
!D Erl.a
Class 3: X 0g0 R L
L .
E C3 © !
* oOne-vs-one
* one-vs-all (1)
* nclassifiers . Tclassn‘lers
* choose the class with the largest margin * choose the class chosen by most classifiers

O UNIVERSITY OF OREGON



CS 472/572: Machine Learning

Complexity

e Quadratic programming is expensive in the number of training examples

e Platt's SMO algorithm is quite fast though, and other fancy optimization
approaches are available

e Best packages can handle 50, 000+ instances, but not more than 100, 000

e On the other hand, number of attributes can be very high (strength
compared to neural nets)

e Evaluating a SVM is slow if there are a lot of support vectors.

e Dictionary methods attempt to select a subset of the data on which to
train.
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