Support Vector Machines (SVMs)

Based on slides by Daniel Lowd, Doina Precup and others

Binary Classification Revisited

- Consider a linearly separable binary classification data set $\left\{\mathbf{x}_{i}, y_{i}\right\}_{i=1}^{m}$.
- There is an infinite number of hyperplanes that separate the classes:

- Which plane is best?
- Relatedly, for a given plane, for which points should we be most confident in the classification?

The margin, and linear SVMs

- For a given separating hyperplane, the margin is two times the (Euclidean) distance from the hyperplane to the nearest training example.

- It is the width of the "strip" around the decision boundary containing no training examples.
- A linear SVM is a perceptron for which we choose \mathbf{w}, w_{0} so that margin is maximized

Distance to the decision boundary

- Suppose we have a decision boundary that separates the data.

- Let γ_{i} be the distance from instance \mathbf{x}_{i} to the decision boundary.
- How can we write γ_{i} in term of $\mathbf{x}_{i}, y_{i}, \mathbf{w}, w_{0}$?

Distance to the decision boundary

- The vector \mathbf{w} is normal to the decision boundary. Thus, $\frac{\mathbf{w}}{\|\mathbf{w}\|}$ is the unit normal.
- The vector from the \mathbf{B} to \mathbf{A} is $\gamma_{i} \frac{\mathrm{w}}{\|\mathrm{w}\|}$.
- B, the point on the decision boundary nearest \mathbf{x}_{i}, is $\mathbf{x}_{i}-\gamma_{i} \frac{\mathbf{w}}{\|\mathbf{w}\|}$.
- As B is on the decision boundary,

$$
\mathbf{w} \cdot\left(\mathbf{x}_{i}-\gamma_{i} \frac{\mathbf{w}}{\|\mathbf{w}\|}\right)+w_{0}=0
$$

- Solving for γ_{i} yields, for a positive example:

$$
\gamma_{i}=\frac{\mathbf{w}}{\|\mathbf{w}\|} \cdot \mathbf{x}_{i}+\frac{w_{0}}{\|\mathbf{w}\|}
$$

The margin

- The margin of the hyperplane is $2 M$, where $M=\min _{i} \gamma_{i}$
- The most direct statement of the problem of finding a maximum margin separating hyperplane is thus

$$
\begin{aligned}
& \max _{\mathbf{w}, w_{0}} \min _{i} \gamma_{i} \\
\equiv & \max _{\mathbf{w}, w_{0}} \min _{i} y_{i}\left(\frac{\mathbf{w}}{\|\mathbf{w}\|} \cdot \mathbf{x}_{i}+\frac{w_{0}}{\|\mathbf{w}\|}\right)
\end{aligned}
$$

- This turns out to be inconvenient for optimization, however. . .

Treating γ_{i} as the constraints

- From the definition of margin, we have:

$$
M \leq \gamma_{i}=y_{i}\left(\frac{\mathbf{w}}{\|\mathbf{w}\|} \cdot \mathbf{x}_{\mathbf{i}}+\frac{w_{0}}{\|\mathbf{w}\|}\right) \quad \forall i
$$

- This suggests:

$$
\begin{aligned}
\text { maximize } & M \\
\text { with respect to } & \mathbf{w}, w_{0} \\
\text { subject to } & \mathbf{y}_{i}\left(\frac{\mathbf{w}}{\|\mathbf{w}\|} \cdot \mathbf{x}_{i}+\frac{w_{0}}{\|\mathbf{w}\|}\right) \geq M \text { for all } i
\end{aligned}
$$

- Problems:
- \mathbf{w} appears nonlinearly in the constraints.
- This problem is underconstrained. If $\left(\mathbf{w}, w_{0}, M\right)$ is an optimal solution, then so is $\left(\beta \mathbf{w}, \beta w_{0}, M\right)$ for any $\beta>0$.

Adding a constraint

- Let's try adding the constraint that $\|\mathbf{w}\| M=1$.
- This allows us to rewrite the objective function and constraints as:

$$
\begin{aligned}
\min & \|\mathbf{w}\| \\
\text { w.r.t. } & \mathbf{w}, w_{0} \\
\text { s.t. } & y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right) \geq 1
\end{aligned}
$$

- This is really nice because the constraints are linear.
- The objective function $\|\mathbf{w}\|$ is still a bit awkward.

Final formulation

- Let's maximize $\|\mathbf{w}\|^{2}$ instead of $\|\mathbf{w}\|$.
(Taking the square is a monotone transformation, as $\|\mathbf{w}\|$ is postive, so this doesn't change the optimal solution.)
- This gets us to:

$$
\begin{aligned}
\min & \|\mathbf{w}\|^{2} \\
\text { w.r.t. } & \mathbf{w}, w_{0} \\
\text { s.t. } & y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right) \geq 1
\end{aligned}
$$

- This we can solve! How?
- It is a quadratic programming (QP) problem—a standard type of optimization problem for which many efficient packages are available.
- Better yet, it's a convex (positive semidefinite) QP
https://en.wikipedia.org/wiki/Quadratic_programming

ouadratic progrannén

The quadratic programming problem with n variables and m constraints can be formulated as follows. ${ }^{[1]}$ Given:

- a real-valued, n-dimensional vector \mathbf{c},
- an $n \times n$-dimensional real symmetric matrix Q,
- an $m \times n$-dimensional real matrix A, and
- an m-dimensional real vector \mathbf{b},
the objective of quadratic programming is to find an n-dimensional vector \mathbf{x}, that will

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \mathbf{x}^{\mathrm{T}} Q \mathbf{x}+\mathbf{c}^{\mathrm{T}} \mathbf{x} \\
\text { subject to } & A \mathbf{x} \preceq \mathbf{b}
\end{array}
$$

Example

Lagrange multipliers for inequality constraints

- Suppose we have the following optimization problem, called primal:

$$
\begin{aligned}
& \quad \min _{\mathbf{w}} f(\mathbf{w}) \\
& \text { such that } g_{i}(\mathbf{w}) \leq 0, i=1 \ldots k
\end{aligned}
$$

- We define the generalized Lagrangian:

$$
\begin{equation*}
L(\mathbf{w}, \alpha)=f(\mathbf{w})+\sum_{i=1}^{k} \alpha_{i} g_{i}(\mathbf{w}) \tag{1}
\end{equation*}
$$

where $\alpha_{i}, i=1 \ldots k$ are the Lagrange multipliers.

A different formatization

- Consider $\mathcal{P}(\mathbf{w})=\max _{\alpha: \alpha_{i} \geq 0} L(\mathbf{w}, \alpha)$
- Observe that the follow is true

$$
\mathcal{P}(\mathbf{w})= \begin{cases}f(\mathbf{w}) & \text { if all constraints are satisfied } \\ +\infty & \text { otherwise }\end{cases}
$$

- Hence, instead of computing $\min _{\mathbf{w}} f(\mathbf{w})$ subject to the original constraints, we can compute:

$$
p^{*}=\min _{\mathbf{w}} \mathcal{P}(\mathbf{w})=\min _{\mathbf{w}} \max _{\alpha: \alpha_{i} \geq 0} L(\mathbf{w}, \alpha)
$$

Dual optimization problem

- Let $d^{*}=\max _{\alpha: \alpha_{i} \geq 0} \min _{\mathbf{w}} L(\mathbf{w}, \alpha)$ (max and min are reversed)
- We can show that $d^{*} \leq p^{*}$.
- Let $p^{*}=L\left(w^{p}, \alpha^{p}\right)$
- Let $d^{*}=L\left(w^{d}, \alpha^{d}\right)$
- Then $d^{*}=L\left(w^{d}, \alpha^{d}\right) \leq L\left(w^{p}, \alpha^{d}\right) \leq L\left(w^{p}, \alpha^{p}\right)=p^{*}$.

Dual optimization problem

- If f, g_{i} are convex and the g_{i} can all be satisfied simultaneously for some \mathbf{w}, then we have equality: $d^{*}=p^{*}=L\left(\mathbf{w}^{*}, \alpha^{*}\right)$
- Moreover $\mathbf{w}^{*}, \alpha^{*}$ solve the primal and dual if and only if they satisfy the following conditions (called Karush-Kunh-Tucker):

$$
\begin{align*}
\frac{\partial}{\partial w_{i}} L\left(\mathbf{w}^{*}, \alpha^{*}\right) & =0, i=1 \ldots n \tag{2}\\
\alpha_{i}^{*} g_{i}\left(\mathbf{w}^{*}\right) & =0, i=1 \ldots k \tag{3}\\
g_{i}\left(\mathbf{w}^{*}\right) & \leq 0, i=1 \ldots k \tag{4}\\
\alpha_{i}^{*} & \geq 0, i=1 \ldots k \tag{5}
\end{align*}
$$

Back to maximum margin perceptron

- We wanted to solve (rewritten slightly): $\min \quad \frac{1}{2}\|\mathbf{w}\|^{2}$
w.r.t. $\quad \mathbf{w}, w_{0}$
s.t. $\quad 1-y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right) \leq 0$
- The Lagrangian is:

$$
L\left(\mathbf{w}, w_{0}, \alpha\right)=\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i} \alpha_{i}\left(1-y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right)\right)
$$

- The primal problem is: $\min _{\mathbf{w}, w_{0}} \max _{\alpha: \alpha_{i} \geq 0} L\left(\mathbf{w}, w_{0}, \alpha\right)$
- We will solve the dual problem: $\max _{\alpha: \alpha_{i} \geq 0} \min _{\mathbf{w}, w_{0}} L\left(\mathbf{w}, w_{0}, \alpha\right)$
- In this case, the optimal solutions coincide, because we have a quadratic objective and linear constraints (both of which are convex).

Solving the dual

- From KKT (2), the derivatives of $L\left(\mathbf{w}, w_{0}, \alpha\right)$ wrt \mathbf{w}, w_{0} should be 0
- The condition on the derivative wrt w_{0} gives $\sum_{i} \alpha_{i} y_{i}=0$
- The condition on the derivative wrt \mathbf{w} gives:

$$
\mathbf{w}=\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{\mathbf{i}}
$$

\Rightarrow Just like for the perceptron with zero initial weights, the optimal solution for \mathbf{w} is a linear combination of the \mathbf{x}_{i}, and likewise for w_{0}.

- The output is

$$
h_{\mathbf{w}, w_{0}}(\mathbf{x})=\operatorname{sign}\left(\sum_{i=1}^{m} \alpha_{i} y_{i}\left(\mathbf{x}_{i} \cdot \mathbf{x}\right)+w_{0}\right)
$$

\Rightarrow Output depends on weighted dot product of input vector with training examples

Solving the dual

- By plugging these back into the expression for L, we get:

$$
\max _{\alpha} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} y_{i} y_{j} \alpha_{i} \alpha_{j}\left(\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right)
$$

with constraints: $\alpha_{i} \geq 0$ and $\sum_{i} \alpha_{i} y_{i}=0$

The support vectors

- Suppose we find optimal α s (e.g., using a standard QP package)
- The α_{i} will be >0 only for the points for which $1-y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right)=0$
- These are the points lying on the edge of the margin, and they are called support vectors, because they define the decision boundary
- The output of the classifier for query point \mathbf{x} is computed as:

$$
\operatorname{sgn}\left(\sum_{i=1}^{m} \alpha_{i} y_{i}\left(\mathbf{x}_{i} \cdot \mathbf{x}\right)+w_{0}\right)
$$

Hence, the output is determined by computing the dot product of the point with the support vectors!

Example

Support vectors are in bold

Non-linearly separable data

- A linear boundary might be too simple to capture the class structure.
- One way of getting a nonlinear decision boundary in the input space is to find a linear decision boundary in an expanded space
- Thus, \mathbf{x}_{i} is replaced by $\phi\left(\mathbf{x}_{i}\right)$, where ϕ is called a feature mapping

Non-linear SVMs: Feature Space

Non-linear SVMs: Feature Space

Margin optimization in feature space

- Replacing \mathbf{x}_{i} with $\phi\left(\mathbf{x}_{i}\right)$, the optimization problem to find \mathbf{w} and w_{0} becomes:

$$
\begin{aligned}
\min & \|\mathbf{w}\|^{2} \\
\mathbf{w . r . t .} & \mathbf{w}, w_{0} \\
\mathbf{s . t .} & \mathbf{y}_{i}\left(\mathbf{w} \cdot \phi\left(\mathbf{x}_{i}\right)+w_{0}\right) \geq 1
\end{aligned}
$$

- Dual form:

$$
\begin{aligned}
\max & \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \mathbf{y}_{i} \mathbf{y}_{j} \alpha_{i} \alpha_{j} \phi\left(\mathbf{x}_{i}\right) \cdot \phi\left(\mathbf{x}_{j}\right) \\
\text { w.r.t. } & \alpha_{i} \\
\text { s.t. } & 0 \leq \alpha_{i} \\
& \sum_{i=1}^{m} \alpha_{i} \mathbf{y}_{i}=0
\end{aligned}
$$

Feature space solution

- The optimal weights, in the expanded feature space, are $\mathbf{w}=$ $\sum_{i=1}^{m} \alpha_{i} \mathbf{y}_{i} \phi\left(\mathbf{x}_{i}\right)$.
- Classification of an input \mathbf{x} is given by:

$$
h_{\mathbf{w}, w_{0}}(\mathbf{x})=\operatorname{sign}\left(\sum_{i=1}^{m} \alpha_{i} \mathbf{y}_{i} \phi\left(\mathbf{x}_{i}\right) \cdot \phi(\mathbf{x})+w_{0}\right)
$$

\Rightarrow Note that to solve the SVM optimization problem in dual form and to make a prediction, we only ever need to compute dot-products of feature vectors.

Kernel functions

- Whenever a learning algorithm (such as SVMs) can be written in terms of dot-products, it can be generalized to kernels.
- A kernel is any function $K: \mathbb{R}^{n} \times \mathbb{R}^{n} \mapsto \mathbb{R}$ which corresponds to a dot product for some feature mapping ϕ :

$$
K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\phi\left(\mathbf{x}_{1}\right) \cdot \phi\left(\mathbf{x}_{2}\right) \text { for some } \phi .
$$

- Conversely, by choosing feature mapping ϕ, we implicitly choose a kernel function
- Recall that $\phi\left(\mathbf{x}_{1}\right) \cdot \phi\left(\mathbf{x}_{2}\right)=\cos \angle\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ where \angle denotes the angle between the vectors, so a kernel function can be thought of as a notion of similarity.

The "kernel trick"

- If we work with the dual, we do not actually have to ever compute the feature mapping ϕ. We just have to compute the similarity K.
- That is, we can solve the dual for the α_{i} :

$$
\begin{aligned}
\max & \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \mathbf{y}_{i} \mathbf{y}_{j} \alpha_{i} \alpha_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
\mathrm{w.r.t.} & \alpha_{i} \\
\mathrm{s.t.} & 0 \leq \alpha_{i} \\
& \sum_{i=1}^{m} \alpha_{i} \mathbf{y}_{i}=0
\end{aligned}
$$

- The class of a new input \mathbf{x} is computed as:
$h_{\mathbf{w}, w_{0}}(\mathbf{x})=\operatorname{sign}\left(\left(\sum_{i=1}^{m} \alpha_{i} y_{i} \phi\left(\mathbf{x}_{i}\right)\right) \cdot \phi(\mathbf{x})+w_{0}\right)=\operatorname{sign}\left(\sum_{i=1}^{m} \alpha_{i} y_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)+w_{0}\right)$
- Often, $K(\cdot, \cdot)$ can be evaluated in $O(n)$ time-a big savings!

Nonlinear SVMs: The Kernel Trick

- An example:

2-dimensional vectors $\mathrm{x}=\left[\begin{array}{ll}\boldsymbol{x}_{1} & \boldsymbol{x}_{2}\end{array}\right]$;
let $K(\mathbf{u}, \mathbf{v})=\left(\mathbf{1}+\mathbf{u}^{\mathbf{T}} \mathbf{v}\right)^{\mathbf{2}}$,

Need to show that $K(\mathbf{u}, \mathbf{v})=\varphi(\mathbf{u})^{\mathbf{T}} \varphi(\mathbf{v})$:

$$
\begin{aligned}
& K(\mathbf{u}, \mathbf{v})=\left(1+\mathbf{u}^{\mathrm{T}} \mathbf{v}^{2},\right. \\
& =1+u_{1}^{2} v_{1}^{2}+2 u_{1} v_{1} u_{2} v_{2}+u_{2}^{2} v_{2}^{2}+2 u_{1} v_{1}+2 u_{2} v_{2} \\
& =\left[\begin{array}{llllll}
1 & u_{1}^{2} & \sqrt{ } 2 & u_{1} u_{2} & u_{2}^{2} & \sqrt{ } 2 u_{1} \sqrt{ } 2 u_{2}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{llll}
1 & v_{1}^{2} & \sqrt{ } 2 & v_{1} v_{2} \\
v_{2}^{2} & \sqrt{ } 2 v_{1} \sqrt{ } 2 v_{2}
\end{array}\right] \\
& =\varphi(\mathbf{u})^{\mathrm{T}} \varphi(\mathrm{v}) \text {, where } \varphi(\mathrm{x})=\left[\begin{array}{llllll}
1 & x_{1}{ }^{2} \sqrt{ } 2 & x_{1} x_{2} & x_{2}{ }^{2} \sqrt{ } 2 x_{1} \sqrt{ } 2 x_{2}
\end{array}\right]
\end{aligned}
$$

Nonlinear SVMs: The Kernel Trick

- Examples of commonly-used kernel functions:
- Linear kernel: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{x}_{i}^{T} \mathbf{x}_{j}$
- Polynomial kernel: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(1+\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)^{p}$
- Gaussian (Radial-Basis Function (RBF)) kernel:

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\exp \left(-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right)
$$

- Sigmoid:

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\tanh \left(\beta_{0} \mathbf{x}_{i}^{T} \mathbf{x}_{j}+\beta_{1}\right)
$$

- In general, functions that satisfy Mercer's condition can be kernel functions: Kernel matrix should be positive semidefinite.

Example

- Solutions:

1) Nonlinear classifiers

2) Increase dimensionality of dataset and add a non-linear mapping Φ

$$
[x] \quad \rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x \\
x^{2}
\end{array}\right]
$$

Example: String kernel

- Very important for DNA matching, text classification, ...
- Example: in DNA matching, we use a sliding window of length k over the two strings that we want to compare
- The window is of a given size, and inside we can do various things:
- Count exact matches
- Weigh mismatches based on how bad they are
- Count certain markers, e.g. AGT
- The kernel is the sum of these similarities over the two sequences
- How do we prove this is a kernel?

Regularization with SVMs

- Kernels are a powerful tool for allowing non-linear, complex functions
- But now the number of parameters can be as high as the number of instances!
- With a very specific, non-linear kernel, each data point may be in its own partition
- With linear and logistic regression, we used regularization to avoid overfitting
- We need a method for allowing regularization with SVMs as well.

Soft margin linear classifier

- For the data that is not
linearly separable (noisy data,
- Slack variables ξ_{i} can be added to allow misclassification of difficult or noisy data points

Soft maroinciassifiers

- Recall that in the linearly separable case, we compute the solution to the following optimization problem:

$$
\begin{aligned}
\min & \frac{1}{2}\|\mathbf{w}\|^{2} \\
\text { w.r.t. } & \mathbf{w}, w_{0} \\
\text { s.t. } & y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right) \geq 1
\end{aligned}
$$

- If we want to allow misclassifications, we can relax the constraints to:

$$
y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right) \geq 1-\xi_{i}
$$

- If $\xi_{i} \in(0,1)$, the data point is within the margin
- If $\xi_{i} \geq 1$, then the data point is misclassified
- We define the soft error as $\sum_{i} \xi_{i}$
- We will have to change the criterion to reflect the soft errors

New problem formulation with soft errors

- Instead of:

$$
\begin{aligned}
\min & \frac{1}{2}\|\mathbf{w}\|^{2} \\
\text { w.r.t. } & \mathbf{w}, w_{0} \\
\text { s.t. } & y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right) \geq 1
\end{aligned}
$$

we want to solve:

$$
\begin{aligned}
\min & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i} \xi_{i} \\
\mathbf{w . r . t .} & \mathbf{w}, w_{0}, \xi_{i} \\
\mathrm{s.t.} & y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right) \geq 1-\xi_{i}, \xi_{i} \geq 0
\end{aligned}
$$

- Note that soft errors include points that are misclassified, as well as points within the margin
- There is a linear penalty for both categories
- The choice of the constant C controls overfitting

A built-in overfitting framework

$$
\begin{array}{rl}
\min & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i} \xi_{i} \\
\mathbf{w . r . t . ~} & \mathbf{w}, w_{0}, \xi_{i} \\
\text { s.t. } & y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+w_{0}\right) \geq 1-\xi_{i} \\
& \xi_{i} \geq 0
\end{array}
$$

- If C is 0 , there is no penalty for soft errors, so the focus is on maximizing the margin, even if this means more mistakes
- If C is very large, the emphasis on the soft errors will cause decreasing the margin, if this helps to classify more examples correctly.
- Internal cross-validation is a good way to choose C appropriately

Lagrangian for the new problem

- Like before, we can write a Lagrangian for the problem and then use the dual formulation to find the optimal parameters:

$$
\begin{aligned}
L\left(\mathbf{w}, w_{0}, \alpha, \xi, \mu\right) & =\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i} \xi_{i} \\
& +\sum_{i} \alpha_{i}\left(1-\xi_{i}-y_{i}\left(\mathbf{w}_{i} \cdot \mathbf{x}_{i}+w_{0}\right)\right)+\sum_{i} \mu_{i} \xi_{i}
\end{aligned}
$$

- All the previously described machinery can be used to solve this problem
- Note that in addition to α_{i} we have coefficients μ_{i}, which ensure that the errors are positive, but do not participate in the decision boundary

$$
\max _{\alpha} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} y_{i} y_{j} \alpha_{i} \alpha_{j}\left(\phi\left(\mathbf{x}_{i}\right) \cdot \phi\left(\mathbf{x}_{j}\right)\right)
$$

with constraints: $0 \leq \alpha_{i} \leq C$ and $\sum_{i} \alpha_{i} y_{i}=0$

Soft margin optimization with kernels

- Replacing \mathbf{x}_{i} with $\phi\left(\mathbf{x}_{i}\right)$, the optimization problem to find \mathbf{w} and w_{0} becomes:
$\min \quad\|\mathbf{w}\|^{2}+C \sum_{i} \zeta_{i}$
w.r.t. $\quad \mathbf{w}, w_{0}, \zeta_{i}$
s.t. $\quad \mathbf{y}_{i}\left(\mathbf{w} \cdot \phi\left(\mathbf{x}_{i}\right)+w_{0}\right) \geq\left(1-\zeta_{i}\right)$
$\zeta_{i} \geq 0$
- Dual form and solution have similar forms to what we described last time, but in terms of kernels

Getting SVMs to work in practice

- Two important choices:
- Kernel (and kernel parameters)
- Regularization parameter C
- The parameters may interact!
E.g. for Gaussian kernel, the larger the width of the kernel, the more biased the classifier, so low C is better
- Together, these control overfitting: always do an internal parameter search, using a validation set!
- Overfitting symptoms:
- Low margin
- Large fraction of instances are support vectors

Solving the quadratic optimization problem

- Many approaches exist
- Because we have constraints, gradient descent does not apply directly (the optimum might be outside of the feasible region)
- Platt's algorithm is the fastest current approach, based on coordinate ascent

Coordinate ascent

- Suppose you want to find the maximum of some function $F\left(\alpha_{1}, \ldots \alpha_{n}\right)$
- Coordinate ascent optimizes the function by repeatedly picking an α_{i} and optimizing it, while all other parameters are fixed
- There are different ways of looping through the parameters:
- Round-robin
- Repeatedly pick a parameter at random
- Choose next the variable expected to make the largest improvement

Our optimization problem (dual form)

$$
\max _{\alpha} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} y_{i} y_{j} \alpha_{i} \alpha_{j}\left(\phi\left(\mathbf{x}_{i}\right) \cdot \phi\left(\mathbf{x}_{j}\right)\right)
$$

with constraints: $0 \leq \alpha_{i} \leq C$ and $\sum_{i} \alpha_{i} y_{i}=0$

- Suppose we want to optimize for α_{1} while $\alpha_{2}, \ldots \alpha_{n}$ are fixed
- We cannot do it because α_{1} will be completely determined by the last constraint: $\alpha_{1}=-y_{1} \sum_{i=2}^{m} \alpha_{i} y_{i}$
- Instead, we have to optimize pairs of parameters α_{i}, α_{j} together

Sequential minimal optimization (SMO)

- Suppose that we want to optimize α_{1} and α_{2} together, while all other parameters are fixed.
- We know that $y_{1} \alpha_{1}+y_{2} \alpha_{2}=-\sum_{i=1}^{m} y_{i} \alpha_{i}=\xi$, where ξ is a constant
- So $\alpha_{1}=y_{1}\left(\xi-y_{2} \alpha_{2}\right)$ (because y_{1} is either +1 or -1 so $y_{1}^{2}=1$)
- This defines a line, and any pair α_{1}, α_{2} which is a solution has to be on the line
- We also know that $0 \leq \alpha_{1} \leq C$ and $0 \leq \alpha_{2} \leq C$, so the solution has to be on the line segment inside the rectangle below

Sequential minimal optimization (SMO)

- By plugging α_{1} back in the optimization criterion, we obtain a quadratic function of α_{2}, whose optimum we can find exactly
- If the optimum is inside the rectangle, we take it.
- If not, we pick the closest intersection point of the line and the rectangle
- This procedure is very fast because all these are simple computations.

Multi-class classification

- one-vs-one
- $\frac{n(n-1)}{2}$ classifiers
- choose the class chosen by most classifiers

Complexity

- Quadratic programming is expensive in the number of training examples
- Platt's SMO algorithm is quite fast though, and other fancy optimization approaches are available
- Best packages can handle $50,000+$ instances, but not more than 100,000
- On the other hand, number of attributes can be very high (strength compared to neural nets)
- Evaluating a SVM is slow if there are a lot of support vectors.
- Dictionary methods attempt to select a subset of the data on which to train.

