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Algorithm 1 AveragedPerceptronTrain(D, MaxIter)

1: function AveragedPerceptronTrain(D, MaxIter)
2: w ← (0, 0, . . . , 0), b← 0
3: u← (0, 0, . . . , 0), β ← 0
4: c← 1
5: for iter ← 1 to MaxIter do
6: for (x, y) ∈ D do
7: if y(wx+ b) ≤ 0 then
8: w ← w + yx
9: b← b+ y
10: u← u+ ycx
11: β ← β + yc
12: end if
13: c← c+ 1
14: end for
15: end for
16: return w − 1

c
u, b− 1

c
β

17: end function

Remember our learning procedure for averaged perceptron (shown in Algorithm 1).
Note that in this procedure, our scan over the training data with different epochs naturally

defines a sequence of the training data examples. We will call it the data sequence and denote
it as T = (x1, y1), (x2, y2), . . . , (xN , yN) be this data sequence for simplicity. Here N is the
number of the examples in the data sequence and basically N = |D| ×MaxIter (|D| is the
number of examples in our training data D).

Also, remember the prediction rule for averaged perceptron:

ŷ = sign

(
(

K∑
k=1

c(k)w(k)) · x̂+ (
K∑
k=1

c(k)b(k))

)
In averaged perceptron, we compute a weighted sum S of the weight vectors w(k) that

we encounter during the our scan over the data sequence T (we only talk about the weight
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vectors here, but the argument extent naturally to the bias). The weight for each weight
vector w(k) in the weighted sum S is based on the survival time c(k) of that weight vector
in the data sequence (i.e., ck is the ratio (over the entire sequence T ) of the examples
encountered right after wk is produced and before wk is replaced by wk+1 – the examples
correctly predicted by w(k)):

S =
K∑
k=1

c(k)w(k) (1)

The goal of this note is to show that the Algorithm 1 is actually computing S (i.e., the
returned value of w − 1

c
u is equal to S).

Proof Sketch:

First, the K variable in ŷ and S implies that we have K weight vectors along the scan
over the data sequence. Note that based on the training procedure, we will only produce
a new weight vector at an example in the sequence when the current weight vector cannot
correctly classify that example. For convenience, let i1, . . . , iK be the indexes of the examples
in the data sequence for which we need to compute a new vector weight. Basically, we have
i1 < i2 < . . . < iK ≤ N and the weight vector produced at the example indexed at ik (i.e., the
example (xik , yik)) is w(k) (due to the misclassification of wk−1 for xik) (for all 1 ≤ k ≤ K).
Also, let i0 = 0, iK+1 = N and w0 = 0 for convenience.

With these notations, the survival time c(k) for w(k) can be computed by (i.e., the portions
of examples between w(k) and w(k+1) over the entire sequence T ):

c(k) =
ik+1 − ik

N
∀1 ≤ k ≤ K (2)

Also, based on the update rule of the training procedure, we can write w(k) as:

w(k) = w(k−1) + yikxik ∀1 ≤ k ≤ K (3)

By extending this equation, we have:

w(k) = w(k−1) + yikxik = w(k−2) + yik−1
xik−1

+ yikxik = . . . = w(0) + yi1xi1 + . . .+ yikxik (4)

In other words, we have (w(0) = 0):

w(k) =
k∑

j=1

yijxij ∀1 ≤ k ≤ K (5)

Now, plugging Equations 2 and 5 to Equation 1, we obtain:

S =
K∑
k=1

ik+1 − ik
N

k∑
j=1

yijxij (6)

Among the terms over k of S (i.e., ik+1−ik
N

∑k−1
j=1 yijxij), we note that yijxij only appears

in the terms where k ≥ j. Also, there are K possible terms of the type yijxij with j ranging
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from 1 to K in S. Consequently, by grouping the terms of the yijxij together, we can rewrite
S as follow:

S =
K∑
j=1

yijxij

K∑
k=j

ik+1 − ik
N

=
1

N

K∑
j=1

yijxij

K∑
k=j

(ik+1 − ik) (7)

Due to the cancellation, we have:
∑K

k=j(ik+1 − ik) = iK+1 − ij = N − ij, leading to:

S =
1

N

K∑
j=1

yijxij(N − ij) =
K∑
j=1

yijxij −
1

N

K∑
j=1

yij ijxij (8)

Now, consider the training procedure in Algorithm 1 again. We can see that the final
value of the variable w would involve an accumulation of the quantities ytxt where t is the
index of one of the examples in T for which we need to compute a new value or update the
value for w (i.e., t ∈ {i1, i2, . . . , iK}. In other words, the final value for w is:

w =
K∑
j=1

yijxij (9)

Similarly, the final value of the variable u would accumulate the quantities yttxt for
t ∈ {i1, i2, . . . , iK} as the counter variable c is essentially the index of the current example
in T . Thus, the final value of u is:

u =
K∑
j=1

yij ijxij (10)

and the final value of c is c = N .
Consequently, combining everything, the returned (or final) value for w − 1

c
u is:

w − 1

c
u =

K∑
j=1

yijxij −
1

N

K∑
j=1

yij ijxij (11)

This is exactly the value for S we show above and completes the proof.
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