CIS 472/572: Machine Learning Averaged Perceptron Note

Instructor: Thien Huu Nguyen

```
Algorithm 1 AveragedPerceptronTrain(D, MaxIter)
    function AveragedPerceptronTrain( \(D\), MaxIter)
        \(w \leftarrow(0,0, \ldots, 0), b \leftarrow 0\)
        \(u \leftarrow(0,0, \ldots, 0), \beta \leftarrow 0\)
        \(c \leftarrow 1\)
        for iter \(\leftarrow 1\) to MaxIter do
            for \((x, y) \in D\) do
                if \(y(w x+b) \leq 0\) then
                    \(w \leftarrow w+y x\)
                \(b \leftarrow b+y\)
                \(u \leftarrow u+y c x\)
                \(\beta \leftarrow \beta+y c\)
                end if
                \(c \leftarrow c+1\)
            end for
        end for
        return \(w-\frac{1}{c} u, b-\frac{1}{c} \beta\)
    end function
```

Remember our learning procedure for averaged perceptron (shown in Algorithm 1).
Note that in this procedure, our scan over the training data with different epochs naturally defines a sequence of the training data examples. We will call it the data sequence and denote it as $T=\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)$ be this data sequence for simplicity. Here N is the number of the examples in the data sequence and basically $N=|D| \times \operatorname{MaxIter}(|D|$ is the number of examples in our training data D).

Also, remember the prediction rule for averaged perceptron:

$$
\hat{y}=\operatorname{sign}\left(\left(\sum_{k=1}^{K} c^{(k)} w^{(k)}\right) \cdot \hat{x}+\left(\sum_{k=1}^{K} c^{(k)} b^{(k)}\right)\right)
$$

In averaged perceptron, we compute a weighted sum S of the weight vectors $w^{(k)}$ that we encounter during the our scan over the data sequence T (we only talk about the weight
vectors here, but the argument extent naturally to the bias). The weight for each weight vector $w^{(k)}$ in the weighted sum S is based on the survival time $c^{(k)}$ of that weight vector in the data sequence (i.e., c^{k} is the ratio (over the entire sequence T) of the examples encountered right after w^{k} is produced and before w^{k} is replaced by w^{k+1} - the examples correctly predicted by $\left.w^{(k)}\right)$:

$$
\begin{equation*}
S=\sum_{k=1}^{K} c^{(k)} w^{(k)} \tag{1}
\end{equation*}
$$

The goal of this note is to show that the Algorithm 1 is actually computing S (i.e., the returned value of $w-\frac{1}{c} u$ is equal to S).

Proof Sketch:

First, the K variable in \hat{y} and S implies that we have K weight vectors along the scan over the data sequence. Note that based on the training procedure, we will only produce a new weight vector at an example in the sequence when the current weight vector cannot correctly classify that example. For convenience, let i_{1}, \ldots, i_{K} be the indexes of the examples in the data sequence for which we need to compute a new vector weight. Basically, we have $i_{1}<i_{2}<\ldots<i_{K} \leq N$ and the weight vector produced at the example indexed at i_{k} (i.e., the example $\left(x_{i_{k}}, y_{i_{k}}\right)$) is $w^{(k)}$ (due to the misclassification of w^{k-1} for $x_{i_{k}}$) (for all $1 \leq k \leq K$). Also, let $i_{0}=0, i_{K+1}=N$ and $w^{0}=0$ for convenience.

With these notations, the survival time $c^{(k)}$ for $w^{(k)}$ can be computed by (i.e., the portions of examples between $w^{(k)}$ and $w^{(k+1)}$ over the entire sequence T):

$$
\begin{equation*}
c^{(k)}=\frac{i_{k+1}-i_{k}}{N} \forall 1 \leq k \leq K \tag{2}
\end{equation*}
$$

Also, based on the update rule of the training procedure, we can write $w^{(k)}$ as:

$$
\begin{equation*}
w^{(k)}=w^{(k-1)}+y_{i_{k}} x_{i_{k}} \forall 1 \leq k \leq K \tag{3}
\end{equation*}
$$

By extending this equation, we have:

$$
\begin{equation*}
w^{(k)}=w^{(k-1)}+y_{i_{k}} x_{i_{k}}=w^{(k-2)}+y_{i_{k-1}} x_{i_{k-1}}+y_{i_{k}} x_{i_{k}}=\ldots=w^{(0)}+y_{i_{1}} x_{i_{1}}+\ldots+y_{i_{k}} x_{i_{k}} \tag{4}
\end{equation*}
$$

In other words, we have $\left(w^{(0)}=0\right)$:

$$
\begin{equation*}
w^{(k)}=\sum_{j=1}^{k} y_{i_{j}} x_{i_{j}} \forall 1 \leq k \leq K \tag{5}
\end{equation*}
$$

Now, plugging Equations 2 and 5 to Equation 1, we obtain:

$$
\begin{equation*}
S=\sum_{k=1}^{K} \frac{i_{k+1}-i_{k}}{N} \sum_{j=1}^{k} y_{i_{j}} x_{i_{j}} \tag{6}
\end{equation*}
$$

Among the terms over k of S (i.e., $\frac{i_{k+1}-i_{k}}{N} \sum_{j=1}^{k-1} y_{i_{j}} x_{i_{j}}$), we note that $y_{i_{j}} x_{i_{j}}$ only appears in the terms where $k \geq j$. Also, there are K possible terms of the type $y_{i_{j}} x_{i_{j}}$ with j ranging
from 1 to K in S. Consequently, by grouping the terms of the $y_{i_{j}} x_{i_{j}}$ together, we can rewrite S as follow:

$$
\begin{equation*}
S=\sum_{j=1}^{K} y_{i_{j}} x_{i_{j}} \sum_{k=j}^{K} \frac{i_{k+1}-i_{k}}{N}=\frac{1}{N} \sum_{j=1}^{K} y_{i_{j}} x_{i_{j}} \sum_{k=j}^{K}\left(i_{k+1}-i_{k}\right) \tag{7}
\end{equation*}
$$

Due to the cancellation, we have: $\sum_{k=j}^{K}\left(i_{k+1}-i_{k}\right)=i_{K+1}-i_{j}=N-i_{j}$, leading to:

$$
\begin{equation*}
S=\frac{1}{N} \sum_{j=1}^{K} y_{i_{j}} x_{i_{j}}\left(N-i_{j}\right)=\sum_{j=1}^{K} y_{i_{j}} x_{i_{j}}-\frac{1}{N} \sum_{j=1}^{K} y_{i_{j}} i_{j} x_{i_{j}} \tag{8}
\end{equation*}
$$

Now, consider the training procedure in Algorithm 1 again. We can see that the final value of the variable w would involve an accumulation of the quantities $y_{t} x_{t}$ where t is the index of one of the examples in T for which we need to compute a new value or update the value for w (i.e., $t \in\left\{i_{1}, i_{2}, \ldots, i_{K}\right\}$. In other words, the final value for w is:

$$
\begin{equation*}
w=\sum_{j=1}^{K} y_{i_{j}} x_{i_{j}} \tag{9}
\end{equation*}
$$

Similarly, the final value of the variable u would accumulate the quantities $y_{t} t x_{t}$ for $t \in\left\{i_{1}, i_{2}, \ldots, i_{K}\right\}$ as the counter variable c is essentially the index of the current example in T. Thus, the final value of u is:

$$
\begin{equation*}
u=\sum_{j=1}^{K} y_{i_{j}} i_{j} x_{i_{j}} \tag{10}
\end{equation*}
$$

and the final value of c is $c=N$.
Consequently, combining everything, the returned (or final) value for $w-\frac{1}{c} u$ is:

$$
\begin{equation*}
w-\frac{1}{c} u=\sum_{j=1}^{K} y_{i_{j}} x_{i_{j}}-\frac{1}{N} \sum_{j=1}^{K} y_{i_{j}} i_{j} x_{i_{j}} \tag{11}
\end{equation*}
$$

This is exactly the value for S we show above and completes the proof.

