
CIS 472/572: Machine Learning
Averaged Perceptron Note

Instructor: Thien Huu Nguyen

Algorithm 1 AveragedPerceptronTrain(D, MaxIter)

1: function AveragedPerceptronTrain(D, MaxIter)
2: w ← (0, 0, . . . , 0), b← 0
3: u← (0, 0, . . . , 0), β ← 0
4: c← 1
5: for iter ← 1 to MaxIter do
6: for (x, y) ∈ D do
7: if y(wx+ b) ≤ 0 then
8: w ← w + yx
9: b← b+ y
10: u← u+ ycx
11: β ← β + yc
12: end if
13: c← c+ 1
14: end for
15: end for
16: return w − 1

c
u, b− 1

c
β

17: end function

Remember our learning procedure for averaged perceptron (shown in Algorithm 1).
Note that in this procedure, our scan over the training data with different epochs naturally

defines a sequence of the training data examples. We will call it the data sequence and denote
it as T = (x1, y1), (x2, y2), . . . , (xN , yN) be this data sequence for simplicity. Here N is the
number of the examples in the data sequence and basically N = |D| ×MaxIter (|D| is the
number of examples in our training data D).

Also, remember the prediction rule for averaged perceptron:

ŷ = sign

(
(

K∑
k=1

c(k)w(k)) · x̂+ (
K∑
k=1

c(k)b(k))

)
In averaged perceptron, we compute a weighted sum S of the weight vectors w(k) that

we encounter during the our scan over the data sequence T (we only talk about the weight

1

vectors here, but the argument extent naturally to the bias). The weight for each weight
vector w(k) in the weighted sum S is based on the survival time c(k) of that weight vector
in the data sequence (i.e., ck is the ratio (over the entire sequence T) of the examples
encountered right after wk is produced and before wk is replaced by wk+1 – the examples
correctly predicted by w(k)):

S =
K∑
k=1

c(k)w(k) (1)

The goal of this note is to show that the Algorithm 1 is actually computing S (i.e., the
returned value of w − 1

c
u is equal to S).

Proof Sketch:

First, the K variable in ŷ and S implies that we have K weight vectors along the scan
over the data sequence. Note that based on the training procedure, we will only produce
a new weight vector at an example in the sequence when the current weight vector cannot
correctly classify that example. For convenience, let i1, . . . , iK be the indexes of the examples
in the data sequence for which we need to compute a new vector weight. Basically, we have
i1 < i2 < . . . < iK ≤ N and the weight vector produced at the example indexed at ik (i.e., the
example (xik , yik)) is w(k) (due to the misclassification of wk−1 for xik) (for all 1 ≤ k ≤ K).
Also, let i0 = 0, iK+1 = N and w0 = 0 for convenience.

With these notations, the survival time c(k) for w(k) can be computed by (i.e., the portions
of examples between w(k) and w(k+1) over the entire sequence T):

c(k) =
ik+1 − ik

N
∀1 ≤ k ≤ K (2)

Also, based on the update rule of the training procedure, we can write w(k) as:

w(k) = w(k−1) + yikxik ∀1 ≤ k ≤ K (3)

By extending this equation, we have:

w(k) = w(k−1) + yikxik = w(k−2) + yik−1
xik−1

+ yikxik = . . . = w(0) + yi1xi1 + . . .+ yikxik (4)

In other words, we have (w(0) = 0):

w(k) =
k∑

j=1

yijxij ∀1 ≤ k ≤ K (5)

Now, plugging Equations 2 and 5 to Equation 1, we obtain:

S =
K∑
k=1

ik+1 − ik
N

k∑
j=1

yijxij (6)

Among the terms over k of S (i.e., ik+1−ik
N

∑k−1
j=1 yijxij), we note that yijxij only appears

in the terms where k ≥ j. Also, there are K possible terms of the type yijxij with j ranging

2

from 1 to K in S. Consequently, by grouping the terms of the yijxij together, we can rewrite
S as follow:

S =
K∑
j=1

yijxij

K∑
k=j

ik+1 − ik
N

=
1

N

K∑
j=1

yijxij

K∑
k=j

(ik+1 − ik) (7)

Due to the cancellation, we have:
∑K

k=j(ik+1 − ik) = iK+1 − ij = N − ij, leading to:

S =
1

N

K∑
j=1

yijxij(N − ij) =
K∑
j=1

yijxij −
1

N

K∑
j=1

yij ijxij (8)

Now, consider the training procedure in Algorithm 1 again. We can see that the final
value of the variable w would involve an accumulation of the quantities ytxt where t is the
index of one of the examples in T for which we need to compute a new value or update the
value for w (i.e., t ∈ {i1, i2, . . . , iK}. In other words, the final value for w is:

w =
K∑
j=1

yijxij (9)

Similarly, the final value of the variable u would accumulate the quantities yttxt for
t ∈ {i1, i2, . . . , iK} as the counter variable c is essentially the index of the current example
in T . Thus, the final value of u is:

u =
K∑
j=1

yij ijxij (10)

and the final value of c is c = N .
Consequently, combining everything, the returned (or final) value for w − 1

c
u is:

w − 1

c
u =

K∑
j=1

yijxij −
1

N

K∑
j=1

yij ijxij (11)

This is exactly the value for S we show above and completes the proof.

3

