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Decision Trees

(Slides inherited from Daniel Lowd,

Martin Riedmiller, Pedro Domingos, Tom
Mitchell, and others)

Reading: CIML chapter 1
O Note: These slides contain some information not in the readings!
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Determination of Filing Status — Decision Tree

Footnotes:

nance decree.

eaten in the home.

Start Here
Were you married on the last YES
day of the year?'
y ™ MARRIED FILING JOINTLY Did you and your
Did your spouse die during YES | OR MARRIED FILING NO fﬁg?:; gvric?r?tal']rst; g?;":f
the year? 7 <
Yy SEPARATELY year?56
v NO '
A
Do all the following apply? YES
* Your spouse died in 2009 or 2010. VES v
* In the year of death, you were entitled NO .
to file a joint return with your spouse. I Do.a\ll( of tfhle following apply? ;
* You paid more than 1/2 the cost of ou file a separate retum from
keeping up your home for the year.? your Spouse.
¢ Your dependent child or step child QUALIFYING WIDOW(ER) * You pa"_’ more than 1/2 the cost
lived in your home all year. A foster of ketzeplng up your home for the
child or grandchild does not meet year. . .
the this test.® * Your home is the main home for
your child, stepchild or foster
* NO child for more than 1/2 the year.®
NO * You claim an exemption for the
Do both of the following apply? — SINGLE child#
* You paid more than 1/2 the cost
of keeping up your home for the
year.?
* A “qualifying person,” as defined
on page B-3, lived with you in your
3
home for more than 1/2 the year. YES
YES HEAD OF HOUSEHOLD 8 P

1. Answer “NO” to this question if, on the last day of the year, you were legally separated from your spouse under a divorce or separate mainte-
2. Include in the cost of upkeep expenses such as rent, mortgage interest, real estate taxes, insurance on the home, repairs, utilities and food

¢ Payments received under TANF or other public assistance programs used to pay costs of keeping up the home cannot be counted as
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Children aged 6 months-8 years

Infants aged <6 months

Do not administer vaccine

Follow algorithm below

/

Did the child receive any No/ > Administer 2 doses
2009 H1N1 monovalent vaccine?' Not sure this season®
Yes
Has the child ever received No/ || Administer 2 doses
seasonal influenza vaccine? Not sure this season®
Yes
Was last year the child’s first to receive No 5 Administer 1 dose
seasonal influenza vaccine? this season
Yes
Did the child receive 2 doses of No - Administer 2 doses

seasonal influenza vaccine last year?

this season'!

Yes

Administer 1 dose
this season

Children aged =9 years

Administer 1 dose
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A training dataset from the past experience

Day  Outlook  lTemperature Humidity @ Wind  Play lennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3  Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal  Strong No
D7  Overcast Cool Normal  Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal  Strong Yes

D12  Overcast Mild High Strong Yes

D13  Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Outlook, Temperature, Humidity and Wind are features/attributes

Should we play tennis today?
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The decision tree we would learn

e Internal nodes test the value of particular features z; and branch according to the
results of the test.

e Leaf nodes specify the class h(x).

Outlook
|
Sunny Overcast Rain
— l T
Humidity Yes Wind
N N
High Normal Strong Weak
/ N / N
No Yes No Yes

Suppose the features are Outlook (z;), Temperature (z2), Humidity (z3), and Wind
(z4). Then the feature vector x = (Sunny, Hot, High, Strong) will be classified as No. The

Temperature feature is irrelevant.
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Converting a decision tree to rules

IF
THEN
IF
THEN

5

OREGON

Wind

High Normal Strong Weak
Y

(Outlook = Sunny) A (Humidity = High)
PlayTennis = No

(Outlook = Sunny) A (Humidity = Normal)
PlayTennis = Yes
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Decision trees can handle real-valued features

If the features are continuous, internal nodes may test the value of a feature against a threshold.

Outlook

Sunny Overcast Rain
Humidity Yes Wind
N N
> 75% <=T75% > 20 <= 20
/ N / N
No Yes No Yes

» Thresholds are decided based on the values of the
features 1n the training dataset
— Sort the feature values that occur 1n training set

— Determine points where class changes

O Temperature: 40 48 60 72 80 90
Play Tennis: No No Yes Yes Yes No

OREGON
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Decision Tree Decision Boundaries

Decision trees divide the feature space into axis-parallel rectangles, and label each rectangle

with one of the K classes.

X2A : x2 <3
1 /\
6 x1 <4 x1 <3
1 L 1 /\ /\
0 0 1 x2 <4 1
4 0 /\
0 1
0 1
0
0
o 1
0 1
0 1
0 —
0 2 4 6 x1
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Decision trees can represent any Boolean function

x2
A x1 <0.5
| l 0 /\
x2 <0.5 x2 <0.5
0 0 1 /\ /\
0 ] x1

The tree will require exponentially many nodes in
the worst case, however.
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Decision Trees Provide Variable-Size Hypothesis Space

As the number of nodes (or depth) of tree increases, the hypothesis space
grows

e depth 1 (“decision stump”) can represent any boolean function of one feature.

e depth 2 Any boolean function of two features; some boolean functions involving three

features (e.g., (z1 A z2) V (—mzy A —z3)

e etc.
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The ID3 algorithm (Iterative Dichotomiser 3)
to learn decision trees

Function ID3

= |nput: Example setS
= Qutput: Decision Tree DT

= |f all examples in S belong to the same class ¢
= return a new leaf and label it with ¢
= Else

I. Select an attribute 4 according to some heuristic function
ii. Generate a new node DT with A as test
lii. For each Value v, of 4

(a) Let S, = all examples in S with 4 =v.
(b) Use ID3 to construct a decision tree DT, for example set S,

(c) Generate an edge that connects DT and DT,
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The ID3 algorithm - Example

e Look at current training set S

S=/1,...,14}

e Determine best attribute

Outlook
e Split training set according to different values
Outlook
Sunny_}_,,,..,---"""’6\)@rcast Rain
O (1,2,89,11 13.7,12,13; 14,5,6,10,14;

OREGON
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The ID3 algorithm - Example

e [ree
Outlook
Sunny " Overcast \\\ Rain
(1,289,11} 13,7,12,13) 14,5,6,10,14)
e Apply algorithm recursively
Outlook
Sunny/_,./"'bvercasI - Rain
Yes
O Recursion Pure -> Leaf Recursion

OREGON
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Which attribute 1s the best?

outlook

overcast

sunny rainy

normal

i
yes yes
yes )’2 yes yes yes
no y i yes yes yes
no y = no yes yes
no y no no yes
no yes
no yes
> 2l
false \ true
temperature
yes
yes yes cool
yes yes
yes yces yes
yes no yes yes yes
yes no yes yes yes
no no no yes yes
no no no no
no

UNIVERSITY OF
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Which attribute 1s the best?

. 3 Heuristics:

— choosing the attribute that produces the “purest” nodes:
the distribution of examples 1n each node 1s so that it
mostly contains examples of a single class

— best case: all examples 1n a node belong the the same
class

— worst case: all classes are equally likely

— using entropy and information gain to achieve this
property

O
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Entropy
maximal value at equal ® Do is the proportion of positive
class distribution
examples

1.0
® po is the proportion of negative
examples

Entropy measures the impurity

of S

Entropy(S)
=]
o~y
o

e Entropy(S) = —pglog, py —

0.0 0.5 1.0 Po 10g2 pe

minimal value if only e Information can be seen as the
one class leftin S negative of entropy
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Information

Gain

Measuring attribute = creates subsets S| and S5 with different
entropies

Taking the mean of Entropy(S1) and Entropy(Ss) gives

conditional entropy Entropy(S|z), i.e. in general:

Sy
Entropy(S|z) = 2 vevatues(x) %Entropy(&,)

— Choose that attribute that maximizes difference:

Gain(S,z) = expected reduction in entropy due to partitioning on

i

Gain(S, z) := Entropy(S) — Entropy(S|x)

Gain(S,z) = Entropy(S) —

D

veEValues(x)

|5y

S|

Entropy(Sy)
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Example

S: [9+,5-]
E =0.940

Humidity

High Normal

[3+.4-] [6+.1-]
E =0.985 E =0.592

S: [9+,5-]
E=0.940
Weak Strong
[6+.2-] [3+,3-]
E =0.811 E=1.00

Gain (S, Humidity )

940 - (7/14).985 - (7/14).592
151

Gain(S, Outlook)=0.246

Gain (S, Wind )

940 - (8/14).811 - (6/14)1.0
048

Gain(S , Temperature)=0.029
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Example - continue

Outlook is selected
as the root note

further spllttlng
necessary

sunny

Outlook = overcast
contains only
examples of class yes
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Example - continue

sunny sunny sunny

lemperature

Gain(Temperature) = 0.571 bits
Gain(Humidity ) =0.971 bits - [ Humidity is selected
Gain(Windy ) = 0.020 bits

OREGON
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Attributes with many values

no||no“yes“yes|‘no|

« E.g., the dates of the examples

e Subsets are more likely to be pure if there 1s a large
number of values

» Information gain 1s biased towards choosing attributes with
a large number of values

O — generalization suffers!

OREGON



CS 472/572: Machine Learning

O

OREGON

C4.5 heuristics: Gain Ratio

Idea: Measure how broadly and uniformly A splits the data:

[Sil | |Si|
5] % 3]

where S; is subset of S for which A has value v; and ¢ is the number
of different values.

Example:

SplitInformation(S, A) = — Z

e Attribute 'Date’: n examples are completely seperated. Therefore:
SplitInformation(S, Date’) = logyn

e other extreme: binary attribute splits data set in two even parts:
SplitIn formation(S, Date’) = 1

By considering as a splitting criterion the

Gain(S, A)
SplitIn formation(S, A)
one relates the Information gain to the way, the examples are split

GainRatio(S, A) =
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Gain Ratio - Example

Outlook Temperature

Gain: 0.940-0.693 0.247 Gain: 0.940-0.911 0.029
Split info: info([5,4,5]) 1.577 Split info: info([4,6,4]) 1.557
Gain ratio: 0.247/1.577 0.157 Gain ratio: 0.029/1.557 0.019
Humidity Windy

Gain: 0.940-0.788 0.152 Gain: 0.940-0.892 0.048
Split info: info([7,7]) 1.000 Split info: info([8,6]) 0.985
Gain ratio: 0.152/1 0.152 Gain ratio: 0.048/0.985 0.049

Splitinformation(date) =log,(14)=3.807
= 0.246

3.807

— “date” still wins — one has to be careful about which attributes to add

GainRatio(date) =

O  However, in general, gain ratio is more reliable than information gain

OREGON
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Hypothesis Space of Decision Trees

» Hypothesis space 1s a general concept in machine
learning, specifying the set of decision
functions/hypotheses that a learning algorithm
would search for a given training dataset (1.¢., the
possible hypotheses to be returned).

* The hypothesis space of decision trees 1s complete

— Every possible finite discrete-valued function can be
represented by some decision tree.

— (1ven a training dataset, the target function is surely

included.
O Inc
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Properties of ID3, C4.5

Maintaining a single current hypothesis when searching
through the space of decision trees, so only a single
hypothesis 1s returned (some other algorithms maintain the
set of all hypotheses consistent with the available training
dataset)

No backtracking during the search (risk of converging to a
locally optimal solution).

Using all training examples at each step to refine the
current hypothesis, so less sensitive to errors/noises in
training data
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Inductive Bias in Decision Tree Learning

« Inductive bias of a learning algorithm: the explicit or
implicit prior assumptions on the hypothesis (e.g.,
restrictions on the hypothesis space — restriction bias).

* For decision tree learning, the inductive bias 1s imposed on
the search strategy, 1.e., how to explore the hypothesis
space (1.e., preference bias)

— Preference for short trees over longer trees

— and for those with high information gain/gain ratio
attributes near the root

* Many other learning algorithms (e.g., linear classifiers)
exhibit both restriction and preference bias.
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Why prefer short hypotheses?

e Occam’s razor (1320): Prefer the simplest
hypothesis that fits the data

— among many hypotheses that are consistent/fit
with the training data, choose the simplest one.

e Argument in favor:
— Typically, fewer short hypotheses than long ones

— A short hypothesis that fits data unlikely to be
coincidence

— A long hypothesis that fits data might be coincidence

O

OREGON




CS 472/572: Machine Learning

Noise

Consider adding noisy training example #15:

Sunny, Mild, Normal, Weak, PlayTennis = No

What effect on earlier tree?

Outlook
Sunny Overcast Rain
Humidity Yes Wind
High Normal Strong Weak

O /K A

No Yes No Yes

OREGON
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Overfitting in Decision Trees

* Algorithm will introduce new attribute test

« The new tree perfectly fits the new training data while the
old tree does not.

 However, as the additional training example 1s a noise, we
expect that the old tree still outperforms the new tree on
future examples drawn from the same distribution.

— overfitting: corresponds to learning coincidental
regularities

« Unfortunately, we generally don’t know which examples
are noisy ...

O
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Overfitting

Consider error of hypothesis h over

e training data (x1,k1),...,(Xq, kq): training error
1A
errorirain(h) = > ; L(h(x;), ks)

with loss function L(c,k) = 0 if c =k and L(c, k) = 1 otherwise

e entire distribution D of data (x, k): true error

errorp(h) = P(h(x) # k)

Definition Hypothesis h € H overfits training data if there is an
alternative A’ € H such that

O erroryrain(h) < erroryqin(h’) and errorp(h) > errorp(h’)

OREGON
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Overfitting in Decision Tree Learning

()-9 L) 1 L] 1 L] L} 1 ) ]

0.85

0.8

0.75

0.7

Accuracy

0.65

06 r On training data — -
On test data ----

0.55 F .

() i 5 A A L A A L A A '
0 10 20 30 40 S50 60 70 80 920 100

Size of tree (number of nodes)

O
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Avoiding Overfitting

1. How can we avoid overfitting?

e Stop growing when data split not statistically significant
(pre-pruning)
— e.g. in C4.5: Split only, if there are at least two descendant
that have at least n examples, where n is a parameter
e Grow full tree, then post-prune (post-prune)

2. How to select “best” tree:

e Measure performance over training data
e Measure performance over separate validation data set
e Minimum Description Length (MDL): minimize

O size(tree) + size(misclassi fications(tree))

OREGON
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Reduced-Error Pruning

1. An example for post-pruning
2. Split data into training and validation set

3. Do until further pruning is harmful:

(a) Evaluate impact on validation set of pruning each possible node
(plus those below it)

(b) respective node is labeled with most frequent class

(c) Greedily remove the one that most improves validation set
accuracy

4. Produces smallest version of most accurate subtree

O 5. What if data is limited?

OREGON




CS 472/572: Machine Learning

Rule Post-Pruning

1. Grow tree from given training set that fits data best, and allow
overfitting

2. Convert tree to equivalent set of rules
3. Prune each rule independently of others

4. Sort final rules into desired sequence for use
e Perhaps most frequently used method (e.g., C4.5)

e allows more fine grained pruning

O e converting to rules increases understandability

OREGON
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Effect of Reduced-Error Pruning

0.9 T T T - . y , - :
0.85 1
0.8 1
0.75 !
7y
& 07 1
~ |
3
< 0.65 I
06 F On training data —— .
On test data ----
055 F On test data (during pruning) ----- I
05 A L 1 A 1 1 1 1 1

0 10 20 30 40 50 60 70 30 90 100

Size of tree (number of nodes)
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When to consider decision trees

Instances describable by attribute-value pairs,
typically when each attribute takes on a small
number of disjoint possible values

The target outputs have discrete/categorical values
(real-valued outputs are possible but less common)

Disjunctive descriptions may be required

The training data may contain errors
Interpretable result of learning 1s required
Examples: medical diagnosis, credit risk analysis
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Unknown Attribute Values

What if some examples are missing values of A?

Use training example anyway, sort through tree

e If node n tests A, assign most common value of A
among other examples sorted to node n

e Assign most common value of A among other examples
with same target value

e Assign probability p; to each possible value v; of A
Assign fraction p; of example to each descendant in tree

O Classify new examples in same fashion

OREGON



