
CS 472/572: Machine Learning

Decision Trees

(Slides inherited from Daniel Lowd, 
Martin Riedmiller, Pedro Domingos, Tom 

Mitchell, and others)

Reading: CIML chapter 1
Note: These slides contain some information not in the readings!
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A training dataset from the past experience

Outlook, Temperature, Humidity and Wind are features/attributes
Should we play tennis today?
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The decision tree we would learn
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Converting a decision tree to rules



CS 472/572: Machine Learning

Decision trees can handle real-valued features

• Thresholds are decided based on the values of the 
features in the training dataset
– Sort the feature values that occur in training set
– Determine points where class changes
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Decision trees can represent any Boolean function

The tree will require exponentially many nodes in 
the worst case, however. 
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The ID3 algorithm (Iterative Dichotomiser 3)

to learn decision trees
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The ID3 algorithm - Example
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The ID3 algorithm - Example
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Which attribute is the best?
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Which attribute is the best?

• ID3 Heuristics:
– choosing the attribute that produces the “purest” nodes: 

the distribution of examples in each node is so that it 
mostly contains examples of a single class

– best case: all examples in a node belong the the same 
class

– worst case: all classes are equally likely
– using entropy and information gain to achieve this 

property
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Entropy
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Information Gain



CS 472/572: Machine Learning

Example
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Example - continue
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Example - continue
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Attributes with many values

• E.g., the dates of the examples
• Subsets are more likely to be pure if there is a large 

number of values
• Information gain is biased towards choosing attributes with 

a large number of values
→ generalization suffers!

date
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C4.5 heuristics: Gain Ratio



CS 472/572: Machine Learning

Gain Ratio - Example

→ “date” still wins → one has to be careful about which attributes to add
• However, in general, gain ratio is more reliable than information gain

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑒 =	𝑙𝑜𝑔!(14)=	3.807

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜 𝑑𝑎𝑡𝑒 =
0.94
3.807

= 0.246
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Hypothesis Space of Decision Trees 

• Hypothesis space is a general concept in machine 
learning, specifying the set of decision 
functions/hypotheses that a learning algorithm 
would search for a given training dataset (i.e., the 
possible hypotheses to be returned).

• The hypothesis space of decision trees is complete
– Every possible finite discrete-valued function can be 

represented by some decision tree.
– Given a training dataset, the target function is surely 

included.
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Properties of ID3, C4.5

• Maintaining a single current hypothesis when searching 
through the space of decision trees, so only a single 
hypothesis is returned (some other algorithms maintain the 
set of all hypotheses consistent with the available training 
dataset)

• No backtracking during the search (risk of converging to a 
locally optimal solution).

• Using all training examples at each step to refine the 
current hypothesis, so less sensitive to errors/noises in 
training data
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Inductive Bias in Decision Tree Learning

• Inductive bias of a learning algorithm: the explicit or 
implicit prior assumptions on the hypothesis (e.g., 
restrictions on the hypothesis space – restriction bias).

• For decision tree learning, the inductive bias is imposed on 
the search strategy, i.e., how to explore the hypothesis 
space (i.e., preference bias)
– Preference for short trees over longer trees
– and for those with high information gain/gain ratio 

attributes near the root
• Many other learning algorithms (e.g., linear classifiers) 

exhibit both restriction and preference bias.
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Why prefer short hypotheses?

• Occam’s razor (1320): Prefer the simplest 
hypothesis that fits the data

→ among many hypotheses that are consistent/fit 
with the training data, choose the simplest one.
• Argument in favor:

– Typically, fewer short hypotheses than long ones
– A short hypothesis that fits data unlikely to be 

coincidence
– A long hypothesis that fits data might be coincidence
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Noise
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Overfitting in Decision Trees

• Algorithm will introduce new attribute test
• The new tree perfectly fits the new training data while the 

old tree does not.
• However, as the additional training example is a noise, we 

expect that the old tree still outperforms the new tree on 
future examples drawn from the same distribution.

→ overfitting: corresponds to learning coincidental 
regularities
• Unfortunately, we generally don’t know which examples 

are noisy …
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Overfitting
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Overfitting in Decision Tree Learning
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Avoiding Overfitting
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Reduced-Error Pruning
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Rule Post-Pruning
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Effect of Reduced-Error Pruning
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When to consider decision trees

• Instances describable by attribute-value pairs, 
typically when each attribute takes on a small 
number of disjoint possible values

• The target outputs have discrete/categorical values 
(real-valued outputs are possible but less common)

• Disjunctive descriptions may be required
• The training data may contain errors
• Interpretable result of learning is required
• Examples: medical diagnosis, credit risk analysis
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Unknown Attribute Values


