Linear Regression

Based on slides by Doina Precup, Andrew Ng

Steps to solving a supervised learning problem

- 1. Decide what the input-output pairs are
- 2. Decide how to encode inputs and outputs thus deciding the input space and output space
- 3. Chose a class of hypotheses/mappings ${\mathcal H}$
- 4. Choose an error function (cost function) to define the best hypothesis
- 5. Choose an algorithm to search through the space of hypotheses efficiently

Regression

What hypothesis class should we pick?

Linear Regression

• *y* is a linear function of *x*:

$$h_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1 (+ \cdots)$$

• or more generally:

$$h_{\mathbf{w}}(\mathbf{x}) = \sum_{i=0}^{n} w_i x_i = \mathbf{w}^T \mathbf{x}$$

Where is the bias?

How do we select the model parameters?

What cost function should we use?

 The cost function measures the difference between the predicted values and the true values (least mean square regression):

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (h_{\mathbf{w}}(\mathbf{x}_i) - y_i)^2$$

so, choosing w to minimize the mean squared error J(w)

Is this familiar?

How can we minimize the cost function?

- Compute its gradient, setting it to zero and solving the equation
- Notations:
 - Consider a function $f(u_1, u_2, \ldots, u_n) : \mathbb{R}^n \mapsto \mathbb{R}$ (for us, this will usually be an error function)
 - The *partial derivative* w.r.t. u_i is denoted:

$$\frac{\partial}{\partial u_i} f(u_1, u_2, \dots, u_n) : \mathbb{R}^n \mapsto \mathbb{R}$$

The partial derivative is the derivative along the u_i axis, keeping all other variables fixed.

The gradient ∇f(u₁, u₂, ..., u_n) : ℝⁿ → ℝⁿ is a function which outputs a vector containing the partial derivatives.
That is:

$$\nabla f = \left\langle \frac{\partial}{\partial u_1} f, \frac{\partial}{\partial u_2} f, \dots, \frac{\partial}{\partial u_n} f \right\rangle$$

Computing Gradient

Matrix Notations

The solution

• Recalling some multivariate calculus:

$$\begin{aligned} \nabla_{\mathbf{w}} J &= \nabla_{\mathbf{w}} \frac{1}{2} (\mathbf{X} \mathbf{w} - \mathbf{y})^T (\mathbf{X} \mathbf{w} - \mathbf{y}) \\ &= \nabla_{\mathbf{w}} \frac{1}{2} (\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} - \mathbf{y}^T \mathbf{X} \mathbf{w} - \mathbf{w}^T \mathbf{X}^T \mathbf{y} + \mathbf{y}^T \mathbf{y}) \\ &= \mathbf{X}^T \mathbf{X} \mathbf{w} - \mathbf{X}^T \mathbf{y} \end{aligned}$$

• Setting gradient equal to zero:

$$\begin{aligned} \mathbf{X}^T \mathbf{X} \mathbf{w} - \mathbf{X}^T \mathbf{y} &= 0 \\ \Rightarrow \mathbf{X}^T \mathbf{X} \mathbf{w} &= \mathbf{X}^T \mathbf{y} \\ \Rightarrow \mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \end{aligned}$$

• The inverse exists if the columns of X are linearly independent.

Properties of the mean squared error

- Good intuition with inductive learning
- Nice math (closed-form solution (very rare in machine learning), unique global optimum)
- Geometric interpretation

Any other interpretations?

Probabilistic Interpretation

• Assume the outputs and inputs are related via:

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

error term to capture either unmodeled effects (e.g., missing features), or random noise

• $\epsilon^{(i)}$ are distributed independently and identically according to the Gaussian distribution with mean zero and some variance $\sigma^2:\epsilon^{(i)} \sim \mathcal{N}(0, \sigma^2):$

$$p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\epsilon^{(i)})^2}{2\sigma^2}\right)$$

So:
$$p(y^{(i)}|x^{(i)};\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right)$$

Not condition on θ , i.e., $y^{(i)} \mid x^{(i)}; \theta \sim \mathcal{N}(\theta^T x^{(i)}, \sigma^2)$

Probabilistic Interpretation

- Given X and θ , what is the distribution of y?
- The (conditional) likelihood function of data:

 $L(\theta) = L(\theta; X, y) = p(y|X; \theta)$

• As the noise $\epsilon^{(i)}$ is independent (so as $y^{(i)}$ given $x^{(i)}$):

$$\begin{split} L(\theta) &= \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta) \\ &= \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right) \end{split}$$

The maximum likelihood principle

- Choosing the parameters to make the data as high probability as possible, i.e., choose θ to maximize $J(\theta)$.
- Taking the log:

$$\begin{split} \ell(\theta) &= \log L(\theta) \\ &= \log \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right) \\ &= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right) \\ &= m \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{\sigma^{2}} \cdot \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \theta^{T} x^{(i)})^{2}. \end{split}$$

• So, maximizing $J(\theta)$ gives the same answer as minimizing:

$$\frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \theta^T x^{(i)})^2$$

• Minimizing $-\log(L(\theta))$ give rises to the so-called "negative loglikelihood"

But does maximum likelihood make sense?

• With inductive bias learning: to learn parameters, minimize

$$\varepsilon(h) = \frac{1}{n} \sum_{i=1}^{n} L(h_w(x^{(i)}), y^{(i)}))$$

Using the negative log-likelihood as the loss function:

$$L(h_w(x^{(i)}), y^{(i)})) = -\log p(y^{(i)}|x^{(i)}; w)$$

But does maximum likelihood make sense?

• With inductive bias learning: to learn parameters, minimize

$$\varepsilon(h) = \frac{1}{n} \sum_{i=1}^{n} L(h_w(x^{(i)}), y^{(i)}))$$

Using the negative log-likelihood as the loss function:

$$L(h_w(x^{(i)}), y^{(i)})) = -\log p(y^{(i)}|x^{(i)}; w)$$

• With Bayesian inference

Bayes theorem in learning

Let h be a hypothesis and D be the set of training data. Using Bayes theorem, we have:

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)},$$

where:

- P(h) is the prior probability of hypothesis h
- $P(D) = \int_h P(D|h)P(h)$ is the probability of training data D (normalization, independent of h)
- P(h|D) is the probability of h given D
- P(D|h) is the probability of D given h (likelihood of the data)

Choosing hypotheses

- What is the most probable hypothesis given the training data?
- Maximum a posteriori (MAP) hypothesis h_{MAP} :

$$h_{MAP} = \arg \max_{h \in \mathcal{H}} P(h|D)$$

= $\arg \max_{h \in \mathcal{H}} \frac{P(D|h)P(h)}{P(D)}$ (using Bayes theorem)
= $\arg \max_{h \in \mathcal{H}} P(D|h)P(h)$

Last step is because P(D) is independent of h (so constant for the maximization)

• This is the Bayesian answer

Maximum likelihood estimation

 $h_{MAP} = \arg \max_{h \in \mathcal{H}} P(D|h)P(h)$

 If we assume P(h_i) = P(h_j) (all hypotheses are equally likely a priori) then we can further simplify, and choose the maximum likelihood (ML) hypothesis:

$$h_{ML} = \arg\max_{h \in \mathcal{H}} P(D|h)$$

- Standard assumption: the training examples are *independently identically distributed* (*i.i.d.*)
- This alows us to simplify P(D|h):

$$P(D|h) = \prod_{i=1}^{m} P(\langle \mathbf{x}_{i}, y_{i} \rangle | h) = \prod_{i=1}^{m} P(y_{i} | \mathbf{x}_{i}; h) P(\mathbf{x}_{i})$$

The log trick

• We want to maximize:

$$L(h) = \prod_{i=1}^{m} P(y_i | \mathbf{x}_i; h) P(\mathbf{x}_i)$$

This is a product, and products are hard to maximize!

• Instead, we will maximize $\log L(h)!$ (the log-likelihood function)

$$\log L(h) = \sum_{i=1}^{m} \log P(y_i | \mathbf{x}_i; h) + \sum_{i=1}^{m} \log P(\mathbf{x}_i)$$

• The second sum depends on D, but not on h, so it can be ignored in the search for a good hypothesis

Is the analytical solution always possible for linear regression?

 $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

- Problems occur if $X^T X$ is not invertible
- Possible solutions:
 - Transform the data (the kernel methods)
 - Apply a transformation of the inputs from X to some other space X', then do linear regression in the transformed space
- Use a different hypothesis class (e.g., non-linear functions)
- Gradient Descent