CS 472/572: Machine Learning

Linear Regression

Based on slides by Doina Precup, Andrew Ng
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Steps to solving a supervised learning problem

Decide what the input-output pairs are

2. Decide how to encode inputs and outputs
thus deciding the input space and output space

3. Chose a class of hypotheses/mappings H

Choose an error function (cost function) to define the best
hypothesis

5. Choose an algorithm to search through the space of
hypotheses efficiently
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Regression

What hypothesis class should we pick?
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&z Yy
0.86 | 2.49
0.09 | 0.83
-0.85 | -0.25
0.87 | 3.10
-0.44 | 0.87
-0.43 | 0.02
-1.10 | -0.12
0.40 | 1.81
-0.96 | -0.83
0.17 | 0.43
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Linear Regression

* yisalinear function of x:
hw(x) = wo + wiz1(+ - )
* or more generally:

T
hw(Xx) = Z wiT; = WX
i=0

Where is the bias?
How do we select the model parameters?
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What cost function should we use?

* The cost function measures the difference
between the predicted values and the true values
(least mean square regression):

T(w) = 5 3 (hw(x) — 9

1=1

so, choosing w to minimize the mean squared error
J(w)

Is this familiar?
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How can we minimize the cost function?

 Compute its gradient, setting it to zero and solving the
equation

* Notations:

e Consider a function f(uy,us,...,u,) : R™ — R (for us, this will usually
be an error function)

e The partial derivative w.r.t. u; is denoted:

0
B’U,z'

fluy,ug,...,up) :R* > R

The partial derivative is the derivative along the u; axis, keeping all other
variables fixed.

e The gradient V f(uy,us, ..., uy,) : R™ — R™ is a function which outputs
a vector containing the partial derivatives.

That is: 5
V= (gt gt f)
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Computing Gradient

%, 0 1 2
8_ij(W) = 8_wj§ 7Z;(hw(xi) — Yi)
1o > (halx) - yi)(%j(hw(xi) — )
= Z(hw(xz') - yz)a% (Z WiTi,] — 3/7:)
i=1 7 \i=0
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Matrix Notations

T
X, 1z T1p
X, 1 ®y -+ Ty

X — —_ y p—
xI 1 Lnl o Tap
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The solution

e Recalling some multivariate calculus:

VwJ

Vars (Xw — y)7 (Xw — )
= Vw%(WTXTXW — vy Xw —w X'y + yTy)
= X'Xw— XTy

e Setting gradient equal to zero:

XT'Xw-XTy = 0
= XTXw = X'y
= w=(XTX)"' X%y

e The inverse exists if the columns of X are linearly independent.
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Properties of the mean squared error

* Good intuition with inductive learning

* Nice math (closed-form solution (very rare in
machine learning), unique global optimum)

* Geometric interpretation

Any other interpretations?
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Probabilistic Interpretation

* Assume the outputs and inputs are related via:

(1) _ T ..(i) (2) error term to capture either
y = 0"z + “—__ unmodeled effects (e.g.,
missing features), or random

noise

« € are distributed independently and identically according to
the Gaussian distribution with mean zero and some variance

c2:eW~N(0,0%):
()12
p(e) = —o— exp (—(€ : )

V2mo 202
_ L 1 (y) — 6T )2
* So: oy N2 9) = o
p(y™|=";0) 2mo P ( 202

Not condition on 6, i.e.,y(i) | 33(’"); 0 ~ N(OT'I(':), ‘72)
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Probabilistic Interpretation

* Given X and 6, what is the distribution of y?
* The (conditional) likelihood function of data:
L) =L(6;X,y) =p(|X;0)

* Asthe noise €W is independent (so as y(i)
given x (V).
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The maximum likelihood principle

* Choosing the parameters to make the data as high probability as possible, i.e.,

choose 6 to maximize J(6).
e Taking the log:
axing the 108 00) = logL(6)

1 s
og H = exp ( 552

m 1 (y(z) . oTI(i))‘Z)
= lo exp | —
I

1 1 R (T, g

2y 3 =2 (1) _ T .(9)\2

2t 0% 2 y s
=1

* So, maximizing /(@) gives the same answer as minimizing:

m

. Z(y(z‘) — 9T z()?

2 1=1

« Minimizing — log(L(0)) give rises to the so-called “negative log-
likelihood”
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But does maximum likelihood make sense?

 With inductive bias learning: to learn parameters, minimize

1 Ny
e(h) = = ) Ll (x0),y))

Using the negative log-likelihood as the loss function:

L(hy, (x9),y D)) = —log p(yV|x®; w)
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But does maximum likelihood make sense?

* With inductive bias learning: to learn parameters, minimize

1 L
e(h) = — ) L(h, (x9),y®))

Using the negative log-likelihood as the loss function:

L(hy, (x),y ) = ~log p(y P |xV; w)

* With Bayesian inference
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Bayes theorem in learning

Let h be a hypothesis and D be the set of training data.
Using Bayes theorem, we have:

P(HiD) = T,

where:

o P(h) is the prior probability of hypothesis h

e P(D [, P(D|h)P(h) is the probability of training data D
(normallzatlon independent of h)

e P(h|D) is the probability of h given D
e P(DI|h) is the probability of D given h (likelihood of the data)
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Choosing hypotheses

e What is the most probable hypothesis given the training data?
e Maximum a posteriori (MAP) hypothesis hps 4p:

harap arg max P(h|D)

heH
B P(DI|h)P(h)
- VBN P(D)

— P(D|h)P(h
am%%(l)()

(using Bayes theorem)

Last step is because P(D) is independent of h (so constant for the
maximization)

e This is the Bayesian answer
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Maximum likelihood estimation

h N P(D|h)P(h
MAP = argmax (D|h)P(h)

o If we assume P(h;) = P(h;) (all hypotheses are equally likely a priori)
then we can further simplify, and choose the maximum likelihood (ML)

hypothesis:

hyr = a,rgrglea%cP(DM)

e Standard assumption: the training examples are independently identically
distributed (i.i.d.)
e This alows us to simplify P(D|h):

m ™m

P(D|h) = HP(<Xi,yi>|h) = HP(yz’|xi§h)P(xz’)
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The log trick

e We want to maximize:

m

L(h) = | | P(yilxi; h)P(x:)

=1

This is a product, and products are hard to maximize!

e Instead, we will maximize log L(h)! (the log-likelihood function)

log L(h) =Y " log P(yi|xi; ) + Y _log P(x;)
=1

=1

e The second sum depends on D, but not on h, so it can be ignored in the
search for a good hypothesis
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Is the analytical solution always
possible for linear regression?

w= (X'X)" X7y
e Problems occur if XT X is not invertible

e Possible solutions:

— Transform the data (the kernel methods)

* Apply a transformation of the inputs from X to some other
space X', then do linear regression in the transformed space

* Use a different hypothesis class (e.g., non-linear
functions)

e Gradient Descent

O

UNIVERSITY OF OREGON




