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Steps to solving a supervised learning problem

1. Decide what the input-output pairs are
2. Decide how to encode inputs and outputs

 thus deciding the input space and output space

3. Chose a class of hypotheses/mappings ℋ
4. Choose an error function (cost function) to define the best 

hypothesis
5. Choose an algorithm to search through the space of 

hypotheses efficiently
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Regression

What hypothesis class should we pick?
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Linear Regression

• 𝑦 is a linear function of 𝑥:

• or more generally:
    

Where is the bias?
How do we select the model parameters?
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What cost function should we use?

• The cost function measures the difference 
between the predicted values and the true values 
(least mean square regression):

so, choosing 𝑤 to minimize the mean squared error 
𝐽(𝑤)
  Is this familiar?



CS 472/572: Machine Learning

How can we minimize the cost function?
• Compute its gradient, setting it to zero and solving the 

equation
• Notations:
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Computing Gradient
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Matrix Notations
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The solution
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Properties of the mean squared error

• Good intuition with inductive learning
• Nice math (closed-form solution (very rare in 

machine learning), unique global optimum)
• Geometric interpretation

Any other interpretations?
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Probabilistic Interpretation

• Assume the outputs and inputs are related via:

• 𝜖(") are distributed independently and identically according to 
the Gaussian distribution with mean zero and some variance 
𝜎$:𝜖(")~𝒩(0, 𝜎$): 

• So:

error term to capture either 
unmodeled effects (e.g., 
missing features), or random 
noise

Not condition on 𝜃, i.e., 
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Probabilistic Interpretation

• Given 𝑋 and 𝜃, what is the distribution of 𝑦?
• The (conditional) likelihood function of data:

• As the noise 𝜖(") is independent (so as 𝑦(") 
given 𝑥(")):

𝐿 𝜃 = 𝐿 𝜃; 𝑋, 𝑦 = 𝑝(𝑦|𝑋; 𝜃)
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The maximum likelihood principle
• Choosing the parameters to make the data as high probability as possible, i.e., 

choose 𝜃 to maximize 𝐽(𝜃).
• Taking the log:

• So, maximizing 𝐽(𝜃) gives the same answer as minimizing:

• Minimizing − log 𝐿(𝜃)  give rises to the so-called “negative log-
likelihood”
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But does maximum likelihood make sense?

• With inductive bias learning: to learn parameters, minimize 

𝜀(ℎ) =
1
𝑛(
*+,

-

𝐿(ℎ.	(𝑥(*)), 𝑦(*)))

Using the negative log-likelihood as the loss function:

𝐿(ℎ.(𝑥 * ), 𝑦 * )) = −log 	𝑝(𝑦 * |𝑥 * ; 𝑤)
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But does maximum likelihood make sense?

• With inductive bias learning: to learn parameters, minimize 

𝜀(ℎ) =
1
𝑛
(
!"#

$

𝐿(ℎ% 	(𝑥(!)), 𝑦(!)))

Using the negative log-likelihood as the loss function:

𝐿(ℎ%(𝑥 ! ), 𝑦 ! )) = −log 	𝑝(𝑦 ! |𝑥 ! ; 𝑤)

• With	Bayesian	inference
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Bayes theorem in learning
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Choosing hypotheses
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Maximum likelihood estimation
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The log trick
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Is the analytical solution always 
possible for linear regression?

• Problems occur if 𝑋!𝑋 is not invertible
• Possible solutions:
– Transform the data (the kernel methods)

•  Apply a transformation of the inputs from 𝑋 to some other 
space 𝑋′, then do linear regression in the transformed space

• Use a different hypothesis class (e.g., non-linear 
functions)

• Gradient Descent


