
CS 472/572: Machine Learning

Logistic Regression

Based on slides by Daniel Lowd, Vibhav Gogate,
Carlos Guestrin, Luke Zettlemoyer and Dan Weld.

CS 472/572: Machine Learning

Predicting Probabilities

• We have mainly talked about binary classification
• Our decision rule always give one type with 100%

confidence for a given example (e.g., Spam nor Not)
• What if an email has a 60% chance of being spam?
• What if there is a 30% chance of rain?
• What if a mushroom has a 10% probability of being

poisonous?

• We want to be able to talk about uncertainty or the
probability of a type given an example.

CS 472/572: Machine Learning

Logistic Regression

• Predict class probabilities 𝑃(𝑌|𝑋) with a linear
model: still compute a linear predictor (based
on the linear combination of parameters),
then transform it into a probability

• How do we turn (w x + b) into a probability?

CS 472/572: Machine Learning

Linear models in general

• By linear models, we mean that the hypothesis
function ℎ!(𝑥) is a linear function of the parameters
𝑤, not the linear function of the input vector 𝑥

• Generalized linear model

Log
𝑧

1 − 𝑧The logit function

CS 472/572: Machine Learning

The Logistic Function

The logistic function squashes a real number in the
range (-∞,+∞) into the range (0,1) (inverse of the logit function).

�(z) =
1

1 + exp(�z)

CS 472/572: Machine Learning

Understanding Sigmoids

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w1=1, b = 0

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w1=1, b=-2

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w1= 0.5, b = 0

�(w1x1 + b) =
1

1 + exp(�(w1x1 + b))

CS 472/572: Machine Learning

Logistic Regression

P (y|x) = �(wTx+ b) =
1

1 + exp(�(wTx+ b))

Example: Logistic function for two input features x1 and x2:

CS 472/572: Machine Learning

Very convenient for two classes

implies

implies

implies

linear classification
rule!

Y=0 if the RHS>0

8©Carlos Guestrin 2005-2009

CS 472/572: Machine Learning

Learning Logistic Regression

Key idea: Choose a model where reality is probable.
Probability of the true labels given the data:

Conditional log-likelihood

log
Y

(x,y)2D

P̂ (y|x) =
X

(x,y)2D

� log(1 + exp(�y(wTx+ b)))

Y

(x,y)2D

P̂ (y|x) =
Y

(x,y)2D

1

1 + exp(�y(wTx+ b))

(Negative) logistic loss

Maximize the log-likelihood
= Minimize negative log-likelihood
= Minimize logistic loss

CS 472/572: Machine Learning

Why logistic loss?

• How’s about the 0/1 loss:
• 0-1 loss is non-smooth – a small change in a

parameter could lead to a BIG change in
accuracy! (How?)

• What do we want beyond smoothness?

CS 472/572: Machine Learning

Convex functions

CS 472/572: Machine Learning

Examples of Loss Functions

linear models 87

If you remember from calculus, a convex function is one that looks
like a happy face (^). (On the other hand, a concave function is one
that looks like a sad face (_); an easy mnemonic is that you can hide
under a concave function.) There are two equivalent definitions of
a concave function. The first is that it’s second derivative is always
non-negative. The second, more geometric, defition is that any chord

of the function lies above it. This is shown in Figure ??. There you
can see a convex function and a non-convex function, both with two
chords drawn in. In the case of the convex function, the chords lie
above the function. In the case of the non-convex function, there are
parts of the chord that lie below the function.

Convex functions are nice because they are easy to minimize. Intu-
itively, if you drop a ball anywhere in a convex function, it will even-
tually get to the minimum. This is not true for non-convex functions.
For example, if you drop a ball on the very left end of the S-function
from Figure 6.2, it will not go anywhere.

This leads to the idea of convex surrogate loss functions. Since
zero/one loss is hard to optimize, you want to optimize something
else, instead. Since convex functions are easy to optimize, we want
to approximate zero/one loss with a convex function. This approxi-
mating function will be called a surrogate loss. The surrogate losses
we construct will always be upper bounds on the true loss function:
this guarantees that if you minimize the surrogate loss, you are also
pushing down the real loss.

Figure 6.4: surrogate loss fns

There are four common surrogate loss function, each with their
own properties: hinge loss, logistic loss, exponential loss and
squared loss. These are shown in Figure 6.4 and defined below.
These are defined in terms of the true label y (which is just {�1,+1})
and the predicted value ŷ = w · x + b.

Zero/one: `(0/1)(y, ŷ) = 1[yŷ  0] (6.3)

Hinge: `(hin)(y, ŷ) = max{0, 1 � yŷ} (6.4)

Logistic: `(log)(y, ŷ) =
1

log 2
log (1 + exp[�yŷ]) (6.5)

Exponential: `(exp)(y, ŷ) = exp[�yŷ] (6.6)

Squared: `(sqr)(y, ŷ) = (y � ŷ)2 (6.7)

In the definition of logistic loss, the 1
log 2 term out front is there sim-

ply to ensure that `(log)(y, 0) = 1. This ensures, like all the other
surrogate loss functions, that logistic loss upper bounds the zero/one
loss. (In practice, people typically omit this constant since it does not
affect the optimization.)

There are two big differences in these loss functions. The first
difference is how “upset” they get by erroneous predictions. In the

CS 472/572: Machine Learning

CS 472/572: Machine Learning

Learning Logistic Regression
• Given the training data, how can we find the model

parameters that would minimize the negative log-likelihood?

• Bad news: no closed-form solution to maximize the negative
log-likelihood

• Good news: The negative log-likelihood function is concave
function of w!
– No local minima

– Concave functions easy to optimize
• Optimization techniques: finding the minimum/maximum of

multivariate functions.
• So, machine learning is sort of

Model + Cost function + Optimization technique

CS 472/572: Machine Learning

Gradient Descent

Q: Suppose you want to avoid a flood. How do you
find a high place?
A: Walk uphill!

Q: And if you want to find a low place?
A: Walk downhill!

Q: And if you want to minimize a function?
A: Gradient descent!

CS 472/572: Machine Learning

Gradient Descent

CS 472/572: Machine Learning

Gradient Descent

90 a course in machine learning

... be sure to do enough to do the closed for squared error
MATH REVIEW | GRADIENTS

Figure 6.6:

Algorithm 22 GradientDescent(F , K, h1, . . .)
1: z(0) h0, 0, . . . , 0i // initialize variable we are optimizing
2: for k = 1 . . . K do
3: g(k) rzF|z(k-1) // compute gradient at current location
4: z(k) z(k-1) � h(k)g(k) // take a step down the gradient
5: end for
6: return z(K)

6.4 Optimization with Gradient Descent

Envision the following problem. You’re taking up a new hobby:
blindfolded mountain climbing. Someone blindfolds you and drops
you on the side of a mountain. Your goal is to get to the peak of the
mountain as quickly as possible. All you can do is feel the mountain
where you are standing, and take steps. How would you get to the
top of the mountain? Perhaps you would feel to find out what direc-
tion feels the most “upward” and take a step in that direction. If you
do this repeatedly, you might hope to get the the top of the moun-
tain. (Actually, if your friend promises always to drop you on purely
concave mountains, you will eventually get to the peak!)

The idea of gradient-based methods of optimization is exactly the
same. Suppose you are trying to find the maximum of a function
f (x). The optimizer maintains a current estimate of the parameter of
interest, x. At each step, it measures the gradient of the function it
is trying optimize. This measurement occurs at the current location,
x. Call the gradient g. It then takes a step in the direction of the
gradient, where the size of the step is controlled by a parameter h

(eta). The complete step is x x + hg. This is the basic idea of
gradient ascent.

The opposite of gradient ascent is gradient descent. All of our
learning problems will be framed as minimization problems (trying
to reach the bottom of a ditch, rather than the top of a hill). There-
fore, descent is the primary approach you will use. One of the major
conditions for gradient ascent being able to find the true, global min-

imum, of its objective function is convexity. Without convexity, all is
lost.

The gradient descent algorithm is sketched in Algorithm 6.4.
The function takes as arguments the function F to be minimized,
the number of iterations K to run and a sequence of learning rates

log
Y

(x,y)2D

P̂ (y|x) =
X

(x,y)2D

� log(1 + exp(�y(wTx+ b)))ℱ = -

For logistic regression:

CS 472/572: Machine Learning

Gradient of Logistic Loss
@L
@wi

=
X

(x,y)2D

1

1 + exp(y(wTx+ b))
y xi

@L
@b

=
X

(x,y)2D

1

1 + exp(y(wTx+ b))
y

-

-

Try it!

CS 472/572: Machine Learning

Convergence Rate

For strongly convex functions:

92 a course in machine learning

the gradient points in the direction �ynxn, so the update is of the
form w w + cynxn, where c is some constant. This is just like
the perceptron update! Note that c is large for very poorly classified
points and small for relatively well classified points.

By looking at the part of the gradient related to the regularizer,
the update says: w w � lw = (1� l)w. This has the effect of
shrinking the weights toward zero. This is exactly what we expect the
regulaizer to be doing!

Figure 6.7: good and bad step sizes

The success of gradient descent hinges on appropriate choices
for the step size. Figure 6.7 shows what can happen with gradient
descent with poorly chosen step sizes. If the step size is too big, you
can accidentally step over the optimum and end up oscillating. If the
step size is too small, it will take way too long to get to the optimum.
For a well-chosen step size, you can show that gradient descent will
approach the optimal value at a fast rate. The notion of convergence
here is that the objective value converges to the true minimum.

Theorem 7 (Gradient Descent Convergence). Under suitable condi-
tions1, for an appropriately chosen constant step size (i.e., h1 = h2, · · · = 1 Specifically the function to be opti-

mized needs to be strongly convex.
This is true for all our problems, pro-
vided l > 0. For l = 0 the rate could
be as bad as O(1/

p
k).

h), the convergence rate of gradient descent is O(1/k). More specifi-
cally, letting z⇤ be the global minimum of F , we have: F (z(k))� F (z⇤) 
2||z(0)�z⇤||2

hk) .

A naive reading of this theorem
seems to say that you should choose
huge values of h. It should be obvi-
ous that this cannot be right. What
is missing?

?
The proof of this theorem is a bit complicated because it makes

heavy use of some linear algebra. The key is to set the learning rate
to 1/L, where L is the maximum curvature of the function that is
being optimized. The curvature is simply the “size” of the second
derivative. Functions with high curvature have gradients that change
quickly, which means that you need to take small steps to avoid
overstepping the optimum.

This convergence result suggests a simple approach to decid-
ing when to stop optimizing: wait until the objective function stops
changing by much. An alternative is to wait until the parameters stop
changing by much. A final example is to do what you did for percep-
tron: early stopping. Every iteration, you can check the performance
of the current model on some held-out data, and stop optimizing
when performance plateaus.

6.5 From Gradients to Subgradients

As a good exercise, you should try deriving gradient descent update
rules for the different loss functions and different regularizers you’ve
learned about. However, if you do this, you might notice that hinge
loss and the 1-norm regularizer are not differentiable everywhere! In

ß Doubling the number of iterations cuts the error in half.

CS 472/572: Machine Learning

The effect of learning rate
Q: What’s an “appropriately chosen constant step size”?
A: 1/L where L is the curvature of the function.

Many variants – adaptive learning rates, line search, or momentum
terms to speed up convergence.

CS 472/572: Machine Learning

The second order methods
• The Newton’s method to find the zero of a function: 𝑔: ℝ →

ℝ

• Applying to machine learning to minimize 𝐽, so finding the
zero of the gradient 𝐽’

• So, no step size needed
• If the error function is quadratic, this will find the minimum in

one step!
• But, we need to compute the second-order derivatives (the

Hessian matrix)

CS 472/572: Machine Learning

Stochastic Gradient

• Perceptron algorithm: Update model immediately
after each misprediction.

• Gradient descent: Compute gradient over all
examples before updating.

What if we instead compute the gradient on a
randomly chosen subset of the data?
Advantages?
Disadvantages?

CS 472/572: Machine Learning

Mini batching

• A way to approximate the gradient computation
over the whole training data

• Cons:
– Not guaranteed to give us the steepest direction

• Pros:
– Efficient (very often, you won’t be able to load all your

training data into memory for computation)
– Less variance on gradient than stochastic gradient

descent (batch size = 1)
– Might be a way to jump out of shallow minima

CS 472/572: Machine Learning

Large parameters…

• Maximum likelihood solution: prefers higher weights
– higher likelihood of (properly classified) examples close to

decision boundary
– larger influence of corresponding features on decision
– can cause overfitting!!!

• Regularization: penalize high weights

p lo t 1⇧⇤1�e^ ⇥x⌅ from ⇥5 to 5 th ick

Input in terpre ta tion :

Show� p lot
1

⇤⇥x � 1
x � ⇥ 5 to 5 ⇥

Resu lt :

⇥ 4 ⇥2 2 4

0.2

0.4

0.6

0.8

1.0

Genera ted by Wolfram |Alpha (www.wolfram alpha.com) on January 30, 2012 from Cham paign, IL.

© Wolfram Alpha LLC—A Wol fram Research Com pany
1

p lo t 1⇧⇤1�e^ ⇤⇥2x⌅⌅ from ⇥5 to 5 th ick

Input in terpre ta tion :

Show� p lot
1

⇤⇥2x � 1
x � ⇥ 5 to 5 ⇥

Resu lt :

⇥ 4 ⇥2 2 4

0.2

0.4

0.6

0.8

1.0

Genera ted by Wolfram |Alpha (www.wolfram alpha.com) on January 30, 2012 from Cham paign, IL.

© Wolfram Alpha LLC—A Wol fram Research Com pany
1

p lo t 1⇧⇤1�e^ ⇤⇥10x⌅⌅ from ⇥5 to 5 th ick

Input in terpre ta tion :

Show� p lot
1

⇤⇥10x � 1
x � ⇥ 5 to 5 ⇥

Resu lt :

⇥ 4 ⇥2 2 4

0.2

0.4

0.6

0.8

1.0

Genera ted by Wolfram |Alpha (www.wolfram alpha.com) on January 30, 2012 from Cham paign, IL.

© Wolfram Alpha LLC—A Wol fram Research Com pany
1

error =
�

i

(ti � t̂i)
2 =

�

i

⇤
ti �

�

k

wkhk(xi)

⌅2

P (Y = 1|X) ⇥ exp(w10 +
�

i

w1iXi)

P (Y = 2|X) ⇥ exp(w20 +
�

i

w2iXi)

P (Y = r|X) = 1�
r�1�

j=1

P (Y = j|X)

=
�

j

yj ln
ew0+

P
i wiXi

1 + ew0+
P

i wiXi
+ (1� yj) ln

1

1 + ew0+
P

i wiXi

�l(w)

�w
=

�

j

xj
i

�
yj � P (Y j = 1|xj , w)

⇥

�l(w)

�w
=

�

j

⇧
�

�w
yj(w0 +

�

i

wix
j
i)�

�

�w
ln

⇤
1 + exp(w0 +

�

i

wix
j
i)

⌅⌃

=
�

j

⇧
yjxj

i �
xj

i exp(w0 +
⌥

i wix
j
i)

1 + exp(w0 +
⌥

i wix
j
i)

⌃

=
�

j

xj
i

⇧
yj �

exp(w0 +
⌥

i wix
j
i)

1 + exp(w0 +
⌥

i wix
j
i)

⌃

1

1 + e�ax

3

a=1 a=5 a=10

CS 472/572: Machine Learning

Why small weights correspond to
simpler solution/function?

• Remember the Occam’s razor?
• What does it mean by simple functions?
• Image a linear classifier:

• Large 𝑤!might changes 𝑎 a lot when 𝑥! only
changes a little, so high variance

• Simple functions mean small variance
• High variance has higher chance to overfit (the

bias and variance tradeoff)

42 a course in machine learning

not. Firing is interpreted as being a positive example and not firing is
interpreted as being a negative example. In particular, if the weighted
sum is positive, it “fires” and otherwise it doesn’t fire. This is shown
diagramatically in Figure 4.2.

Mathematically, an input vector x = hx1, x2, . . . , xDi arrives. The
neuron stores D-many weights, w1, w2, . . . , wD. The neuron computes
the sum:

a =
D

Â
d=1

wdxd (4.1)

to determine it’s amount of “activation.” If this activiation is posi-
tive (i.e., a > 0) it predicts that this example is a positive example.
Otherwise it predicts a negative example.

The weights of this neuron are fairly easy to interpret. Suppose
that a feature, for instance “is this a System’s class?” gets a zero
weight. Then the activation is the same regardless of the value of
this feature. So features with zero weight are ignored. Features with
positive weights are indicative of positive examples because they
cause the activation to increase. Features with negative weights are
indicative of negative examples because they cause the activiation to
decrease. What would happen if we encoded

binary features like “is this a Sys-
tem’s class” as no=0 and yes=�1
(rather than the standard no=0 and
yes=+1)?

?
It is often convenient to have a non-zero threshold. In other

words, we might want to predict positive if a > q for some value
q. The way that is most convenient to achieve this is to introduce a
bias term into the neuron, so that the activation is always increased
by some fixed value b. Thus, we compute:

a =

"
D

Â
d=1

wdxd

#
+ b (4.2)

If you wanted the activation thresh-
old to be a > q instead of a > 0,
what value would b have to be?

?This is the complete neural model of learning. The model is pa-
rameterized by D-many weights, w1, w2, . . . , wD, and a single scalar
bias value b.

4.2 Error-Driven Updating: The Perceptron Algorithm

The perceptron is a classic learning algorithm for the neural model
of learning. Like K-nearest neighbors, it is one of those frustrating
algorithms that is incredibly simple and yet works amazingly well,
for some types of problems.

The algorithm is actually quite different than either the decision
tree algorithm or the KNN algorithm. First, it is online. This means
that instead of considering the entire data set at the same time, it only
ever looks at one example. It processes that example and then goes

CS 472/572: Machine Learning

Weight Regularization

Q: How do we prevent overfitting for parametric
models?
A: Adjust our inductive bias with a
regularization function which penalizes large
weights (or anything else we wish to avoid).
Regularized loss function:

88 a course in machine learning

case of hinge loss and logistic loss, the growth of the function as ŷ
goes negative is linear. For squared loss and exponential loss, it is
super-linear. This means that exponential loss would rather get a few
examples a little wrong than one example really wrong. The other
difference is how they deal with very confident correct predictions.
Once yŷ > 1, hinge loss does not care any more, but logistic and
exponential still think you can do better. On the other hand, squared
loss thinks it’s just as bad to predict +3 on a positive example as it is
to predict �1 on a positive example.

6.3 Weight Regularization

In our learning objective, Eq (??), we had a term correspond to the
zero/one loss on the training data, plus a regularizer whose goal
was to ensure that the learned function didn’t get too “crazy.” (Or,
more formally, to ensure that the function did not overfit.) If you re-
place to zero/one loss with a surrogate loss, you obtain the following
objective:

min
w,b

Â
n
`(yn, w · xn + b) + lR(w, b) (6.8)

The question is: what should R(w, b) look like?
From the discussion of surrogate loss function, we would like

to ensure that R is convex. Otherwise, we will be back to the point
where optimization becomes difficult. Beyond that, a common desire
is that the components of the weight vector (i.e., the wds) should be
small (close to zero). This is a form of inductive bias.

Why are small values of wd good? Or, more precisely, why do
small values of wd correspond to simple functions? Suppose that we
have an example x with label +1. We might believe that other ex-
amples, x0 that are nearby x should also have label +1. For example,
if I obtain x0 by taking x and changing the first component by some
small value e and leaving the rest the same, you might think that the
classification would be the same. If you do this, the difference be-
tween ŷ and ŷ0 will be exactly ew1. So if w1 is reasonably small, this
is unlikely to have much of an effect on the classification decision. On
the other hand, if w1 is large, this could have a large effect.

Another way of saying the same thing is to look at the derivative
of the predictions as a function of w1. The derivative of w, x ·+b with
respect to w1 is:

∂w, x ·+b
∂w1

=
∂ [Âd wdxd + b]

∂w1
= x1 (6.9)

Interpreting the derivative as the rate of change, we can see that
the rate of change of the prediction function is proportional to the

CS 472/572: Machine Learning

P-Norms

• Common loss functions:
– L2 norm of weight vector (square root of sum of

squared weights)
– L1 norm of weight vector (sum of absolute

weights)

• Generalizing these:

linear models 89

individual weights. So if you want the function to change slowly, you
want to ensure that the weights stay small.

One way to accomplish this is to simply use the norm of the

weight vector. Namely R(norm)(w, b) = ||w|| =
q

Âd w2
d. This function

is convex and smooth, which makes it easy to minimize. In prac-
tice, it’s often easier to use the squared norm, namely R(sqr)(w, b) =

||w||2 = Âd w2
d because it removes the ugly square root term and

remains convex. An alternative to using the sum of squared weights
is to use the sum of absolute weights: R(abs)(w, b) = Âd |wd|. Both of
these norms are convex. Why do we not regularize the bias

term b??In addition to small weights being good, you could argue that zero
weights are better. If a weight wd goes to zero, then this means that
feature d is not used at all in the classification decision. If there are a
large number of irrelevant features, you might want as many weights
to go to zero as possible. This suggests an alternative regularizer:
R(cnt)(w, b) = Âd 1[xd 6= 0].

Why might you not want to use
R(cnt) as a regularizer??

This line of thinking leads to the general concept of p-norms.
(Technically these are called `p (or “ell p”) norms, but this notation
clashes with the use of ` for “loss.”) This is a family of norms that all
have the same general flavor. We write ||w||p to denote the p-norm of
w.

||w||p =

Â
d
|wd|p

! 1
p

(6.10)

You can check that the 2-norm exactly corresponds to the usual Eu-
clidean norm, and that the 1-norm corresponds to the “absolute”
regularizer described above. You can actually identify the R(cnt)

regularizer with a p-norm as well.
Which value of p gives it to you?
(Hint: you may have to take a limit.)

?

Figure 6.5: loss:norms2d: level sets of
the same p-norms

When p-norms are used to regularize weight vectors, the interest-
ing aspect is how they trade-off multiple features. To see the behavior
of p-norms in two dimensions, we can plot their contour (or level-

set). Figure 6.5 shows the contours for the same p norms in two
dimensions. Each line denotes the two-dimensional vectors to which
this norm assignes a total value of 1. By changing the value of p, you
can interpolate between a square (the so-called “max norm”), down
to a circle (2-norm), diamond (1-norm) and pointy-star-shaped-thing
(p < 1 norm).

The max norm corresponds to
limp!•. Why is this called the max
norm?

?

In general, smaller values of p “prefer” sparser vectors. You can
see this by noticing that the contours of small p-norms “stretch”
out along the axes. It is for this reason that small p-norms tend to
yield weight vectors with many zero entries (aka sparse weight vec-
tors). Unfortunately, for p < 1 the norm becomes non-convex. As
you might guess, this means that the 1-norm is a popular choice for
sparsity-seeking applications.

What if 𝑝 = 0?

CS 472/572: Machine Learning

P-Norms

Isosurfaces: | 𝑤 |! = const

CS 472/572: Machine Learning

L2 Regularization (Ridge Regression)

CS 472/572: Machine Learning

L1 Regularization (Lasso)

The p in Lp norm: a trade-off between convexity and sparsity

CS 472/572: Machine Learning

Justify L1 and L2 with Bayes Learning

• We assume all the hypothesis are equally
likely to obtain the maximum likelihood
principal with Bayes Learning

• If we impose some priors over 𝑃(ℎ), the
solution will be different.

CS 472/572: Machine Learning

Maximum A Posteriori

• Common priors on w
- Normal distribution, zero mean, diagonal covariance

- Laplace distribution

• Normal Distribution: log 𝑝 𝑤 = !"!

#$!
+ constants = L2 regularizer

• Laplace distribution: log 𝑝 𝑤 = − 𝑤 + constants = L1 regularizer.

𝑝 𝑤 =
1
2
,
"

𝑒#|%!|

