CS 472/572: Machine Learning

Logistic Regression

Based on slides by Daniel Lowd, Vibhav Gogate,
Carlos Guestrin, Luke Zettlemoyer and Dan Weld.
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Predicting Probabilities

* We have mainly talked about binary classification

e Qur decision rule always give one type with 100%
confidence for a given example (e.g., Spam nor Not)

 What if an email has a 60% chance of being spam?
 What if there is a 30% chance of rain?

 What if a mushroom has a 10% probability of being
poisonous?

 We want to be able to talk about uncertainty or the
probability of a type given an example.
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Logistic Regression

O

Predict class probabilities P(Y|X) with a linear
model: still compute a linear predictor (based
on the linear combination of parameters),
then transform it into a probability

How do we turn (w x + b) into a probability?
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* By linear models, we mean that the hypothesis
function h,, (x) is a linear function of the parameters
w, not the linear function of the input vector x

O

Linear models in general

Generalized linear model

e Logistic regression is a special case of a generalized linear model:
E[Y | x| =g Y(w'x).

g is called the link function, it relates the mean of the response to the
linear predictor.

e Linear regression: E[Y | x] = E[w'x+¢ | x] = w'x (g is the identity).

e Logistic regression: E[Y |x]=P(Y =1 |x) =o(w'x
e Poisson regression: E[Y | x| = exp(w 'x) (for count data
e ...
The logit function Log
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The Logistic Function

The logistic function squashes a real number in the
range (-oo,+°°) into the range (0,1) (inverse of the logit function).
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Understanding Sigmoids

1
1 + exp(—(wiz1 + b))

O'(wlilfl -+ b) —

w,=1, b=-2 w;=1,b=0 w,;=0.5,b=0
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Logistic Regression

P(y|lr) = o(w

Example: Logistic function for two input features x; and x,:
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Very convenient for two classes
1

P(Y =1|X =< Xq,..Xp >) =
' " 1+ exp(wg + X w; X;)

implies

exp(wg + >2; w; X;)
1+ exp(wg + >, w; X;)

P(Y =0|X =< X1,..Xp>) =

implies
P(Y = 0|X)
POT= 0 _ g+ 30y
2 linear classification
rulel!
|mpI|es . Y=0 if the RHS>0
" P(Y =0]X) n Z X
= w w; X;
P(Yy =1|X) &
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Learning Logistic Regression

Key idea: Choose a model where reality is probable.

Probability of the true labels given the data:

R 1
I Pelo="11 oo )

(x,y)eD (x,y)eD
log || Pwlz)= > —log(l+exp(—y(w"z+b)))
(z,y)€D 4 (z,y)€D f
Conditional log-likelihood (Negative) logistic loss

Maximize the log-likelihood
= Minimize negative log-likelihood
= Minimize logistic loss

O
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Why logistic loss?

* How’s about the 0/1 loss: min ) 1[y(w-x:+b) > 0]

* 0-1loss is non-smooth —a small change in a
parameter could lead to a BIG change in

accuracy! (How?)
 What do we want beyond smoothness?
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Convex functions

e A function f: R? — R is convex if for all a,b € R%, X € [0,1]:
f(ha+ (1-X)b) < Af(a)+ (1—A)f(b).

e If f and g are convex functions, af + B¢ is also convex for any real
numbers  and S.

e First-order characterization:
f is convex < for all a,b: f(a) > f(b) + Vf(b)'(a—Db)

(the function is globally above the tangent at b).
e Second-order characterization:

f is convex < the Hessian of f is positive semi-definite.

The Hessian contains the second-order derivatives of f:

82f

il 6:1718:17] .

It is positive semi-definite if a’ Ha > 0 for all a € R¢.
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Examples of Loss Functions

Zero/one:

Hinge:
Logistic:

Exponential:

Squared:

O
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Learning Logistic Regression

* Given the training data, how can we find the model
parameters that would minimize the negative log-likelihood?

* Bad news: no closed-form solution to maximize the negative
log-likelihood

* Good news: The negative log-likelihood function is concave
function of w!
— No local minima

— Concave functions easy to optimize

e Optimization techniques: finding the minimum/maximum of
multivariate functions.

* So, machine learning is sort of
Model + Cost function + Optimization technique
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Gradient Descent

Q: Suppose you want to avoid a flood. How do you
find a high place?
A: Walk uphill!

Q: And if you want to find a low place?
A: Walk downhill!

Q: And if you want to minimize a function?
A: Gradient descent!

O
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Gradient Descent
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Gradient Descent

Algorithm 22 GRADIENTDESCENT(F, K, 771, .. .)

v 20« {0,0,...,0) // initialize variable we are optimizing
= fork=1...Kdo

3 §M +— Vi F|u // compute gradient at current location
¢z Z1) gk // take a step down the gradient
5. end for

e return z®

For logistic regression:

F = -log H P(y|z) = Z log(1 + exp(—y(w! z +b)))

(x,y)€D (z,y)€ED
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O

Gradient of Logistic Loss

T T v
ow; (o g)eD 1 + exp(y(w!x + b))
0L 1
9 'Z T Y
0b (o g)eD 1 + exp(y(w!x + b))
Try it!
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Convergence Rate

For strongly convex functions:

O

Theorem 7 (Gradient Descent Convergence). Under suitable condi-
tions®, for an appropriately chosen constant step size (i.e., 11 = 1jp,- -+ =
1), the convergence rate of gradient descent is O(1/k). More specifi-
cally, letting z* be the global minimum of F, we have: F (z®) — F(z*) <

0 2 . . . .
2| |Z( )_)Z*| ‘ < Doubling the number of iterations cuts the error in half.
nk '
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The effect of learning rate

Q: What’s an “appropriately chosen constant step size”?
A: 1/L where L is the curvature of the function.

Many variants — adaptive learning rates, line search, or momentum
terms to speed up convergence.

Big learning rate Small learning rate

UNIVERSITY OF OREGON

O




CS 472/572: Machine Learning

The second order methods

The Newton’s method to find the zero of a function: g: R —
R

i+l i g(w')
ST T g
Applying to machine learning to minimize J, so finding the
zero of the gradient J’

w =w —

So, no step size needed

If the error function is quadratic, this will find the minimum in
one step!

But, we need to compute the second-order derivatives (the
Hessian matrix)
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Stochastic Gradient

e Perceptron algorithm: Update model immediately
after each misprediction.

* Gradient descent: Compute gradient over all
examples before updating.

What if we instead compute the gradient on a
randomly chosen subset of the data?

Advantages?
Disadvantages?

O

UNIVERSITY OF OREGON



CS 472/572: Machine Learning

Mini batching

* A way to approximate the gradient computation
over the whole training data

e Cons:

— Not guaranteed to give us the steepest direction
* Pros:

— Efficient (very often, you won’t be able to load all your
training data into memory for computation)

— Less variance on gradient than stochastic gradient
descent (batch size = 1)

— Might be a way to jump out of shallow minima
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Large parameters... e
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a=1 3=5 a=10
 Maximum likelihood solution: prefers higher weights

— higher likelihood of (properly classified) examples close to
decision boundary

— larger influence of corresponding features on decision

— can cause overfitting!!!
* Regularization: penalize high weights

O
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Why small weights correspond to

simpler solution/function?

e Remember the Occam’s razor?

 What does it mean by simple functions?

* Image a linear classifier:
a =

. _
Y wyxy
d=1

+0b

* Large wymight changes a a lot when xd_ only
changes a little, so high variance

e Simple functions mean small variance
e High variance has higher chance to overfit (the

bias and variance tradeoff)
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Weight Regularization

Q: How do we prevent overfitting for parametric
models?

A: Adjust our inductive bias with a
regularization function which penalizes large
weights (or anything else we wish to avoid).

Regularized loss function:

miz? Y L(yn,w - x4+ b) + AR(w,b)
w, n

O
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P-Norms

e Common loss functions:

— L, norm of weight vector (square root of sum of
squared weights)

— L, norm of weight vector (sum of absolute
weights)

* Generalizing these:

|lwll, = (;\wd\P>

What if p = 0?

—_

p

O
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P-Norms

| ,//---- - \\_
o "‘\\ " /"- ; ‘5.. '...T
Y |
p=3 p=1 p=2

p =

Isosurfaces: ||w||,, = const

O
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L2 Regularization (Ridge Regression)

w2 5

NI

e If Xis at a “good” value, regularization helps to avoid overfitting

e Choosing A may be hard: cross-validation is often used

e If there are irrelevant features in the input (i.e. features that do not
affect the output), Lo will give them small, but non-zero weights.

Ideally, irrelevant input should have weights exactly equal to 0.
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L1 Regularization (Lasso)

w2 g

e If X\ is big enough, the circle is very likely to intersect the diamond at
< @ one of the corners
> e This makes L; regularization much more likely to make some weights
exactly 0

L
N

e |f there are irrelevant input features, Lasso is likely to make their weights
0, while L5 is likely to just make all weights small

e Lasso is biased towards providing sparse solutions in general
e Lasso optimization is computationally more expensive than Lo

e More efficient solution methods have to be used for large numbers of
inputs (e.g. least-angle regression, 2003).

The p in Lp norm: a trade-off between convexity and sparsity
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Justify L1 and L2 with Bayes Learning

hayrap = argmax P(D|h)P(h)
heH

 We assume all the hypothesis are equally
likely to obtain the maximum likelihood
principal with Bayes Learning

* If we impose some priors over P(h), the
solution will be different.
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Maximum A Posteriori

h — P(D|h)P(h
MAP = argmax (D|h)P(h)

* Common priors on w

- Normal distribution, zero mean, diagonal covariance

p(w) =1]]

1 —Y
Pl 21

e 22

- Laplace distribution

1
p(w) = El_[ e~ Vil

* Normal Distribution: logp(w) =

2

w .
Sz T constants = 1.2 regularizer

» Laplace distribution: logp(w) = — |w| + constants = L1 regularizer.
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