CS 472/572: Machine Learning

Neural Networks

Based on slides by Gilles Louppe, Daniel Lowd

UNIVERSITY OF OREGON

O

CS 472/572: Machine Learning

Threshold Logic Unit

The Threshold Logic Unit (McCulloch and Pitts, 1943) was the first mathematical
model for a neuron. Assuming Boolean inputs and outputs, it is defined as:

f(x) = L5, wizi +b>0}
This unit can implement:
o or(a,b) = 1414050
e and(a,b) = 144441550}

» not(a) = 14,1050

UNIVERSITY OF OREGON

O

CS 472/572: Machine Learning

Perceptron

The perceptron (Rosenblatt, 1957) is very similar, except that the inputs are real:

0 otherwise

f(x) =

This model was originally motivated by biology, with w; being synaptic weights
and z; and f firing rates.

UNIVERSITY OF OREGON

O

CS 472/572: Machine Learning

Perceptron

10 -

0.8 -

0.6 -

04 -

0.2 -

0.0 -

ign(z) 1 ifz>0
sign(x) =
g 0 otherwise

! ! | | | l | |
-100 -75 -50 -25 0.0 25 50 75

The perceptron classification rule can be rewritten as

O UNIVERSITY OF OREGON

f(x) = sign(z w;x; + b).

|
10.0

CS 472/572: Machine Learning

Computational Graphs

Computational graphs

)

add

@_. :

lV y

sign

_,@

O UNIVERSITY OF OREGON

The computation of

flx)i= sign(z w;x; + b)

can berepresented as a
computational graph where

e white nodes correspond to
inputs and outputs;

e red nodes correspond to
model parameters;

¢ blue nodes correspond to
intermediate operations.

CS 472/572: Machine Learning

Computational Graphs

In terms of tensor operations, f can be rewritten as
f(x) = sign(w’x +b),

for which the corresponding computational graph of f is:

P
®., R

UNIVERSITY OF OREGON

» sign —@

O

CS 472/572: Machine Learning

How can we deal with non-linearly separable
data?

Linear classifiers
cannot solve this

X,

O

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Remember Logistic Regression?

Same model
Pl =lx) = (wa +b)
as for linear discriminant analysis.

But,

e ignore model assumptions (Gaussian class populations, homoscedasticity);

e instead, find w, b that maximizes the likelihood of the data.

UNIVERSITY OF OREGON

O

CS 472/572: Machine Learning

O

Computational Graphs

T
@_,doteadd_,

o)

_,@

This unit is the lego brick of all neural networks!

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

O

The logit loss

L(w,b)

UNIVERSITY OF OREGON

Z log o (y;(w xz+b)))

x;,y;€d

CS 472/572: Machine Learning

Cross Entropy

We have,

arg max P(d|w,b)

w,

=are fiax P(Y = yi|xi,w,b)
w,b x'iayied

= arg max o(wlx; +b)¥ (1 —o(wlx; + b)) ¥
ol xi,yi€d

— arg min Y —yilogo(wlx; +b) — (1 —y;)log(l — o(w'x; +b))
il x;,yi€d

"~

ﬁ(W,b)Zzz é(yia@(xi ;W,b))

This loss is an instance of the cross-entropy
H(p,q) = Ep[—logg]

forp =Y |x;andq = Y|x;.

UNIVERSITY OF OREGON

O

CS 472/572: Machine Learning

Gradient Descent

Let £(0) denote a loss function defined over model parameters 6 (e.g., w and b).

To minimize L£(#), gradient descent uses local linear information to iteratively
move towards a (local) minimum.

Forf, € R?, a first-order approximation around 0, can be defined as

A

1
L(0o+€) = L(60) + € VoL () + ZHGW.

6= —0.50,y=0.50

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Gradient Descent

A minimizer of the approximation 2(90 + €) is given for
VeL(Bo+€) =0
i}
= Vgﬁ(eo) o ;6,

which results in the best improvement for the stepe = —yVyL(6)).

Therefore, model parameters can be updated iteratively using the update rule
011 = 60 — YV L(0;),

where

e O, are the initial parameters of the model;
e 7visthelearningrate;

e both arecritical for the convergence of the update rule.

UNIVERSITY OF OREGON

O

CS 472/572: Machine Learning

Stochastic Gradient Descent

In the empirical risk minimization setup, L‘(()) and its gradient decompose as

X ycd

N

VE©) = D Ve F(xii0)).

X ycd

Therefore, in batch gradient descent the complexity of an update grows linearly
with the size IV of the dataset.

More importantly, since the empirical risk is already an approximation of the
expected risk, it should not be necessary to carry out the minimization with great
accuracy.

O UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Stochastic Gradient Descent

Instead, stochastic gradient descent usesasupdate rule:
Oi+1 = 0; — ‘}"Vf(y,u -l_)a,f(xl(!- 1)3 Hr))

* Iteration complexity is independent of V.

* The stochastic process {#,|t = 1,...} depends on the examples #(t) picked
randomly at each iteration.

== E=

Batchgradient descent Stochastic gradient descent

O UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Stochastic Gradient Descent

Why is stochastic gradient descent stilla good idea?

e Informally, averaging the update
Ori1 = 0; — ’}"V‘F(!/u;f ~1)3f(xzf.f £1)3 6:))

over allchoices i (t + 1) restores batch gradient descent.

e Formally, if the gradient estimate is unbiased, e.g., if

- |
h:u~1>[Vf(!/u.r-1;.,f(Xa(r~1)§9r))] - N Z \7f(y,,f(x,;9,))

X yied

= VL(6;)

then the formal convergence of SGD can be proved, under appropriate
assumptions

* Interestingly, if training examples x;, y; ~ Py y are received and used in an
online fashion, then SGD directly minimizes the expected risk.

O UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Stochastic Gradient Descent

When decomposing the excess error in terms of approximation, estimation and
optimization errors, stochastic algorithms yield the best generalization
performance (in terms of expected risk) despite being the worst optimization
algorithms (in terms of empirical risk) (Bottou, 2011).

E |R(f%) — R(fz)

= E[R(f.) - R(fs)] + E [R(f*) - R(£.)] +E |R(f¢) - R(f2)

-— é’upp . g é’«':«[" é’up(

O UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Divergence: Leave-one-out cross-validation

* Consider a training dataset with m examples. We need to
choose the best value for a hyper-parameter d:

1. For each d:

(a) Repeat the following procedure m times:
I. Leave out ith instance from the training set, to estimate the true
prediction error; we will put it in a validation set
ii. Use all the other instances to find best parameter vector, w ;
iii. Measure the error in predicting the label on the instance left out,
for the w, ; parameter vector; call this Jg ;
iv. Thisis a (. most/y) unbiased estimate of the true prediction error
(b) Compute the average of the estimated errors: J; = L Zz L Jdi

2. Choose the d with lowest average estimated error: d* = arg ming J(d)

Can also generalize to k-fold cross-validation: divide the training data into k even portions,
and use each portion as the validation data (the others are training data) in turn

O

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Divergence: Leave-one-out cross-validation

O

e Typical overfitting behavior: as d increases, the training error decreases,
but the validation error decreases, then starts increasing again

d | Errorg iy | Errory.iiq (Ja)
1 0.2188 0.3558
2 0.1504 0.3095
3 0.1384 0.4764
4 0.1259 1.1770
5 0.0742 1.2828
6| 0.0598 1.3896
7 0.0458 38.819
8 | 0.0000 6097.5
9 | 0.0000 6097.5

e Optimal choice: d = 2. Overfitting for d > 2

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Layers

So far we considered the logistic unith = o (wa + b),where heRxeRP,
w € RPandb € R

These units can be composed in parallel to form a layer with g outputs:
= (r(WTx +b)

whereh € R, x € R?, W € RP*7 b € R? and where o(-) is upgraded to the
element-wise sigmoid function.

A4

add

4
Q

_.®

@—r matmul

O UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Can we solve the non-linearly separate
data now?

Can logistic regression or
LDA solve this XOR problem

now (i.e., get zero error

Linear classifiers
cannot solve this

L
on the training data)? 2 -

O

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Can we solve the non-linearly separate
data now?

* With a single neuron, we cannot do it! No way to

draw a hyperplane to separate the data. This is why
neural nets die for the first time.

e But with two neurons, we can!

o 20x, + 20x, — 10)

o (20h, + 20h, - 30)

b=30 o (-20x, — 20x, + 30)

0(20*0 + 20*0-10) =0 0 (-20°0-20*0+30)=1 o0(20°0+20*1-30)=0
0(20*1 +20*1-10) = 1 0(-20*1-20%*1+30)=0 o0(20%*1+20%0-30)=0
0(20*0 + 20*1-10)= 1 o (-20*0-20%*1+30)=1 o0(20*1+20*1-30)=1
0(20*1 +20*0-10) =1 0(-20*1-20%*0+30)=1 o0(20*1+20*1-30)=1

UNIVERSITY OF OREGON

O

CS 472/572: Machine Learning

Multi-layer Perceptron/Neural Nets
(MLPs)

Similarly, layers can be composed in series, such that:

h” = X
h) =o(W'Thy +b,)

hy = ”(W;,‘hl, 1 + br)
f(x;0) =9y =hy
where € denotes the modelparameters { Wy, by, ...|k = 1, ..., L}.

This modelis the multi-layer perceptron, also known as the fully connected
feedforward network.

What if we don’t have the non-linear functions?

O UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Activation Functions

’

Also called “link functions’

sign(a) .

o(a) = 1+ e@

tanh(a) = ——
et +e ¢

ReLU(a) = max(a, 0)
SoftPlus(a) = log(1 + %)

a, for a > 0
ELU(a) = { ale* — 1), fora <0 }

UNIVERSITY OF OREGON

O

CS 472/572: Machine Learning

Computational Graph

'@D (1 @2) @) @

O

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Classification

* For binary classification, the width g of the last layer L is set to 1, which
results in a single output hz, € [0, 1] that models the probability
PLY =1x).

¢ For multi-class classification, the sigmoid action o in the last layer can be

generalized to produce a (normalized) vectorh; & [(), l]('of probability
estimates P(Y = i|x).

This activation is the Soft max function, where its i-th output is defined as

exp(z;)

-l
> i1 €xp(2;)

/_JJ

)

Softmax(z); =

fords 1. .uvilr.

What is the loss function in this multi-class setting?

O UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Regression

The last activation o can be skipped to produce unbounded output values
hr € R.

UNIVERSITY OF OREGON

O

CS 472/572: Machine Learning

Self-driving cars

UNIVERSITY OF OREGON

O

CS 472/572: Machine Learning

Self-driving cars

Sharp Straight Sharp
Left Ahead Right

30 Output
Units

30x32 Sensor
Input Retina

ALVINN: Autonomous Land Vehicle In a Neural Network (1989)

O UNIVERSITY OF OREGON

CS 472/572: Machine Learning

O

Automatic Differentiation

To minimize L£(6) with stochastic gradient descent, we need the gradient

Vl(6,).

Therefore, we require the evaluation of the (total) derivatives

d/f d/
<1Wk : (lbk

of the loss £ with respect to all modelparameters W, by, fork =1, ..., L.

These derivatives can be evaluated automatically fromthe computational graph
of £ using automatic differentiation.

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Chain Rule

C Rl

_.@

—» L

bbb

Let usconsider a 1-dimensional output composition f © g,such that

y = f(u)
u = g(z) = (g1(z), ..., gm()).

UNIVERSITY OF OREGON

O

CS 472/572: Machine Learning

Chain Rule

The chain rule statesthat (f o g)' = (f' o g)g.

For the total derivative, the chain rule generalizes to

m

dy ~— 9y duy.
dax Ouj. da
k=1 N

recursive case

UNIVERSITY OF OREGON

O

CS 472/572: Machine Learning

Reserve Automatic Differentiation

* Since a neural network is a composition of differential
functions, the total derivatives of the loss can be evaluated
backward, by applying the chain rule recursively over its
computational graph.

 The implementation of this procedure is called reserve
automatic differentiation.

UNIVERSITY OF OREGON

O

CS 472/572: Machine Learning

Example

Let usconsider a simplified 2-layer MLP and the following loss function:

f(x; W, W) =¢ (Wgn (fo))
((y,y; W1, Wy) =cross_ent(y,y) + A (||[Wil|2 + [[W2l|2)

forx € RP,y € R,W; € RF*7and W, € RY.

UNIVERSITY OF OREGON

O

CS 472/572: Machine Learning

Example

Let usconsider a simplified 2-layer MLP and the following loss function:

f(x; W, W,) =0 (WZU (W?x))

(y, §; W1, W) = cross_ent(y,) + A (|[Wi||2 + [[W2][2)
forx € RP,.y € R, W; € RP*7and W € R,

In the forward pass, intermediate values are all computed frominputs to outputs,
which results in the annotated computational graph below:

270

O O N OO %L
O UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Example

The totalderivative can be computed through a backward pass, by walking

through all paths from outputs to parametersin the computational graph and

accumulating the terms. For example, for (l‘\"'} we have:
|

dé 0l dug 3 ¢ duy
dW, Oug AW, Juy dW

dug

AW,

%@E-l

O DA

O UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Example

OHE DA DA

Let uszoom in on the computation of the network output 7 and of its derivative

with respect to W .

e Forward pass: valuesuy,uy, u3 and 4 are computed by traversing the graph
from inputs to outputsgiven x, W, and W .

e Backward pass: by the chain rule we have
dy 0y Oug duz 0w
dW, Ous Ouy Ouy OW,
0o (u3) OW T uy do(ur) OWT u
Oug Ouy duy oW,

Note how evaluating the partial derivatives requires the intermediate values
computed forward.

O UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Back-propagation

* This algorithm is also known as back-propagation

* An equivalent procedure can be defined to evaluate
the derivatives in forward mode, from inputs to
outputs.

e Since differentiation is a linear operator, automatic

differentiation can be implemented efficiently in
terms of tensor operations.

UNIVERSITY OF OREGON

O

CS 472/572: Machine Learning

Back-propagation

* Gradient descent + chain rule
 Want to minimize overall loss (e.g., squared loss):

* Gradient for outer weights v, where h,, is hidden units:
Vv — — Zenhn
n

UNIVERSITY OF OREGON

O

CS 472/572: Machine Learning

Back-propagation, continued:

2
L(W) = % <}/ - 2 oif (w;- x))

oL _ oL 9f;
Jw; Jdf; dw;
3—2 = = <y— Zi:vif(wi'x)> v; = —ev;
;g; — f/(w; - x)x
Vw, = —evif (w; - x)x

O

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

O

Vanishing Gradients

Training deep MLPs with many layers hasfor long (pre-2011) been very difficult
due to the vanishing gradient problem.

* Small gradients slow down, and eventually block, stochastic gradient
descent.

* This results in a limited capacity of learning.

100
Layer |
Layer 2
—Layer3
50 ~—Layer 4
Layer 5
02 015 001 -005 0 0.05 0.1 0.15 0.2

Backpropagated gradients

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010)

Gradients for layers far from the output vanish to zero.
UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Vanishing Gradients

Let usconsider a simplified 3-layer MLP, with =, w1, w2, w3 € I, such that

F (@5 w1, wa, w3) = o (wyo (wyo (w12)))

Under the hood, thiswould be evaluated as

U, = unx

uy = o(uy)
U3 =— woauz
uy = o(ug)
Us = W3y

y = o(ug)

and its derivative “ll‘” as

|
dy dy Ous Oug Ouz Oup Owy
dw, Our, Ouy Ouy Ouy Ouy Ow,
do(ug) Oo(uz) Oo(uy)
- | wo
Ous, Ous Ouy

O UNIVERSITY OF OREGON

CS 472/572: Machine Learning

O

Vanishing Gradients

The derivative of the sigmoid activation function o is:

Notice that) <

UNIVERSITY OF OREGON

-100 ~75 ~50 =25 00 25 S'O 15 100

do

(z) = o(2)(1 - o(x))

dz "

#9
1for all x.

&
i ()

CS 472/572: Machine Learning

Vanishing Gradients

Assume that weights w1, w2, w3 are initialized randomly from a Gaussian with
zero-mean and small variance, such that with high probability —1 < w; < 1.

Then,

(lg} 0”(us) UU(Uy) (r(u])
l = Ous 3, fu &; Ou; T

dw r 3 :
l \/,H\I/Hf-/ S N——

<1 vl i

i 1 3

This implies that the gradient (‘ll“"l exponentially shrinks to zero as the number of
layersin the network increases.

Hence the vanishing gradient problem.

* Ingeneral bounded activation functions (sigmoid, tanh, etc) are prone to the
vanishing gradient problem.

¢ Note the importance of a proper initialization scheme.

O UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Rectified Linear Units (RelLU)

Instead of the sigmoid activation function, modern neural networks are for most
based on rectified linear units (ReLU) (Glorot et al, 2011):

10 -

0 -

UNIVERSITY OF OREGON

O

ReLU(z) = max(0,z)

-100 ~75 =50 -25%

00

25

50

1%

100

CS 472/572: Machine Learning

Rectified Linear Units (RelLU)

Note that the derivative of the ReLU function is

d
—ReLU(z) =
e ReLU(z) {

Forz = 0, the derivative is undefined. In practice, it is set to zero.

O UNIVERSITY OF OREGON

10

08

06

04

02

00

0
1

ifz <0

otherwise

00

25

50 15

00

CS 472/572: Machine Learning

Rectified Linear Units (RelLU)

Therefore,

dy do(uz) Oo(uz) Oo(ur)
5 - :) W T
dw Ous, Oug Ouy

W > N - N -
e 2 B % W

| 1 1

This solves the vanishing gradient problem, even for deep networks! (provided
proper initialization)

Note that:

* The RelLU unit dies when its input is negative, which might block gradient
descent.

¢ Thisis actually a useful property to induce sparsity.

e Thisissue can also be solved using leaky ReLUs, defined as
LeakyReLU(z) = max(az, x)

forasmalla € R (eg.,a = 0.1).

O UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Sparsity in ReLU

* From biology: if the inputs sum to less than zero, don’t let the signal pass, but if it
sums to greater than zero, let the signal pass (hyperbolic tangent or sigmoid are
approximators, but cannot achieve true zero activation)

* Biological neurons encode information in a “sparse and distributed way”. This
means that the percentage of neurons that are active at the same time are very
low (1-4%).

Output

‘ Hidden layer 2

’ ‘ Hidden layer 1

Input

O UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Universal Approximation

Theorem. (Cybenko 1989; Hornik et al, 1991) Let o () be a bounded, non-
constant continuous function. Let I,, denote the p-dimensional hypercube, and
C'(I,) denote the space of continuous functionson I,,. Given any f € C'(I,,)
and € > 0, there exists g > 0 and v;,w;,b;,7 = 1, ..., g such that

F(z) = Z vio(w] x + b;)
tq

satisfies

sup | f(z) — F(z)| < e.
rely

e |t guarantees that even asingle hidden-layer network can represent any
classification problem in which the boundary is locally linear (smooth);

e |tdoes not informabout good/bad architectures, nor how they relate to the
optimization procedure.

e The universalapproximation theorem generalizes to any non-polynomial
(possibly unbounded) activation function, including the ReLU (Leshno, 1993).

O UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Universal Approximation

Theorem (Barron, 1‘292) The mean integrated square error between the
estimated network ' and the target function f is bounded by

O 2, Elog N
7 i F 0g

where N is the number of training points, g is the number of neurons, p is the
input dimension, and C'y measures the global smoothness of f.

e Provided enough data, it guarantees that adding more neuronswill result in a
better approximation.

O UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Example

Let usconsider the 1-layer MLP

flz) = Z w;ReLU(z + b;).

This modelcan approximate any smooth 1D function, provided enough hidden
units.

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Example

Let usconsider the 1-layer MLP

f(z) = Z w;ReLU(z + b;).

This modelcan approximate any smooth 1D function, provided enough hidden
units.

1= %M

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Example

Let usconsider the 1-layer MLP

flz) = Z w;ReLU(z + b;).

This modelcan approximate any smooth 1D function, provided enough hidden
units.

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Example

Let usconsider the 1-layer MLP

flz) = Z w;ReLU(z + b;).

This modelcan approximate any smooth 1D function, provided enough hidden
units.

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

This modelcan approximate any smooth 1D function, provided enough hidden

units.

UNIVERSITY OF OREGON

Example

Let usconsider the 1-layer MLP

f(z) = Z w;ReLU(z + b;).

CS 472/572: Machine Learning

Example

Let usconsider the 1-layer MLP

i{z) = Z w;ReLU(z + b;).

This modelcan approximate any smooth 1D function, provided enough hidden
units.

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Example

Let usconsider the 1-layer MLP

f(z) = Z w;ReLU(z + b;).

This modelcan approximate any smooth 1D function, provided enough hidden
units.

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Example

Let usconsider the 1-layer MLP

@)= Z w;ReLU(z + b;).

This modelcan approximate any smooth 1D function, provided enough hidden
units.

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Example

Let usconsider the 1-layer MLP

f(z) = Z w;ReLU(z + b;).

This modelcan approximate any smooth 1D function, provided enough hidden
units.

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Example

Let usconsider the 1-layer MLP

f(z) = Z w;ReLU(z + b;).

This modelcan approximate any smooth 1D function, provided enough hidden
units.

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Example

Let usconsider the 1-layer MLP

flz) = Z w;ReLU(z + b;).

This modelcan approximate any smooth 1D function, provided enough hidden
units.

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Example

Let usconsider the 1-layer MLP

flz) = Z w;ReLU(z + b;).

This modelcan approximate any smooth 1D function, provided enough hidden
units.

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Example

Let usconsider the 1-layer MLP

flz) = Z w;ReLU(z + b;).

This modelcan approximate any smooth 1D function, provided enough hidden
units.

UNIVERSITY OF OREGON

CS 472/572: Machine Learning

Deep Learning

Recent advances and model architectures in deep learning are built on a natural
generalization of a neural network: a graph of tensor operators, taking advantage
of

the chain rule

stochastic gradient descent

convolutions

parallel operations on GPUs.

This generalization allows to compose and design complex networks of
operators, possibly dynamically, dealing with images, sound, text, sequences, etc.
and to train themend-to-end.

O UNIVERSITY OF OREGON

