
CS 472/572: Machine Learning

Neural Networks

Based on slides by Gilles Louppe, Daniel Lowd

CS 472/572: Machine Learning

Threshold Logic Unit

CS 472/572: Machine Learning

Perceptron

CS 472/572: Machine Learning

Perceptron

CS 472/572: Machine Learning

Computational Graphs

CS 472/572: Machine Learning

Computational Graphs

CS 472/572: Machine Learning

How can we deal with non-linearly separable
data?

CS 472/572: Machine Learning

Remember Logistic Regression?

CS 472/572: Machine Learning

Computational Graphs

CS 472/572: Machine Learning

The logit loss

CS 472/572: Machine Learning

Cross Entropy

CS 472/572: Machine Learning

Gradient Descent

CS 472/572: Machine Learning

Gradient Descent

CS 472/572: Machine Learning

Stochastic Gradient Descent

CS 472/572: Machine Learning

Stochastic Gradient Descent

CS 472/572: Machine Learning

Stochastic Gradient Descent

CS 472/572: Machine Learning

Stochastic Gradient Descent

CS 472/572: Machine Learning

Divergence: Leave-one-out cross-validation
• Consider a training dataset with 𝑚 examples. We need to

choose the best value for a hyper-parameter 𝑑:

Can also generalize to 𝑘-fold cross-validation: divide the training data into 𝑘 even portions,
and use each portion as the validation data (the others are training data) in turn

CS 472/572: Machine Learning

Divergence: Leave-one-out cross-validation

CS 472/572: Machine Learning

Layers

CS 472/572: Machine Learning

Can we solve the non-linearly separate
data now?

Can logistic regression or
LDA solve this XOR problem
now (i.e., get zero error
on the training data)?

CS 472/572: Machine Learning

Can we solve the non-linearly separate
data now?

• With a single neuron, we cannot do it! No way to
draw a hyperplane to separate the data. This is why
neural nets die for the first time.

• But with two neurons, we can!

CS 472/572: Machine Learning

Multi-layer Perceptron/Neural Nets
(MLPs)

What if we don’t have the non-linear functions?

CS 472/572: Machine Learning

Activation Functions
Also called “link functions”

tanh(a) =
ea � e�a

ea + e�a

sign(a)

�(a) =
1

1 + e�a

ReLU(a) = max(a, 0)

SoftPlus(a) = log(1 + ea)

ELU(a) =

⇢
a, for a � 0
↵(ea � 1), for a < 0

�

CS 472/572: Machine Learning

Computational Graph

CS 472/572: Machine Learning

Classification

What is the loss function in this multi-class setting?

CS 472/572: Machine Learning

Regression

CS 472/572: Machine Learning

Self-driving cars

CS 472/572: Machine Learning

ALVINN: Autonomous Land Vehicle In a Neural Network (1989)

Self-driving cars

CS 472/572: Machine Learning

Automatic Differentiation

CS 472/572: Machine Learning

Chain Rule

CS 472/572: Machine Learning

Chain Rule

CS 472/572: Machine Learning

Reserve Automatic Differentiation

• Since a neural network is a composition of differential
functions, the total derivatives of the loss can be evaluated
backward, by applying the chain rule recursively over its
computational graph.

• The implementation of this procedure is called reserve
automatic differentiation.

CS 472/572: Machine Learning

Example

CS 472/572: Machine Learning

Example

CS 472/572: Machine Learning

Example

CS 472/572: Machine Learning

Example

CS 472/572: Machine Learning

Back-propagation

• This algorithm is also known as back-propagation
• An equivalent procedure can be defined to evaluate

the derivatives in forward mode, from inputs to
outputs.

• Since differentiation is a linear operator, automatic
differentiation can be implemented efficiently in
terms of tensor operations.

CS 472/572: Machine Learning

• Gradient descent + chain rule
• Want to minimize overall loss (e.g., squared loss):

• Gradient for outer weights 𝑣, where ℎ𝑛 is hidden units:

neural networks 133

valid options.
To be completely explicit, we will focus on optimizing squared

error. Again, this is mostly for historic reasons. You could easily
replace squared error with your loss function of choice. Our overall
objective is:

min
W,v Â

n

1
2

yn � Â

i
vi f (wi · xn)

!2

(10.5)

Here, f is some link function like tanh.
The easy case is to differentiate this with respect to v: the weights

for the output unit. Without even doing any math, you should be
able to guess what this looks like. The way to think about it is that
from vs perspective, it is just a linear model, attempting to minimize
squared error. The only “funny” thing is that its inputs are the activa-
tions h rather than the examples x. So the gradient with respect to v
is just as for the linear case.

To make things notationally more convenient, let en denote the
error on the nth example (i.e., the blue term above), and let hn denote
the vector of hidden unit activations on that example. Then:

rv = �Â
n

enhn (10.6)

This is exactly like the linear case. One way of interpreting this is:
how would the output weights have to change to make the prediction
better? This is an easy question to answer because they can easily
measure how their changes affect the output.

The more complicated aspect to deal with is the weights corre-
sponding to the first layer. The reason this is difficult is because the
weights in the first layer aren’t necessarily trying to produce specific
values, say 0 or 5 or �2.1. They are simply trying to produce acti-
vations that get fed to the output layer. So the change they want to
make depends crucially on how the output layer interprets them.

Thankfully, the chain rule of calculus saves us. Ignoring the sum
over data points, we can compute:

L(W) =
1
2

y � Â

i
vi f (wi · x)

!2

(10.7)

∂L
∂wi

=
∂L
∂ fi

∂ fi
∂wi

(10.8)

∂L
∂ fi

= �

y � Â
i

vi f (wi · x)

!
vi = �evi (10.9)

∂ fi
∂wi

= f 0(wi · x)x (10.10)

Back-propagation

neural networks 133

valid options.
To be completely explicit, we will focus on optimizing squared

error. Again, this is mostly for historic reasons. You could easily
replace squared error with your loss function of choice. Our overall
objective is:

min
W,v Â

n

1
2

yn � Â

i
vi f (wi · xn)

!2

(10.5)

Here, f is some link function like tanh.
The easy case is to differentiate this with respect to v: the weights

for the output unit. Without even doing any math, you should be
able to guess what this looks like. The way to think about it is that
from vs perspective, it is just a linear model, attempting to minimize
squared error. The only “funny” thing is that its inputs are the activa-
tions h rather than the examples x. So the gradient with respect to v
is just as for the linear case.

To make things notationally more convenient, let en denote the
error on the nth example (i.e., the blue term above), and let hn denote
the vector of hidden unit activations on that example. Then:

rv = �Â
n

enhn (10.6)

This is exactly like the linear case. One way of interpreting this is:
how would the output weights have to change to make the prediction
better? This is an easy question to answer because they can easily
measure how their changes affect the output.

The more complicated aspect to deal with is the weights corre-
sponding to the first layer. The reason this is difficult is because the
weights in the first layer aren’t necessarily trying to produce specific
values, say 0 or 5 or �2.1. They are simply trying to produce acti-
vations that get fed to the output layer. So the change they want to
make depends crucially on how the output layer interprets them.

Thankfully, the chain rule of calculus saves us. Ignoring the sum
over data points, we can compute:

L(W) =
1
2

y � Â

i
vi f (wi · x)

!2

(10.7)

∂L
∂wi

=
∂L
∂ fi

∂ fi
∂wi

(10.8)

∂L
∂ fi

= �

y � Â
i

vi f (wi · x)

!
vi = �evi (10.9)

∂ fi
∂wi

= f 0(wi · x)x (10.10)

en

hn,i

CS 472/572: Machine Learning

Back-propagation, continued:

neural networks 133

valid options.
To be completely explicit, we will focus on optimizing squared

error. Again, this is mostly for historic reasons. You could easily
replace squared error with your loss function of choice. Our overall
objective is:

min
W,v Â

n

1
2

yn � Â

i
vi f (wi · xn)

!2

(10.5)

Here, f is some link function like tanh.
The easy case is to differentiate this with respect to v: the weights

for the output unit. Without even doing any math, you should be
able to guess what this looks like. The way to think about it is that
from vs perspective, it is just a linear model, attempting to minimize
squared error. The only “funny” thing is that its inputs are the activa-
tions h rather than the examples x. So the gradient with respect to v
is just as for the linear case.

To make things notationally more convenient, let en denote the
error on the nth example (i.e., the blue term above), and let hn denote
the vector of hidden unit activations on that example. Then:

rv = �Â
n

enhn (10.6)

This is exactly like the linear case. One way of interpreting this is:
how would the output weights have to change to make the prediction
better? This is an easy question to answer because they can easily
measure how their changes affect the output.

The more complicated aspect to deal with is the weights corre-
sponding to the first layer. The reason this is difficult is because the
weights in the first layer aren’t necessarily trying to produce specific
values, say 0 or 5 or �2.1. They are simply trying to produce acti-
vations that get fed to the output layer. So the change they want to
make depends crucially on how the output layer interprets them.

Thankfully, the chain rule of calculus saves us. Ignoring the sum
over data points, we can compute:

L(W) =
1
2

y � Â

i
vi f (wi · x)

!2

(10.7)

∂L
∂wi

=
∂L
∂ fi

∂ fi
∂wi

(10.8)

∂L
∂ fi

= �

y � Â
i

vi f (wi · x)

!
vi = �evi (10.9)

∂ fi
∂wi

= f 0(wi · x)x (10.10)

134 a course in machine learning

Algorithm 26 TwoLayerNetworkTrain(D, h, K, MaxIter)
1: W D⇥K matrix of small random values // initialize input layer weights
2: v K-vector of small random values // initialize output layer weights
3: for iter = 1 . . . MaxIter do
4: G D⇥K matrix of zeros // initialize input layer gradient
5: g K-vector of zeros // initialize output layer gradient
6: for all (x,y) 2 D do
7: for i = 1 to K do
8: ai wi · x̂
9: hi tanh(ai) // compute activation of hidden unit i

10: end for
11: ŷ v · h // compute output unit
12: e y� ŷ // compute error
13: g g � eh // update gradient for output layer
14: for i = 1 to K do
15: Gi Gi � evi(1� tanh2(ai))x // update gradient for input layer
16: end for
17: end for
18: W W� hG // update input layer weights
19: v v� hg // update output layer weights
20: end for
21: return W, v

Putting this together, we get that the gradient with respect to wi is:

rwi = �evi f 0(wi · x)x (10.11)

Intuitively you can make sense of this. If the overall error of the
predictor (e) is small, you want to make small steps. If vi is small
for hidden unit i, then this means that the output is not particularly
sensitive to the activation of the ith hidden unit. Thus, its gradient
should be small. If vi flips sign, the gradient at wi should also flip
signs. The name back-propagation comes from the fact that you
propagate gradients backward through the network, starting at the
end.

The complete instantiation of gradient descent for a two layer
network with K hidden units is sketched in Algorithm 10.2. Note that
this really is exactly a gradient descent algorithm; the only different is
that the computation of the gradients of the input layer is moderately
complicated. What would happen to this algo-

rithm if you wanted to optimize
exponential loss instead of squared
error? What if you wanted to add in
weight regularization?

?
As a bit of practical advice, implementing the back-propagation

algorithm can be a bit tricky. Sign errors often abound. A useful trick
is first to keep W fixed and work on just training v. Then keep v
fixed and work on training W. Then put them together.

If you like matrix calculus, derive
the same algorithm starting from
Eq (10.3).

?

CS 472/572: Machine Learning

Vanishing Gradients

CS 472/572: Machine Learning

Vanishing Gradients

CS 472/572: Machine Learning

Vanishing Gradients

CS 472/572: Machine Learning

Vanishing Gradients

CS 472/572: Machine Learning

Rectified Linear Units (ReLU)

CS 472/572: Machine Learning

Rectified Linear Units (ReLU)

CS 472/572: Machine Learning

Rectified Linear Units (ReLU)

CS 472/572: Machine Learning

Sparsity in ReLU
• From biology: if the inputs sum to less than zero, don’t let the signal pass, but if it

sums to greater than zero, let the signal pass (hyperbolic tangent or sigmoid are
approximators, but cannot achieve true zero activation)

• Biological neurons encode information in a “sparse and distributed way”. This
means that the percentage of neurons that are active at the same time are very
low (1–4%).

CS 472/572: Machine Learning

Universal Approximation

CS 472/572: Machine Learning

Universal Approximation

CS 472/572: Machine Learning

Example

CS 472/572: Machine Learning

Example

CS 472/572: Machine Learning

Example

CS 472/572: Machine Learning

Example

CS 472/572: Machine Learning

Example

CS 472/572: Machine Learning

Example

CS 472/572: Machine Learning

Example

CS 472/572: Machine Learning

Example

CS 472/572: Machine Learning

Example

CS 472/572: Machine Learning

Example

CS 472/572: Machine Learning

Example

CS 472/572: Machine Learning

Example

CS 472/572: Machine Learning

Example

CS 472/572: Machine Learning

Deep Learning

