
CS 472/572: Machine Learning

Neural Networks

Based on slides by Gilles Louppe, Daniel Lowd
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Threshold Logic Unit
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Perceptron
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How can we deal with non-linearly separable 
data?
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Remember Logistic Regression?
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Computational Graphs
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The logit loss
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Cross Entropy
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Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Divergence: Leave-one-out cross-validation
• Consider a training dataset with 𝑚 examples. We need to 

choose the best value for a hyper-parameter 𝑑:

Can also generalize to 𝑘-fold cross-validation: divide the training data into 𝑘 even portions,
and use each portion as the validation data (the others are training data) in turn
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Divergence: Leave-one-out cross-validation
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Layers
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Can we solve the non-linearly separate 
data now?

Can logistic regression or
LDA solve this XOR problem 
now (i.e., get zero error
on the training data)?
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Can we solve the non-linearly separate 
data now?

• With a single neuron, we cannot do it! No way to 
draw a hyperplane to separate the data. This is why 
neural nets die for the first time.

• But with two neurons, we can!
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Multi-layer Perceptron/Neural Nets
(MLPs)

What if we don’t have the non-linear functions?
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Activation Functions
Also called “link functions”

tanh(a) =
ea � e�a

ea + e�a

sign(a)

�(a) =
1

1 + e�a

ReLU(a) = max(a, 0)

SoftPlus(a) = log(1 + ea)

ELU(a) =

⇢
a, for a � 0
↵(ea � 1), for a < 0

�
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Computational Graph
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Classification

What is the loss function in this multi-class setting?
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Regression
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Self-driving cars
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ALVINN: Autonomous Land Vehicle In a Neural Network (1989)

Self-driving cars
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Automatic Differentiation
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Chain Rule
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Chain Rule
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Reserve Automatic Differentiation

• Since a neural network is a composition of differential 
functions, the total derivatives of the loss can be evaluated 
backward, by applying the chain rule recursively over its 
computational graph.

• The implementation of this procedure is called reserve 
automatic differentiation.
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Back-propagation

• This algorithm is also known as back-propagation
• An equivalent procedure can be defined to evaluate 

the derivatives in forward mode, from inputs to 
outputs.

• Since differentiation is a linear operator, automatic 
differentiation can be implemented efficiently in 
terms of tensor operations.
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• Gradient descent + chain rule
• Want to minimize overall loss (e.g., squared loss):

• Gradient for outer weights 𝑣, where ℎ𝑛 is hidden units:

neural networks 133

valid options.
To be completely explicit, we will focus on optimizing squared

error. Again, this is mostly for historic reasons. You could easily
replace squared error with your loss function of choice. Our overall
objective is:

min
W,v Â
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(10.5)

Here, f is some link function like tanh.
The easy case is to differentiate this with respect to v: the weights

for the output unit. Without even doing any math, you should be
able to guess what this looks like. The way to think about it is that
from vs perspective, it is just a linear model, attempting to minimize
squared error. The only “funny” thing is that its inputs are the activa-
tions h rather than the examples x. So the gradient with respect to v
is just as for the linear case.

To make things notationally more convenient, let en denote the
error on the nth example (i.e., the blue term above), and let hn denote
the vector of hidden unit activations on that example. Then:

rv = �Â
n

enhn (10.6)

This is exactly like the linear case. One way of interpreting this is:
how would the output weights have to change to make the prediction
better? This is an easy question to answer because they can easily
measure how their changes affect the output.

The more complicated aspect to deal with is the weights corre-
sponding to the first layer. The reason this is difficult is because the
weights in the first layer aren’t necessarily trying to produce specific
values, say 0 or 5 or �2.1. They are simply trying to produce acti-
vations that get fed to the output layer. So the change they want to
make depends crucially on how the output layer interprets them.

Thankfully, the chain rule of calculus saves us. Ignoring the sum
over data points, we can compute:

L(W) =
1
2

 
y � Â

i
vi f (wi · x)

!2

(10.7)

∂L
∂wi
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(10.8)

∂L
∂ fi
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y � Â
i

vi f (wi · x)

!
vi = �evi (10.9)

∂ fi
∂wi

= f 0(wi · x)x (10.10)

Back-propagation
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Back-propagation, continued:
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134 a course in machine learning

Algorithm 26 TwoLayerNetworkTrain(D, h, K, MaxIter)
1: W D⇥K matrix of small random values // initialize input layer weights
2: v  K-vector of small random values // initialize output layer weights
3: for iter = 1 . . . MaxIter do
4: G D⇥K matrix of zeros // initialize input layer gradient
5: g  K-vector of zeros // initialize output layer gradient
6: for all (x,y) 2 D do
7: for i = 1 to K do
8: ai  wi · x̂
9: hi  tanh(ai) // compute activation of hidden unit i

10: end for
11: ŷ  v · h // compute output unit
12: e  y� ŷ // compute error
13: g  g � eh // update gradient for output layer
14: for i = 1 to K do
15: Gi  Gi � evi(1� tanh2(ai))x // update gradient for input layer
16: end for
17: end for
18: W W� hG // update input layer weights
19: v  v� hg // update output layer weights
20: end for
21: return W, v

Putting this together, we get that the gradient with respect to wi is:

rwi = �evi f 0(wi · x)x (10.11)

Intuitively you can make sense of this. If the overall error of the
predictor (e) is small, you want to make small steps. If vi is small
for hidden unit i, then this means that the output is not particularly
sensitive to the activation of the ith hidden unit. Thus, its gradient
should be small. If vi flips sign, the gradient at wi should also flip
signs. The name back-propagation comes from the fact that you
propagate gradients backward through the network, starting at the
end.

The complete instantiation of gradient descent for a two layer
network with K hidden units is sketched in Algorithm 10.2. Note that
this really is exactly a gradient descent algorithm; the only different is
that the computation of the gradients of the input layer is moderately
complicated. What would happen to this algo-

rithm if you wanted to optimize
exponential loss instead of squared
error? What if you wanted to add in
weight regularization?

?
As a bit of practical advice, implementing the back-propagation

algorithm can be a bit tricky. Sign errors often abound. A useful trick
is first to keep W fixed and work on just training v. Then keep v
fixed and work on training W. Then put them together.

If you like matrix calculus, derive
the same algorithm starting from
Eq (10.3).

?
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Vanishing Gradients
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Vanishing Gradients
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Rectified Linear Units (ReLU)
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Rectified Linear Units (ReLU)
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Rectified Linear Units (ReLU)
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Sparsity in ReLU
• From biology: if the inputs sum to less than zero, don’t let the signal pass, but if it 

sums to greater than zero, let the signal pass (hyperbolic tangent or sigmoid are 
approximators, but cannot achieve true zero activation)

• Biological neurons encode information in a “sparse and distributed way”. This 
means that the percentage of neurons that are active at the same time are very 
low (1–4%).
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Universal Approximation
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Universal Approximation
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Deep Learning


