
CS 472/572: Machine Learning

Perceptrons

Based on slides by Daniel Lowd, Vibhav Gogate, Pedro Domingos, Tom Mitchell,
Carlos Guestrin, Luke Zettlemoyer and Dan Weld.

CS 472/572: Machine Learning

Neurons

x1

x2 x3

w3

w3
w3

+ > 0? à +1

< 0? à -1+ b

CS 472/572: Machine Learning

Perception / Linear Models

42 a course in machine learning

not. Firing is interpreted as being a positive example and not firing is
interpreted as being a negative example. In particular, if the weighted
sum is positive, it “fires” and otherwise it doesn’t fire. This is shown
diagramatically in Figure 4.2.

Mathematically, an input vector x = hx1, x2, . . . , xDi arrives. The
neuron stores D-many weights, w1, w2, . . . , wD. The neuron computes
the sum:

a =
D

Â
d=1

wdxd (4.1)

to determine it’s amount of “activation.” If this activiation is posi-
tive (i.e., a > 0) it predicts that this example is a positive example.
Otherwise it predicts a negative example.

The weights of this neuron are fairly easy to interpret. Suppose
that a feature, for instance “is this a System’s class?” gets a zero
weight. Then the activation is the same regardless of the value of
this feature. So features with zero weight are ignored. Features with
positive weights are indicative of positive examples because they
cause the activation to increase. Features with negative weights are
indicative of negative examples because they cause the activiation to
decrease. What would happen if we encoded

binary features like “is this a Sys-
tem’s class” as no=0 and yes=�1
(rather than the standard no=0 and
yes=+1)?

?
It is often convenient to have a non-zero threshold. In other

words, we might want to predict positive if a > q for some value
q. The way that is most convenient to achieve this is to introduce a
bias term into the neuron, so that the activation is always increased
by some fixed value b. Thus, we compute:

a =

"
D

Â
d=1

wdxd

#
+ b (4.2)

If you wanted the activation thresh-
old to be a > q instead of a > 0,
what value would b have to be?

?This is the complete neural model of learning. The model is pa-
rameterized by D-many weights, w1, w2, . . . , wD, and a single scalar
bias value b.

4.2 Error-Driven Updating: The Perceptron Algorithm

The perceptron is a classic learning algorithm for the neural model
of learning. Like K-nearest neighbors, it is one of those frustrating
algorithms that is incredibly simple and yet works amazingly well,
for some types of problems.

The algorithm is actually quite different than either the decision
tree algorithm or the KNN algorithm. First, it is online. This means
that instead of considering the entire data set at the same time, it only
ever looks at one example. It processes that example and then goes

Prediction: 𝑠𝑖𝑔𝑛 𝑎 = ' +1 𝑖𝑓 𝑎 > 0
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Activation:

Example: 𝑥 = 𝑥!, 𝑥", … , 𝑥# , 𝑦 ∈ {−1,1}

Perceptron finds a weight for each features and a bias
𝑤 = 𝑤!, 𝑤", … , 𝑤# , 𝑏 Model Parameters

CS 472/572: Machine Learning

Example: Spam
• Imagine 2 features (spam is “positive” class):

– free (number of occurrences of “free”)
– money (occurrences of “money”)

free : 4
money : 2
...

free : 1
money : 1
...“free money”

w.f(x) > 0 è SPAM!!!

b: -3

CS 472/572: Machine Learning

Binary Decision Rule
• In the space of feature vectors

– Examples are points
– Any weight vector is a hyperplane
– One side corresponds to Y=+1
– Other corresponds to Y=-1

free : 4
money : 2
...

0 1
0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAMb: -3

CS 472/572: Machine Learning

CS 472/572: Machine Learning

the perceptron 39

Algorithm 5 PerceptronTrain(D, MaxIter)
1: wd 0, for all d = 1 . . . D // initialize weights
2: b 0 // initialize bias
3: for iter = 1 . . . MaxIter do
4: for all (x,y) 2 D do
5: a ÂD

d=1 wd xd + b // compute activation for this example
6: if ya  0 then
7: wd wd + yxd, for all d = 1 . . . D // update weights
8: b b + y // update bias
9: end if

10: end for
11: end for
12: return w0, w1, . . . , wD, b

Algorithm 6 PerceptronTest(w0, w1, . . . , wD, b, x̂)
1: a ÂD

d=1 wd x̂d + b // compute activation for the test example
2: return sign(a)

The algorithm is actually quite different than either the decision
tree algorithm or the KNN algorithm. First, it is online. This means
that instead of considering the entire data set at the same time, it only
ever looks at one example. It processes that example and then goes
on to the next one. Second, it is error driven. This means that, so
long as it is doing well, it doesn’t bother updating its parameters.

The algorithm maintains a “guess” at good parameters (weights
and bias) as it runs. It processes one example at a time. For a given
example, it makes a prediction. It checks to see if this prediction
is correct (recall that this is training data, so we have access to true
labels). If the prediction is correct, it does nothing. Only when the
prediction is incorrect does it change its parameters, and it changes
them in such a way that it would do better on this example next
time around. It then goes on to the next example. Once it hits the
last example in the training set, it loops back around for a specified
number of iterations.

The training algorithm for the perceptron is shown in Algo-
rithm 3.2 and the corresponding prediction algorithm is shown in
Algorithm 3.2. There is one “trick” in the training algorithm, which
probably seems silly, but will be useful later. It is in line 6, when we
check to see if we want to make an update or not. We want to make
an update if the current prediction (just sign(a)) is incorrect. The
trick is to multiply the true label y by the activation a and compare
this against zero. Since the label y is either +1 or �1, you just need
to realize that ya is positive whenever a and y have the same sign.
In other words, the product ya is positive if the current prediction is
correct. It is very very important to check

ya  0 rather than ya < 0. Why??

How to find the parameters?

epoch

CS 472/572: Machine Learning

What the updates do?
• Moves the decision boundary in the direction of the training examples
• Intuition: adjust parameters so that they are better for the current example

(i.e., if we see an example two times, the parameters should do a better job
on the second example than on the first one).

• Example:
– (x, +1): the current example, 𝑤!, 𝑤", … , 𝑤# , 𝑏: the current parameters,

the parameters assign incorrect class in this case (i.e., 𝑎 < 0)
– New parameters: 𝑤!$, 𝑤"$, … , 𝑤#$, 𝑏$, new activation: 𝑎$

CS 472/572: Machine Learning

How to iterate over data?
• IMPORTANT: permute the training dataset 𝑫 at the beginning of each

epoch
– Why? Image having a fixed order of data in the iterations (i.e., positive example

come first, followed by negative examples)

• How many epochs should we run (i.e., what’s the good value for
𝑀𝑎𝑥𝐼𝑡𝑒𝑟)?
– Many epochs tend to overfit (overtraining) while little epochs would underfit

CS 472/572: Machine Learning

Does the perceptron converge?
How long does it take?

• Convergence in perceptron: a classifier is considered as converged if it
can correctly classify every training example

• Training data is linearly separable if we can find some hyperplane that
puts positive examples on one side and negative examples on the
other side (we say the hyperplane/parameter separates the data)

Separable Non-Separable

CS 472/572: Machine Learning

Margins

What does the margin tell you about your problem?

CS 472/572: Machine Learning

Convergence in perceptron

• What does it tell you?

CS 472/572: Machine Learning

Problems with the Perceptron
• Noise: if the data isn’t separable,

weights might thrash
– Averaging weight vectors over time

can help (averaged perceptron)

• Mediocre generalization: finds a
“barely” separating solution

• Overtraining: test / validation
accuracy usually rises, then falls
– Overtraining is a kind of overfitting

CS 472/572: Machine Learning

Improved Generalization
• Problem: The vanilla perceptron counts later points more than it

counts earlier points (i.e., the last examples might have significant
effect on the parameters)

• Fix: ensure that all the weight vectors encountered during training
contribute to the prediction, the weight vectors that survive/appear
for longer time should contribute more than those with shorter time.

• Voted perceptron:

– But: need storage to store many weight vectors, prediction time is also slower

• Averaged perceptron:

– so, same prediction time as vanilla perceptron, good practical performance

CS 472/572: Machine Learning
48 a course in machine learning

Algorithm 7 AveragedPerceptronTrain(D, MaxIter)
1: w h0, 0, . . . 0i , b 0 // initialize weights and bias
2: u h0, 0, . . . 0i , b 0 // initialize cached weights and bias
3: c 1 // initialize example counter to one
4: for iter = 1 . . . MaxIter do
5: for all (x,y) 2 D do
6: if y(w · x + b)  0 then
7: w w + y x // update weights
8: b b + y // update bias
9: u u + y c x // update cached weights

10: b b + y c // update cached bias
11: end if
12: c c + 1 // increment counter regardless of update
13: end for
14: end for
15: return w - 1

c u, b - 1
c b // return averaged weights and bias

averaged prediction, Eq (3.18), is the presense of the interior sign
operator. With a little bit of algebra, we can rewrite the test-time
prediction as:

ŷ = sign

K

Â
k=1

c(k)w(k)

!
· x̂ +

K

Â
k=1

c(k)b(k)

!
(3.19)

The advantage of the averaged perceptron is that we can simply
maintain a running sum of the averaged weight vector (the blue term)
and averaged bias (the red term). Test-time prediction is then just as
efficient as it is with the vanilla perceptron.

The full training algorithm for the averaged perceptron is shown
in Algorithm 3.6. Some of the notation is changed from the original
perceptron: namely, vector operations are written as vector opera-
tions, and the activation computation is folded into the error check-
ing.

It is probably not immediately apparent from Algorithm 3.6 that
the computation unfolding is precisely the calculation of the averaged
weights and bias. The most natural implementation would be to keep
track of an averaged weight vector u. At the end of every example,
you would increase u u + w (and similarly for the bias). However,
such an implementation would require that you updated the aver-
aged vector on every example, rather than just on the examples that
were incorrectly classified! Since we hope that eventually the per-
ceptron learns to do a good job, we would hope that it will not make
updates on every example. So, ideally, you would like to only update
the averaged weight vector when the actual weight vector changes.
The slightly clever computation in Algorithm 3.6 achieves this. By writing out the computation of

the averaged weights from Eq (??)
as a telescoping sum, derive the
computation from Algorithm 3.6.

?

Figure 3.11: perc:avgperc: train/test
performance of vanilla versus averaged
perceptron to show early stopping

The averaged perceptron is almost always better than the per-

Why?

CS 472/572: Machine Learning

Multiclass Decision Rule

• If we have more than two
classes:
– Have a weight vector for

each class:
– Calculate an activation for

each class

– Highest activation wins

CS 472/572: Machine Learning

The Multi-class Perceptron Alg.
• Start with zero weights
• Iterate training examples

– Classify with current weights

– If correct, no change!
§ If wrong: lower score of wrong answer,

raise score of right answer

CS 472/572: Machine Learning

Example

BIAS :
win :
game :
vote :
the :
...

BIAS :
win :
game :
vote :
the :
...

BIAS :
win :
game :
vote :
the :
...

“win the vote”

“win the election”

“win the game”

CS 472/572: Machine Learning

Example

BIAS : -2
win : 4
game : 4
vote : 0
the : 0
...

BIAS : 1
win : 2
game : 0
vote : 4
the : 0
...

BIAS : 2
win : 0
game : 2
vote : 0
the : 0
...

“win the vote”

BIAS : 1
win : 1
game : 0
vote : 1
the : 1
...

Which type wins?

