
CIS 313:
Intermediate Data Structure

first slide

Programs = Algorithms + Data Structures
(by Niklaus Wirth)

• From the book
• Algorithm: any well-defined computational procedure that takes some value,

or set of values, as input and produces some value, or set of values, as
output.
• Data structure: a way to store and organize data in order to facilitate access

and modifications.

themes

• computational complexity, start to measure it
• simple data structures (mostly review)
• tree based structures
• binary trees
• binary heaps, binomial heaps
• self adjusting trees: AVL, Red-Black
• (2,4) trees, B-trees

• sorting, order statistics, voting

First algorithm
find the maximum number in an array

Input: a sequence of numbers a1, a2, …, an
Output: the maximum number in the input sequence
Algorithm:

max = a1

for i = 2 to n:
if ai > max:

max = ai
return max

How long does this take?
Maybe: n variable assignments, n-1 comparisons, n-2 increments, one return?

how do we talk about algorithm speed?

• use functions of the size of the input n (typically the number of input
numbers/items in this class), i.e., T(n)
• apply asymptotic notation for these functions
• it ignores constants and only focuses on the highest-order term
• why? machine independence, constants not important asymptotically
• asymptotically = “in the long run or in the limit”

• see description and definitions in text (section 3.1, pp 43-52)
• O, Ω, Θ, o, #

Time spent at 1,000,000 operations per second:

10 20 30 40 50 60 ... 100

n 10-5

seconds
2⋅10-5

seconds
3⋅10-5

seconds
4⋅10-5

seconds
5⋅10-5

seconds
6⋅10-5

seconds
10-4

seconds

n²

n³

n10

2n

3n

n!

22^n

input size

algorithm
speed

10 20 30 40 50 60 ... 100

n 10-5

seconds
2⋅10-5

seconds
3⋅10-5

seconds
4⋅10-5

seconds
5⋅10-5

seconds
6⋅10-5

seconds
10-4

seconds

n² 10-4

seconds
4⋅10-4

seconds
9⋅10-4

seconds
1.6⋅10-3

seconds
2.5⋅10-3

seconds
3.6⋅10-3

seconds
.01

second

n³

n10

2n

3n

n!

22^n

10 20 30 40 50 60 ... 100

n 10-5

seconds
2⋅10-5

seconds
3⋅10-5

seconds
4⋅10-5

seconds
5⋅10-5

seconds
6⋅10-5

seconds
10-4

seconds

n² 10-4

seconds
4⋅10-4

seconds
9⋅10-4

seconds
1.6⋅10-3

seconds
2.5⋅10-3

seconds
3.6⋅10-3

seconds
.01

second

n³ 10-3

seconds
8⋅10-3

seconds
2.7⋅10-3

seconds
6.4⋅10-2

seconds
.125

second
.216

second
1

second

n10

2n

3n

n!

22^n

10 20 30 40 50 60 ... 100

n

n²

n³

n10 2.7
hours

118
days

18
years

333
years

3,103
years

19,213
years

31,775
centuries

2n

3n

n!

22^n

10 20 30 40 50 60 ... 100

n

n²

n³

n10

2n 10-3

seconds
1

second
17

minutes
12

days
35.7
years

36,634
years

4⋅1014

centuries

3n

n!

22^n

10 20 30 40 50 60 ... 100

n

n²

n³

n10

2n

3n .06
second

58
minutes

6.5
years

3863
centuries

2⋅108

centuries
1.3⋅1013

centuries
1.6⋅1032

centuries

n!

22^n

10 20 30 40 50 60 ... 100

n

n²

n³

n10

2n

3n

n! 3.6
seconds

773
centuries

8⋅1016

centuries
2.6⋅1032

centuries
9.7⋅1048

centuries
2.6⋅1066

centuries
3⋅10142

centuries

22^n

10 20 30 40 50 60 ... 100

n

n²

n³

n10

2n

3n

n!

22^n >10292

centuries
>10315637

centuries
ouch!
→

big-Oh formally

f(n) =O(g(n)) if and only if (iff)
∃ " > 0 ∃ % ∀ ' ≥ % 0 ≤ * ' ≤ " + ,(')

• c is the dropped constant
• N is the crossover point so that …
• … if n is big enough f is bounded above by c*g
• the growth rate of g bounds the growth rate of f

from above

example: let f(n) = 3n3 + 5n2 + n + 17

some true statements:
• f(n) = O(n3)
• f(n) = O(n4)
• f(n) = O(17 n3)
• f(n) = 3n3 + O(n2)

Big Omega and Theta

! " = Ω % " iff
∃ ' > 0 ∃ * ∀ " ≥ * ! " ≥ ' - % " ≥ 0

thus, the growth rate of g is less than or equal to the
growth rate of f (ignoring the constant)

! " = Θ(% ") iff ! " = 1(% ") and ! " = Ω(% ")

• here f and g have the same growth rate
• sort of like saying 2 ≤ 4 and 2 ≥ 4 implies that 2 = 4

now we can say (f(n) = 3n3 + 5n2 + n + 17)
• ! " = Ω("5)
• ! " = Ω("6)
• ! " = Θ("5)
• ! " = 3 - "5 + Θ("6)

little-oh and little-omega

! " = $(& ") iff lim+→-
.(+)
/(+) = 0

or
∀ 2 > 0 ∃ 5 ∀ " ≥ 5 0 ≤ ! " ≤ 2 8 &(")

in other words, the growth rate of f is strictly less than
that of g

! " = 9(& ") iff lim+→-
.(+)
/(+) = ∞

or
∀ 2 > 0 ∃ 5 ∀ " ≥ 5 ! " ≥ 2 8 & " ≥ 0

the growth rate of f is strictly greater than that of g

examples:
• ! " = $(";)
• ! " = 9("<)
• ! " = 3 8 "> + $ ">
• @

+ = $(1)

some properties

-Transitivity:
f(n) = !(g(n)) and g(n) = !(h(n)) imply f(n) = !(h(n)) (! ∈ {O, Ω, Θ, o,

%})
- Reflexivity:

f(n) = !(f(n)) (! ∈ {O, Ω, Θ})
- Symmetry:

f(n) =Θ(g(n)) iff g(n) = Θ(f(n))
- Transpose Symmetry:

f(n) = O(g(n)) iff g(n) = Ω(f(n))
f(n) = o(g(n)) iff g(n) = %(f(n))

common functions

• nk , where k is a constant (polynomial)
• 2n, 3n , cn (exponential)
• log2n, logcn, ln n (logarithmic – usually log n implies base 2)
• fact: log2n = O(logcn) (why?)

• O(n log n) (also poly, but very common)
• n! (factorial)
• 2(#$% &)((super-poly, sub-exponential) (ok, not so common)

other functions

• factorials: !! = ! $! − 1 $! − 2 $$$ 3 $ 2 $ 1
• Stirling’s Approximation: !! = 2)! $ *

+
*
$ (1 + Θ /

*)
• importantly log !! = Θ(! $ log !)
• binomial coefficients
• Fibonacci sequence: 45 = 0, 4/ = 1, 4789 = 478/+ 47
• (Fibonacci used for AVL trees)

more examples

10 log n + log log n is O(log n)? O(n)? O(n0.0000001)? Ω(log n)? O((log n)0.5)?
Ω((log n)0.5)

2#$%%% is O(1)? Ω(1) ? 2#$%%% n is O(n)?

2/n is O(1/n)? O(1/ &)? O(1/n1.7)? O(1)?

' & =)0.1 & -' & -. /003 &2 -' & -. 343& is O(n) ? O(n1.5)? O(n2)? Ω(n)? Ω(n1.5) Ω(n2)

Exercise

Order the following by growth rate
(big-Theta). Start on your own:
n
n2 – 4n
n2 + n (log n)3

n5/2 + n3/2 + 100 log n
n + log n
(log n)(n + n2)
n2 log n + n (log n)3

2log n

2n log n
1/n
1/(n log n)
n1/2 + n log n
n + n log n
(log n)3 + (log n)2 + log n
n2 log n + n (log n)3

2n log n

reading for previous material

• chapter 3
• appendix A.1

loop invariants

• “simple” method to prove correctness of a loop structure
• follows induction
• three phases: initialization (base case),
• invariance maintenance (induction), and
• termination

• look at pp 18-20 of text for more discussion
• while there, look at pp 20-22 for description of pseudo-code

general structure of argument

code:

<init>
while !

do ℒ

invariant: #
a true/false statement about the variables
of the code

initialization: show that # is true
after the <init> phase of the code
has been executed

maintenance: show that if # ∧ ! is true,
then # will be true after one execution of
the loop body ℒ

termination: the loop finishes when ! is
false, so argue that ¬! ∧ # is the desired
outcome

example
input: integer n>0
output: n(n+1)/2

--initialization
int s=0
int k=0

--loop
while k < n+1 do

s = s+k
k = k+1

--end
return s

!: k < n+1

":
• 0 ≤ % ≤ & + 1
• s = k(k-1)/2

example
input: integer n>0
output: integer k, array b of k bits

--initialization
int k=0
int t=n
array b=[] of bit

--loop
while t>0 do

b[k] = (t mod 2)
k = k+1
t = t div 2

--end
return k, b

!: t>0

":
• # ≥ 0
• Let & = ∑)*+,-. /[1] 3 2) be the number

represented by b in base 2. Then 5 = 2, 3 # + &

notice:
• initialization is easy
• termination also easy
• see handout (posted on class site) for full discussion

example

Compute the !-th Fibonacci number

