CIS 313:
 Intermediate Data Structure

first slide

Programs = Algorithms + Data Structures

(by Niklaus Wirth)

- From the book
- Algorithm: any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.
- Data structure: a way to store and organize data in order to facilitate access and modifications.

themes

- computational complexity, start to measure it
- simple data structures (mostly review)
- tree based structures
- binary trees
- binary heaps, binomial heaps
- self adjusting trees: AVL, Red-Black
- $(2,4)$ trees, B-trees
- sorting, order statistics, voting

First algorithm

find the maximum number in an array

Input: a sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
Output: the maximum number in the input sequence
Algorithm:

$$
\begin{aligned}
& \max =\mathrm{a}_{1} \\
& \text { for } i=2 \text { to } n: \\
& \text { if } a_{i}>\max : \\
& \quad \max =a_{i}
\end{aligned}
$$

return max

How long does this take?
Maybe: n variable assignments, $n-1$ comparisons, $n-2$ increments, one return?

how do we talk about algorithm speed?

- use functions of the size of the input n (typically the number of input numbers/items in this class), i.e., $\mathrm{T}(n)$
- apply asymptotic notation for these functions
- it ignores constants and only focuses on the highest-order term
- why? machine independence, constants not important asymptotically
- asymptotically = "in the long run or in the limit"
- see description and definitions in text (section 3.1, pp 43-52)
- $0, \Omega, \Theta, o, \omega$

Time spent at I,000,000 operations per second:
input size

		10	20	30	40	50	60	...	100
algorithm speed	n	$\begin{gathered} 10^{-5} \\ \text { seconds } \end{gathered}$	$\begin{gathered} 2 \cdot 10^{-5} \\ \text { seconds } \end{gathered}$	$\begin{gathered} 3 \cdot 10^{-5} \\ \text { seconds } \end{gathered}$	$\begin{gathered} 4 \cdot 10^{-5} \\ \text { seconds } \end{gathered}$	$\begin{gathered} 5 \cdot 10^{-5} \\ \text { seconds } \end{gathered}$	$\begin{gathered} 6 \cdot 10^{-5} \\ \text { seconds } \end{gathered}$		$\begin{gathered} 10^{-4} \\ \text { seconds } \end{gathered}$
	n^{2}	$\begin{gathered} 10^{-4} \\ \text { seconds } \end{gathered}$	$\begin{gathered} 4 \cdot 10^{-4} \\ \text { seconds } \end{gathered}$	$\begin{gathered} 9 \cdot 10^{-4} \\ \text { seconds } \end{gathered}$	$\begin{aligned} & 1.6 \cdot 10^{-3} \\ & \text { seconds } \end{aligned}$	$\begin{aligned} & 2.5 \cdot 10^{-3} \\ & \text { seconds } \end{aligned}$	$\begin{aligned} & 3.6 \cdot 10^{-3} \\ & \text { seconds } \end{aligned}$		$\begin{aligned} & .01 \\ & \text { second } \end{aligned}$
	n^{3}	$\begin{gathered} 10^{-3} \\ \text { seconds } \end{gathered}$	$\begin{gathered} 8 \cdot 10^{-3} \\ \text { seconds } \end{gathered}$	$\begin{aligned} & 2.7 \cdot 10^{-3} \\ & \text { seconds } \end{aligned}$	$\begin{aligned} & 6.4 \cdot 10^{-2} \\ & \text { seconds } \end{aligned}$	$\begin{gathered} .125 \\ \text { second } \end{gathered}$	$\begin{aligned} & .216 \\ & \text { second } \end{aligned}$		second
	n^{10}	$\begin{aligned} & 2.7 \\ & \text { hours } \end{aligned}$	$\begin{gathered} 18 \\ \text { days } \end{gathered}$	$\begin{gathered} 18 \\ \text { years } \end{gathered}$	$\begin{gathered} 333 \\ \text { years } \end{gathered}$	$\begin{aligned} & 3,103 \\ & \text { years } \end{aligned}$	19,213 years		$31,775$ centuries
	2^{n}	$\begin{gathered} 10^{-3} \\ \text { seconds } \end{gathered}$	second	$\begin{gathered} 17 \\ \text { minutes } \end{gathered}$	$\stackrel{12}{\text { days }}$	35.7 years	$36,634$ years		$\left\lvert\, \begin{gathered} 4 \cdot 10^{14} \\ \text { centuries } \end{gathered}\right.$
	3^{n}	$\begin{gathered} .06 \\ \text { second } \end{gathered}$	$\begin{gathered} 58 \\ \text { minutes } \end{gathered}$	$\begin{gathered} 6.5 \\ \text { years } \end{gathered}$	3863 centuries	$\begin{gathered} 2 \cdot 10^{8} \\ \text { centuries } \end{gathered}$	$\begin{array}{\|c\|} \hline 1.3 \cdot 10^{13} \\ \text { centuries } \end{array}$		$\begin{array}{\|c\|} \hline 1.6 \cdot 10^{32} \\ \text { centuries } \end{array}$
	$n!$	$\begin{gathered} 3.6 \\ \text { seconds } \end{gathered}$	$\begin{gathered} 773 \\ \text { centuries } \end{gathered}$	$8 \cdot 10^{16}$ centuries	$2.6 \cdot 10^{32}$ centuries	$9.7 \cdot 10^{48}$ centuries	$2.6 \cdot 10^{66}$ centuries		$\left\lvert\, \begin{gathered} 3 \cdot 10^{142} \\ \text { centuries } \end{gathered}\right.$
	$2^{2 \wedge} \mathrm{n}$	$\begin{gathered} >10^{292} \\ \text { centuries } \end{gathered}$	$\left\lvert\, \begin{aligned} & >10^{315637} \\ & \text { centuries } \end{aligned}\right.$	$\xrightarrow{\text { ouch! }}$					

big-Oh formally

$\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n})$) if and only if (iff)
$\exists c>0 \exists N \forall n \geq N \quad 0 \leq f(n) \leq c \cdot g(n)$

- c is the dropped constant
- N is the crossover point so that ...
- ... if n is big enough f is bounded above by $c^{*} g$
- the growth rate of g bounds the growth rate of f from above
example: let $\mathrm{f}(\mathrm{n})=3 \mathrm{n}^{3}+5 \mathrm{n}^{2}+\mathrm{n}+17$
some true statements:
- $\mathrm{f}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{3}\right)$
- $f(n)=O\left(n^{4}\right)$
- $f(n)=O\left(17 n^{3}\right)$
- $f(n)=3 n^{3}+O\left(n^{2}\right)$

Big Omega and Theta

$$
\begin{aligned}
f(n)= & \Omega(g(n)) \text { iff } \\
& \exists c>0 \exists N \forall n \geq N f(n) \geq c \cdot g(n) \geq 0
\end{aligned}
$$

thus, the growth rate of g is less than or equal to the growth rate of f (ignoring the constant)
$f(n)=\Theta(g(n))$ iff $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$

- here f and g have the same growth rate
- sort of like saying $A \leq B$ and $A \geq B$ implies that $A=B$
now we can say ($\mathrm{f}(\mathrm{n})=3 \mathrm{n}^{3}+5 \mathrm{n}^{2}+\mathrm{n}+17$)
- $f(n)=\Omega\left(n^{3}\right)$
- $f(n)=\Omega\left(n^{2}\right)$
- $f(n)=\Theta\left(n^{3}\right)$
- $f(n)=3 \cdot n^{3}+\Theta\left(n^{2}\right)$

little-oh and little-omega

$$
f(n)=o(g(n)) \text { iff } \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

or

$$
\forall c>0 \exists N \forall n \geq N 0 \leq f(n) \leq c \cdot g(n)
$$

in other words, the growth rate of f is strictly less than that of g

$$
\begin{aligned}
& f(n)=\omega(g(n)) \text { iff } \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty \\
& \text { or } \\
& \quad \forall c>0 \exists N \forall n \geq N f(n) \geq c \cdot g(n) \geq 0
\end{aligned}
$$

the growth rate of f is strictly greater than that of g
examples:

- $f(n)=o\left(n^{4}\right)$
- $f(n)=\omega\left(n^{2}\right)$
- $f(n)=3 \cdot n^{3}+o\left(n^{3}\right)$
- $\frac{1}{n}=o(1)$

some properties

-Transitivity:

$$
\mathrm{f}(\mathrm{n})=\alpha(\mathrm{g}(\mathrm{n})) \text { and } \mathrm{g}(\mathrm{n})=\alpha(\mathrm{h}(\mathrm{n})) \text { imply } \mathrm{f}(\mathrm{n})=\alpha(\mathrm{h}(\mathrm{n}))(\alpha \in\{\mathrm{O}, \Omega, \Theta, \mathrm{o},
$$ ω)

- Reflexivity:

$$
\mathrm{f}(\mathrm{n})=\alpha(\mathrm{f}(\mathrm{n}))(\alpha \in\{\mathrm{O}, \Omega, \Theta\})
$$

- Symmetry:

$$
f(n)=\Theta(g(n)) \text { iff } g(n)=\Theta(f(n))
$$

- Transpose Symmetry:

$$
\begin{aligned}
& f(n)=0(g(n)) \text { iff } g(n)=\Omega(f(n)) \\
& f(n)=o(g(n)) \text { iff } g(n)=\omega(f(n))
\end{aligned}
$$

common functions

- n^{k}, where k is a constant (polynomial)
- $2^{n}, 3^{n}, c^{n}$ (exponential)
- $\log _{2} \mathrm{n}, \log _{\mathrm{c}} \mathrm{n}, \ln \mathrm{n}$ (logarithmic - usually $\log \mathrm{n}$ implies base 2)
- fact: $\log _{2} n=O\left(\log _{c} n\right)$ (why?)
- $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ (also poly, but very common)
- n ! (factorial)
- $2^{(\log n)^{2}}$ (super-poly, sub-exponential) (ok, not so common)

other functions

- factorials: $n!=n \cdot(n-1) \cdot(n-2) \cdots 3 \cdot 2 \cdot 1$
- Stirling's Approximation: $n!=\sqrt{2 \pi n} \cdot\left(\frac{n}{e}\right)^{n} \cdot\left(1+\Theta\left(\frac{1}{n}\right)\right)$
- importantly $\log n!=\Theta(n \cdot \log n)$
- binomial coefficients
- Fibonacci sequence: $F_{0}=0, F_{1}=1, F_{k+2}=F_{k+1}+F_{k}$
- (Fibonacci used for AVL trees)

more examples

$10 \log n+\log \log n \quad$ is $\mathrm{O}(\log n)$? $\mathrm{O}(n)$? $\mathrm{O}\left(n^{0.0000001}\right)$? $\Omega(\log n)$? $\mathrm{O}\left((\log n)^{0.5}\right)$? $\Omega\left((\log n)^{0.5}\right)$
$2^{3^{2000}}$ is $\mathrm{O}(1) ? \Omega(1) ? 2^{3^{2000}} n$ is $\mathrm{O}(n)$?
$2 / n$ is $O(1 / n)$? $O(1 / \sqrt{n})$? $O\left(1 / n^{1.7}\right)$? $O(1)$?

$$
f(n)=\left\{\begin{array} { l }
{ 0 . 1 n \text { if } n \text { is odd } } \\
{ 3 n ^ { 2 } \text { if } n \text { is even } }
\end{array} \text { is } \mathrm { O } (\mathrm { n }) \text { ? } \mathrm { O } \left(\mathrm{n}^{1.5)} \text { ? } \mathrm{O}\left(\mathrm{n}^{2}\right) \text { ? } \Omega(\mathrm{n}) ? \Omega\left(\mathrm{n}^{1.5}\right) \Omega\left(\mathrm{n}^{2}\right)\right.\right.
$$

Exercise

Order the following by growth rate (big-Theta). Start on your own:
n
$n^{2}-4 n$
$n^{2}+n(\log n)^{3}$
$n^{5 / 2}+n^{3 / 2}+100 \log n$
$n+\log n$
$(\log n)\left(n+n^{2}\right)$
$n^{2} \log n+n(\log n)^{3}$
$2^{\log n}$
n
$n^{2}-4 n$
$n^{2}+n(\log n)^{3}$
$n^{5 / 2}+n^{3 / 2}+100 \log n$
$n+\log n$
$(\log n)\left(n+n^{2}\right)$
$n^{2} \log n+n(\log n)^{3}$
$2^{\log n}$
$2^{n} \log n$
$1 / n$
$1 /(n \log n)$
$n^{1 / 2}+n \log n$
$n+n \log n$
$(\log n)^{3}+(\log n)^{2}+\log n$
$n^{2} \log n+n(\log n)^{3}$
$2^{n \log n}$

reading for previous material

- chapter 3
- appendix A. 1

loop invariants

- "simple" method to prove correctness of a loop structure
- follows induction
- three phases: initialization (base case),
- invariance maintenance (induction), and
- termination
- look at pp 18-20 of text for more discussion
- while there, look at pp 20-22 for description of pseudo-code

general structure of argument

```
code:
<init>
while }
    do L
```

```
invariant: }
a true/false statement about the variables
of the code
```

initialization: show that α is true after the <init> phase of the code has been executed
maintenance: show that if $\alpha \wedge \gamma$ is true, then α will be true after one execution of the loop body \mathcal{L}
termination: the loop finishes when γ is false, so argue that $\neg \gamma \wedge \alpha$ is the desired outcome

example

input: integer $n>0$
output: $n(n+1) / 2$
--initialization
int $s=0$
int $k=0$
--loop
while $k<n+1$ do
$\quad s=s+k$

$\quad k=k+1$$\quad$| --end |
| :--- |
| return s |

```
\gamma:k<n+1
\alpha:
- 0 \leqk \leqn+1
- s=k(k-1)/2
```


example

```
input: integer n>0
output: integer k, array b of k bits
--initialization
int k=0
int t=n
array b=[] of bit
--loop
while t>0 do
    b[k]=(t mod 2)
    k=k+1
    t=t div 2
--end
return k, b
```

```
\gamma: t>0
\alpha:
- t\geq0
```



```
    represented by b in base 2. Then n= 2
```


notice:

- initialization is easy
- termination also easy
- see handout (posted on class site) for full discussion

example

Compute the n-th Fibonacci number

