
CIS 313:
Intermediate Data Structure

second slide



algorithm time bounds

Let ! be some algorithm operating on an input x
• worst case

• ! has worst case time O(t(n)) if there are constants c and N such that for all n>N and 
all inputs x of length n, ! completes its computation on input x using at most c*t(n) 
steps

• ! has worst case time Ω($(%)) if there are constants c and N such that for all n>N 
there exists an input x of length n such that ! uses at least c*t(n) steps to finish its 
computation on x

• average case
• expected case (a measure that makes sense if algorithm is randomized)
• best case (not very useful)
• smoothed analysis (complicated)



Theme:
Abstract Data Types vs. Implementation
• Abstract data type: Set of operations.
For example, a list should support:
• append (adding item to end of list)
• length (number of items in list)
• get (access ith element of list)
• insert/remove (add or remove element at position i)
• Iterator (get an iterator helper object)
• Etc.

• Implementation: How those operations are implemented.
For example, a list could be implemented as a linked list or array list.



Linked List Implementation

Node object with fields: data, next_node, prev_node (optional)

2 3 5 7
data next_node data next_node data next_node data next_node

head

LinkedList object with fields: head, tail (optional), length (optional)

Iterator helper object with fields: curr_node



Array List Implementation

ArrayList object with fields: elements, size, capacity

2 3 5 7
elements:

size: 4

capacity: 8

Appending:
if size == capacity:

new_elements = new array[capacity * 2]
for i = 0 to size – 1:

new_elements[i] = elements[i]
elements = new_elements
capacity = capacity * 2

elements[size] = data
size = size + 1

What would an iterator look like for an ArrayList?







Linked List Array List
append

get

length

find

insert
What’s the complexity of each operation, if the list currently has n elements?



linear data structures

Our basic structures: quick review
• arrays
• linked lists
• stacks
• queues 
• priority queue
• binary heap



stacks

• LIFO: last-in first-out
• can implement stack with array, linked list, …
• uses of stack
• implement recursion
• expression evaluation
• depth-first search

• stack operations
• push
• pop
• top (or peek)
• init, isEmpty, isFull



example use of stack: evaluate postfix

postfix: operator after the operands
• (2+3)*7 becomes 2 3 + 7 *
• 2+(3*7) is 2 3 7 * +
• no need for parens

to evaluate a postfix expression E:

use operand stack S

for each token x in E, scanning L to R
if x is operand (value)

S.push(x)
else x is operator (+, *, -, …)

v=S.pop
w=S.pop
z = result of applying operator x to (w,v)
S.push(z)

return S.pop

note: if try to pop on empty stack, then underflow error
and if stack not empty after last pop then overflow error



queues

• FIFO: first-in, first-out
• useful in job scheduling, models “standing in line”
• implementation: linked list, array (wraparound)
• use to compute breath-first search of tree, graph
• operations
• enqueue
• dequeue
• front, isEmpty, isFull



example with tree: stack vs queue

Consider a tree T consisting of simple nodes p:
fields p.left, p.right, and p.value

We have a simple recursive preorder traversal 
whose initial call is preorderTrav(T.root) 

preorderTrav(node p)

print p.value
if p.left != null

preorderTrav(p.left)
if p.right != null

preorderTrav(p.right)



example with tree (cont’d)

preorder traversal:

A B D I J F C G K H

note
inorder: I D J B F A G K C H
postorder: I J D F B K G H C A 



example with tree (cont’d)

implement that traversal with a stack:

stack S of node

S.push(T.root)

while (not S.isEmpty) 
p = S.pop
print p.value
if p.right!=null

S.push(p.right)
if p.left!=null

S.push(p.left)

note: need to push the right side
first so left side gets visited before it

step through traversal with tree 
on previous slide



example with tree (cont’d)

implement that traversal with a queue:

queue Q of node

Q.enqueue(T.root)

while (not Q.isEmpty) 
p = Q.dequeue
print p.value
if p.right!=null

Q.enqueue(p.right)
if p.left!=null

Q.enqueue(p.left)

what order do we get with this method?

try example

stack S -> queue Q
pop -> dequeue
push -> enqueue



example with tree (conclusion)

previous queue algorithm gives a (reverse) level-order:

A C B H G F D K J I

nice, somewhat unrelated question, 
Reconstruct a binary tree from two of the traversal sequences

example: you are given only
A B D I J F C G K H (preorder)
I D J B F A G K C H (inorder)

now build the tree



priority queues

• chapter 6
• abstract operations (implementation independent)
• maintains a set S of elements
• operations
• insert(x)
• max (or returnMax)
• extractMax (removes it)
• increaseKey(x,k) (set key of x to a new larger value)
• -OR- insert, min, extractMin, decreaseKey



can sort with priority queue (assuming the 
descending order)

PQSort(array A)
//array A has n elements

create PQ Q

for i=1 to n
Q.insert(A[i])

for i = n down to 1
A[i] = Q.extractMax

cannot analyze time 
without implementation



unordered list implementation of PQ

• simple
• insert(x) is O(1)
• extractMax is O(!)
• What does PQSort look like?
• selection sort
• time O(!2), work done in second loop



ordered list implementation of PA

• also simple
• insert(x) is O(!)
• extractMax is O(1)
• What does PQSort look like?
• insertion sort
• time O(!2), work done in first loop



binary heap implementation of PQ

• most common implementation
• operations are O(log n)
• uses a binary tree structure
• except that the tree is stored in an array with no pointers
• it is an implicit tree, children and parents inferred from location in 

array

• PQSort becomes heapsort



binary heap

• stored in array
• item located in postion !

• parent in location !/2
• left child in position 2!
• right child in postion 2! + 1

• tree is complete
• all nodes have two children, except maybe parent of “last” one

• tree maintains heap property
• value stored at location ! is greater than or equal to values stored in both its children

• fact: a binary heap with & elements has the height of lg & (why?)

height of tree 
is O(lg n)


