CIS 313:
Intermediate Data Structure

third slide

binary heap implementation of PQ

* most common implementation

e operations are O(/og n)

e uses a binary tree structure

e except that the tree is stored in an array with no pointers

* it is an implicit tree, children and parents inferred from location in
array

* PQSort becomes heapsort

blnary heap height of tree

is O(/g n)
e stored in array
* item located in postion i
* parent in location [i/2] 8 10
* |eft child in position 2i
* right child in postion 2i + 1 9 3405 6 78 o 10
* tree is complete 6halwols[7]o]3]2] 4]

* all nodes have two children, except maybe parent of “last” one

* tree maintains heap property
* value stored at location i is greater than or equal to values stored in both its children

» fact: a binary heap with n elements has the height of |lgn| (why?)

binary heap insertion

* put new value x at end of array, extending its size by 1

* value x is now viewed as being at the bottom of the tree

e if x violates heap property (if larger than parent), swap with parent
* repeat until no violation

 time is proportional to height of tree, which is O(/g n)

* text handles this differently, they insert —co and then use heap-
increase-key to the new value

pseudo-code for insert

insert(x):

heapsize++
A[heapsize]=x

1 = heapsize

while i>1 and A[i]>A[parent(i)] sometimes called “sift-up”
swap A[i] and A[parent(i)] or “bubble-up”
1 = parent (i)

Binary Heap : Insert Operation

viewed as a binary tree viewed as a binary tree
1 2 3 4 5 6 7 1 2 3 4 5 6 7
16/11]12] 8 |10/ 9 |14 16/11[14| 8 [10]9 |12

viewed as an array viewed as an array

heap extract-max (deletion)

* similar but element moves down

 idea: remove and return root (in location 1 of the tree)

* move rightmost element into that empty location ...

e ... and reduce the heapsize

* tree shape is maintained but root location may violate heap property
* note: rest of tree still has heap property

e swap node with larger (why) of it’s children

* repeat while heap property violated until leaf hit

e called “sift-down” or “bubble-down”

text algorithm

MAX-HEAPIFY (A, 1)

/ Input: A: an array where the left and right children of ¢ root heaps (but ¢ may not), i: an array index
/ Output: A modified so that 7 roots a heap
// Running Time: O(logn) where n = heap-size[A] — i

1 [= LEFT(i)

2 r = RIGHT(i)

3 if] < A.heap-size and A[l] > Ali]

4 largest = |

5 elselargest =i L
6 if r < A.heap-size and A[r]| > Allargest]]
7 largest = r

8 if largest # i

9 exchange A[i] with A[largest]
10 MAX-HEAPIFY (A, largest)

first attempt at sorting

1. for each element x, insert x into a heap
* time per insert O(/g n), total O(n /g n) BUTLDHEAD uses deletion
* this can be made much faster - idea to get linear overall time

2. while the heap is not empty, extract-max
e output is a sorted list (reversed)
e each extract-maxis O(/g n), total O(n /g n)
e cannot be made faster

buildheap code

BUILD-MAX-HEAP(A)

/ Input: A: an (unsorted) array
/ Output: A modified to represent a heap.
/ Running Time: O(n) where n = length|[A]
1 heap-size[A] < length|A]
2 for i < |length[A]/2| downto 1

3 MAX-HEAPIFY (A, 1)
time analysis
if tree has height H=Ign
e all nodes at level k take time H-k to sift down
correctness * there are 2Xnodes at level k
* idea sort of clear, build heaps bottom up * total timeis .5 2X(H — k)
* text uses loop invariant!! * can show this is at most 2n

orinding through the time bound

H H
2K(H —k) = 28) (2%/2HY(H — k)

2H 9Jlogan — o —

=n -$,~ <n -T2, =2:n
/ hy just 27?
re-index why Ju

* mentioned but not proved in appendix
 “fun” to derive

— 1
« can also take derivative of Yo x* = P

now heapsort

HEAP-SORT(A)

/ Input: A: an (unsorted) array
// Output: A modified to be sorted from smallest to largest
/ Running Time: O(nlogn) where n = length[A]
BuiLD-MAX-HEAP(A)
for i = length[A] downto 2

exchange A[l] and A[i]

heap-size[A] <— heap-size[A] — 1

MAX-HEAPIFY(A,1)

step 1: ©(n) time

Ot QO DN =

steps 2-5: ©(nlogn) time

other heap operation: increase-key

* an item can be increased in O(lg n) time

e after the increase, it would need to be sifted up as in the insert
method

* the same applies to the decrease-key operation in a min heap

* this operation is a crucial step in Dijkstra’s method (shortest path) and
Prim’s method (minimum spanning tree)

* it can be implemented in O(1) amortized time using Fibonacci heaps

sumima ry Binary heap

Procedure (worst-case)
MAKE-HEAP e(l)
INSERT ©(lg n)
MINIMUM e(1)
EXTRACT-MIN ®(lg n)
UNION e (n)
DECREASE-KEY ®(lg n)

DELETE o(1g n)

small digression: ordered trees

A A
///\\ B/
B CDETFG / \
/N /NSNS
H I] K L M N | D
/N | Yo N
N o) P Q K/\
/ N\
= L
/

ordered tree:

* tree has designated root

* anode can have any number of children

e if anode has k children, they are ordered
e 1stchild, 2™ child, ..., kt child

» good representation involves two pointers per node:
e first- child and next-sibling
* so the children of a node are in a linked list

