
CIS 313:
Intermediate Data Structure

third slide

binary heap implementation of PQ

• most common implementation
• operations are O(log n)
• uses a binary tree structure
• except that the tree is stored in an array with no pointers
• it is an implicit tree, children and parents inferred from location in

array

• PQSort becomes heapsort

binary heap

• stored in array
• item located in postion !

• parent in location !/2
• left child in position 2!
• right child in postion 2! + 1

• tree is complete
• all nodes have two children, except maybe parent of “last” one

• tree maintains heap property
• value stored at location ! is greater than or equal to values stored in both its children

• fact: a binary heap with & elements has the height of lg & (why?)

height of tree
is O(lg n)

binary heap insertion

• put new value ! at end of array, extending its size by 1
• value ! is now viewed as being at the bottom of the tree
• if x violates heap property (if larger than parent), swap with parent
• repeat until no violation
• time is proportional to height of tree, which is O(lg n)

• text handles this differently, they insert −∞ and then use heap-
increase-key to the new value

pseudo-code for insert

insert(x):

heapsize++
A[heapsize]=x

i = heapsize
while i>1 and A[i]>A[parent(i)]

swap A[i] and A[parent(i)]
i = parent(i)

sometimes called “sift-up”
or “bubble-up”

heap extract-max (deletion)

• similar but element moves down
• idea: remove and return root (in location 1 of the tree)
• move rightmost element into that empty location …
• … and reduce the heapsize
• tree shape is maintained but root location may violate heap property
• note: rest of tree still has heap property
• swap node with larger (why) of it’s children
• repeat while heap property violated until leaf hit
• called “sift-down” or “bubble-down”

text algorithm

first attempt at sorting

1. for each element x, insert x into a heap
• time per insert O(lg n), total O(n lg n)
• this can be made much faster

2. while the heap is not empty, extract-max
• output is a sorted list (reversed)
• each extract-max is O(lg n), total O(n lg n)
• cannot be made faster

BUILDHEAP uses deletion
idea to get linear overall time

buildheap code

time analysis
if tree has height H=lgn
• all nodes at level k take time H-k to sift down
• there are 2k nodes at level k
• total time is ∑"# 2%(' −))
• can show this is at most 2+

correctness
• idea sort of clear, build heaps bottom up
• text uses loop invariant!!

grinding through the time bound

!
"#$

%
2" ' −) = 2%!

"#$

%
(2"/2%) ' −)

= . / !
"#$

% 1
2%1" ' −)

= . / ∑3#$% 3
45 ≤ . / ∑3#$7 3

45 = 2 / .

2% ≈ 29:;< = = .

why just 2?
• mentioned but not proved in appendix
• “fun” to derive
• can also take derivative of ∑"#$7 >" = ?

?1@

re-index

now heapsort

step 1: Θ " time

steps 2-5: Θ " log " time

other heap operation: increase-key

• an item can be increased in O(lg #) time
• after the increase, it would need to be sifted up as in the insert

method
• the same applies to the decrease-key operation in a min heap
• this operation is a crucial step in Dijkstra’s method (shortest path) and

Prim’s method (minimum spanning tree)
• it can be implemented in O(1) amortized time using Fibonacci heaps

summary

small digression: ordered trees
ordered tree:
• tree has designated root
• a node can have any number of children
• if a node has k children, they are ordered

• 1st child, 2nd child, …, kth child
• good representation involves two pointers per node:

• first- child and next-sibling
• so the children of a node are in a linked list

