CIS 313: Intermediate Data Structure

third slide

binary heap implementation of PQ

- most common implementation
- operations are O(*log* n)
- uses a binary tree structure
- except that the tree is stored in an array with no pointers
- it is an *implicit* tree, children and parents inferred from location in array
- PQSort becomes *heapsort*

binary heap

- stored in array
- item located in postion *i*
 - parent in location $\lfloor i/2 \rfloor$
 - left child in position 2i
 - right child in postion 2i + 1
- tree is complete
 - all nodes have two children, except maybe parent of "last" one
- tree maintains heap property
 - value stored at location *i* is greater than or equal to values stored in both its children
- fact: a binary heap with n elements has the height of $\lfloor \lg n \rfloor$ (why?)

binary heap insertion

- put new value x at end of array, extending its size by 1
- value x is now viewed as being at the bottom of the tree
- if x violates heap property (if larger than parent), swap with parent
- repeat until no violation
- time is proportional to height of tree, which is O(*lg* n)
- text handles this differently, they insert $-\infty$ and then use heap-increase-key to the new value

pseudo-code for insert

```
insert(x):
```

```
heapsize++
A[heapsize]=x
```

```
i = heapsize
while i>1 and A[i]>A[parent(i)]
    swap A[i] and A[parent(i)]
    i = parent(i)
```

sometimes called "sift-up" or "bubble-up"

Binary Heap : Insert Operation

viewed as a binary tree

viewed as a binary tree

viewed as an array

viewed as an array

heap extract-max (deletion)

- similar but element moves down
- idea: remove and return root (in location 1 of the tree)
- move rightmost element into that empty location ...
- ... and reduce the heapsize
- tree shape is maintained but root location may violate heap property
- note: rest of tree still has heap property
- swap node with *larger* (why) of it's children
- repeat while heap property violated until leaf hit
- called "sift-down" or "bubble-down"

text algorithm

Max-Heapify(A, i)

II Input: A: an array where the left and right children of i root heaps (but i may not), i: an array index *II Output:* A maphical as that i may be an array index.

// Output: A modified so that i roots a heap

 $/\!\!/ \ Running \ Time: \ O(\log n) \ {\rm where} \ n = heap-size[A] - i$

```
l = \text{LEFT}(i)
1
2 r = \text{RIGHT}(i)
    if l \leq A. heap-size and A[l] > A[i]
 3
         largest = l
4
 5 else largest = i
   if r \leq A. heap-size and A[r] > A[largest]^{\frac{1}{2}}
6
 7
         largest = r
    if largest \neq i
 8
         exchange A[i] with A[largest]
 9
         MAX-HEAPIFY (A, largest)
10
```

first attempt at sorting

- 1. for each element x, *insert* x into a heap
 - time per insert O(*lg* n), total O(n *lg* n)
 - this can be made much faster
- 2. while the heap is not empty, extract-max
 - output is a sorted list (reversed)
 - each extract-max is O(lg n), total O(n lg n)
 - cannot be made faster

BUILDHEAP uses deletion idea to get linear overall time

buildheap code

BUILD-MAX-HEAP(A)

 $\begin{array}{ll} \textit{// Input: A: an (unsorted) array} \\ \textit{// Output: A modified to represent a heap.} \\ \textit{// Running Time: O(n) where } n = length[A] \\ 1 & heap-size[A] \leftarrow length[A] \\ 2 & \textbf{for } i \leftarrow \lfloor length[A]/2 \rfloor \textbf{ downto } 1 \\ 3 & \text{MAX-HEAPIFY}(A, i) \end{array}$

correctness

- idea sort of clear, build heaps bottom up
- text uses loop invariant!!

time analysis

if tree has height H=lgn

- all nodes at level k take time H-k to sift down
- there are 2^k nodes at level k
- total time is $\sum_{0}^{H} 2^{k} (H k)$
- can show this is at most 2n

grinding through the time bound

now heapsort

step 1: $\Theta(n)$ time

steps 2-5: $\Theta(n \log n)$ time

other heap operation: increase-key

- an item can be increased in O(lg n) time
- after the increase, it would need to be sifted up as in the insert method
- the same applies to the decrease-key operation in a min heap
- this operation is a crucial step in Dijkstra's method (shortest path) and Prim's method (minimum spanning tree)
- it can be implemented in O(1) amortized time using Fibonacci heaps

summary

Binary heap

Procedure (worst-case)

MAKE-HEAP	Θ(1)
INSERT	$\Theta(\lg n)$
MINIMUM	Θ(1)
EXTRACT-MIN	$\Theta(\lg n)$
UNION	Θ(n)
DECREASE-KEY	⊖(lg n)
DELETE	$\Theta(\log n)$

small digression: ordered trees

ordered tree:

Μ

- tree has designated root
- a node can have any number of children
- if a node has k children, they are ordered
 - 1st child, 2nd child, ..., kth child
- good representation involves two pointers per node:
 - first- child and next-sibling
 - so the children of a node are in a linked list