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binary search trees

• chapter 12
• we will look at
• definitions
• properties
• operations: insert, delete, search
• traversals: inorder, postorder, preorder, level order
• worst case behavior
• average case behavior

• then move onto self-balancing BSTs: red-black, 2-3, 2-3-4, …



various trees

• free tree
• rooted tree
• ordered tree
• binary tree
• binary search tree
• (search property) let x be a node in a BST.  If y is a node in the left subtree of 

x, then y.key <=x.key.  If y is in the right subtree of x, then y.key >= x.key



assorted facts and definitions

• any tree with n nodes has n-1 edges
• a binary tree with left/right pointers and n nodes has n+1 null 

pointers
• a full binary tree with n internal nodes has n+1 external nodes
• full binary tree: all nodes have either 2 children (the internal nodes) 

or 0 children (external)
• a binary tree of n nodes has height at least lg n and at most n-1
• height = distance of node from bottom, depth = distance from top



facts, defs cont’d

• internal path length (I): sum of the depths of all the nodes
• external path length (E): sum of the depths of the nulls (externals)
• fact: E=I+2n  (nice exercise)
• I corresponds to successful search in BST, average search time is 1+ 

I/n
• E corresponds to unsuccessful search, average failed search time is 

E/(n+1)
• worst case tree: skew tree (every node has just one child)



sample BST



BST operations

• find(x)
• insert(x): find a null and put it there
• successor(x)
• successor(10)=11, successor(15)=17
• algorithm?

• if x has right child, go right once, then left until end
• otherwise, follow parent links until “right” turn

• delete(x):  how?
• if 0 children, remove
• if 1 child, splice out
• if 2 children, replace with successor value, then remove successor node



walks

• inorder
• 1  3  4  5  7  8  9  10  11  12  13  15  17  18  20  23

• preorder
• 12  10  5  3  1  4  8  7  9  11  17  13  15  20  18  23

• postorder
• 1  4  3  7  9  8  5  11  10  15  13  18  23  20  17  12



randomly built BST

• we have n values and will insert them one-by-one into a BST
• what will that BST look like?
• there are n! permutations of the input
• we assume each one equally likely

• how many BST shapes can there be?
• Catalan number, which is !
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• (hard!)



counting permutations for a tree

• given a tree shape T we can determine the number of permutations 
which, if inserted into empty BST, would end up with that tree
• build up number bottom up
• at node x, suppose left subtree of x has n nodes and is generated by r 

permutations, and
• right subtree has m nodes and is generated by s permutations
• the the subtree rooted at x
• has n+m+1 nodes

• is generated by (𝑛 +𝑚𝑛 ) ) 𝑟 ) 𝑠 permutations



example • left side generated by 1 permutation: 13  15
• right side by two

• 20  18  23
• 20  23  18

• for full tree, pick one permutation each for the left 
and right sides

• permutation for the whole tree must start with 17 
followed by n+m = 2+3 = 5 spaces
• 17  __  __  __  __  __

• choose two for them for the left tree, which can be 

done in 52 = 10 ways

• example: 2nd and 5th positions
• 17  __  13  __  __  15
• either of the two remaining perms can go in 

remaining three slots
• 17  20 13  18 23 15
• 17  20 13  23 18 15

• total number of permutations for whole tree: 

1 * 2 * 5
2 = 20intuition: balanced trees more “likely”



back to sorting theme

• we can build an abstract sort method based on BST
• given unsorted list, insert all values into empty BST
• perform inorder walk

BST SORT
** input list a=(a1,a2,…,an)
create BST T

for i=1 to n
T.insert(ai)

perform T.inorder
when visiting a node, store value in list b

return b

this part is O(n)



expected behavior

• if list a is chosen randomly from among all n! permutations
• how long does “for i=1 to n T.insert(ai)” take?
• worst case: O(n2)
• want to argue: on average O(n lg n) 

• main fact:  expected search time (1+I/n) in BST built from randomly 
chosen permutation is 2 " ln 𝑛 + 1 + 𝑂 1 ≈ 1.38 log! 𝑛 + 𝑂(1)



text: exercise 12.4-2, p 303

describe a binary search tree on n nodes such that the average depth of a 
node in the tree is Θ(lg 𝑛) but the height of the tree is 𝜔(lg 𝑛)


