CIS 313
fourth slide

binary search trees

- chapter 12
- we will look at
- definitions
- properties
- operations: insert, delete, search
- traversals: inorder, postorder, preorder, level order
- worst case behavior
- average case behavior
- then move onto self-balancing BSTs: red-black, 2-3, 2-3-4, ...

various trees

- free tree
- rooted tree
- ordered tree
- binary tree
- binary search tree
- (search property) let x be a node in a BST. If y is a node in the left subtree of x, then y. key $<=x$.key. If y is in the right subtree of x, then y. key $>=x$.key

assorted facts and definitions

- any tree with n nodes has $n-1$ edges
- a binary tree with left/right pointers and n nodes has $\mathrm{n}+1$ null pointers
- a full binary tree with n internal nodes has $\mathrm{n}+1$ external nodes
- full binary tree: all nodes have either 2 children (the internal nodes) or 0 children (external)
- a binary tree of n nodes has height at least $\lg \mathrm{n}$ and at most $\mathrm{n}-1$
- height = distance of node from bottom, depth = distance from top

facts, defs cont'd

- internal path length (I): sum of the depths of all the nodes
- external path length (E): sum of the depths of the nulls (externals)
- fact: $\mathrm{E}=1+2 \mathrm{n}$ (nice exercise)
- I corresponds to successful search in BST, average search time is 1+ I/n
- E corresponds to unsuccessful search, average failed search time is $E /(n+1)$
- worst case tree: skew tree (every node has just one child)

BST operations

- find (x)
- insert(x): find a null and put it there
- successor(x)
- successor(10)=11, successor(15)=17
- algorithm?
- if x has right child, go right once, then left until end
- otherwise, follow parent links until "right" turn
- delete(x): how?
- if 0 children, remove
- if 1 child, splice out
- if 2 children, replace with successor value, then remove successor node

walks

- inorder
- 1345789101112131517182023
- preorder
- 1210531487911171315201823
- postorder
-1437985111015131823201712

randomly built BST

- we have n values and will insert them one-by-one into a BST
- what will that BST look like?
- there are n ! permutations of the input
- we assume each one equally likely
- how many BST shapes can there be?
- Catalan number, which is $\frac{1}{n+1}\binom{2 n}{n}=\Omega\left(\frac{4^{n}}{n^{\frac{3}{2}}}\right)$
- (hard!)

counting permutations for a tree

- given a tree shape T we can determine the number of permutations which, if inserted into empty BST, would end up with that tree
- build up number bottom up
- at node x, suppose left subtree of x has n nodes and is generated by r permutations, and
- right subtree has m nodes and is generated by s permutations
- the the subtree rooted at x
- has n+m+1 nodes
- is generated by $\binom{n+m}{n} \cdot r \cdot s$ permutations

example

intuition: balanced trees more "likely"

- left side generated by 1 permutation: 1315
- right side by two
- 201823
- 202318
- for full tree, pick one permutation each for the left and right sides
- permutation for the whole tree must start with 17 followed by $n+m=2+3=5$ spaces
- 17 \qquad
- choose two for them for the left tree, which can be done in $\binom{5}{2}=10$ ways
- example: $2^{\text {nd }}$ and $5^{\text {th }}$ positions
- 17 \qquad 3 __ _ 15
- either of the two remaining perms can go in remaining three slots
- $17 \underline{20} 13 \underline{18} \underline{23} 15$
- $17 \underline{20} 13 \underline{23} \underline{18} 15$
- total number of permutations for whole tree:

$$
1 \cdot 2 \cdot\binom{5}{2}=20
$$

back to sorting theme

- we can build an abstract sort method based on BST
- given unsorted list, insert all values into empty BST
- perform inorder walk

$\xrightarrow{\text { this part is } O(n) \longrightarrow$| BST SORT |
| :--- |
| $* * \text { input list } a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ |
| create BST T |
| for i=1 to n
 T.insert $\left(a_{i}\right)$ |
| perform T.inorder |
| when visiting a node, store value in list b |
| return b |$}$

expected behavior

- if list a is chosen randomly from among all n ! permutations
- how long does "for $\mathrm{i}=1$ to n T .insert($\left.\mathrm{a}_{\mathrm{i}}\right)$ " take?
- worst case: O(n²)
- want to argue: on average $O(\mathrm{n} \lg \mathrm{n})$
- main fact: expected search time $(1+1 / n)$ in BST built from randomly chosen permutation is $2 \cdot \ln (n+1)+O(1) \approx 1.38 \log _{2} n+O(1)$

text: exercise 12.4-2, p 303

describe a binary search tree on n nodes such that the average depth of a node in the tree is $\Theta(\lg n)$ but the height of the tree is $\omega(\lg n)$

