
CIS 313
fourth slide

binary search trees

• chapter 12
• we will look at
• definitions
• properties
• operations: insert, delete, search
• traversals: inorder, postorder, preorder, level order
• worst case behavior
• average case behavior

• then move onto self-balancing BSTs: red-black, 2-3, 2-3-4, …

various trees

• free tree
• rooted tree
• ordered tree
• binary tree
• binary search tree
• (search property) let x be a node in a BST. If y is a node in the left subtree of

x, then y.key <=x.key. If y is in the right subtree of x, then y.key >= x.key

assorted facts and definitions

• any tree with n nodes has n-1 edges
• a binary tree with left/right pointers and n nodes has n+1 null

pointers
• a full binary tree with n internal nodes has n+1 external nodes
• full binary tree: all nodes have either 2 children (the internal nodes)

or 0 children (external)
• a binary tree of n nodes has height at least lg n and at most n-1
• height = distance of node from bottom, depth = distance from top

facts, defs cont’d

• internal path length (I): sum of the depths of all the nodes
• external path length (E): sum of the depths of the nulls (externals)
• fact: E=I+2n (nice exercise)
• I corresponds to successful search in BST, average search time is 1+

I/n
• E corresponds to unsuccessful search, average failed search time is

E/(n+1)
• worst case tree: skew tree (every node has just one child)

sample BST

BST operations

• find(x)
• insert(x): find a null and put it there
• successor(x)
• successor(10)=11, successor(15)=17
• algorithm?

• if x has right child, go right once, then left until end
• otherwise, follow parent links until “right” turn

• delete(x): how?
• if 0 children, remove
• if 1 child, splice out
• if 2 children, replace with successor value, then remove successor node

walks

• inorder
• 1 3 4 5 7 8 9 10 11 12 13 15 17 18 20 23

• preorder
• 12 10 5 3 1 4 8 7 9 11 17 13 15 20 18 23

• postorder
• 1 4 3 7 9 8 5 11 10 15 13 18 23 20 17 12

randomly built BST

• we have n values and will insert them one-by-one into a BST
• what will that BST look like?
• there are n! permutations of the input
• we assume each one equally likely

• how many BST shapes can there be?
• Catalan number, which is !

"#!
(2𝑛𝑛) = Ω($

!

"
"
#
)

• (hard!)

counting permutations for a tree

• given a tree shape T we can determine the number of permutations
which, if inserted into empty BST, would end up with that tree
• build up number bottom up
• at node x, suppose left subtree of x has n nodes and is generated by r

permutations, and
• right subtree has m nodes and is generated by s permutations
• the the subtree rooted at x
• has n+m+1 nodes

• is generated by (𝑛 +𝑚𝑛)) 𝑟) 𝑠 permutations

example • left side generated by 1 permutation: 13 15
• right side by two

• 20 18 23
• 20 23 18

• for full tree, pick one permutation each for the left
and right sides

• permutation for the whole tree must start with 17
followed by n+m = 2+3 = 5 spaces
• 17 __ __ __ __ __

• choose two for them for the left tree, which can be

done in 52 = 10 ways

• example: 2nd and 5th positions
• 17 __ 13 __ __ 15
• either of the two remaining perms can go in

remaining three slots
• 17 20 13 18 23 15
• 17 20 13 23 18 15

• total number of permutations for whole tree:

1 * 2 * 5
2 = 20intuition: balanced trees more “likely”

back to sorting theme

• we can build an abstract sort method based on BST
• given unsorted list, insert all values into empty BST
• perform inorder walk

BST SORT
** input list a=(a1,a2,…,an)
create BST T

for i=1 to n
T.insert(ai)

perform T.inorder
when visiting a node, store value in list b

return b

this part is O(n)

expected behavior

• if list a is chosen randomly from among all n! permutations
• how long does “for i=1 to n T.insert(ai)” take?
• worst case: O(n2)
• want to argue: on average O(n lg n)

• main fact: expected search time (1+I/n) in BST built from randomly
chosen permutation is 2 " ln 𝑛 + 1 + 𝑂 1 ≈ 1.38 log! 𝑛 + 𝑂(1)

text: exercise 12.4-2, p 303

describe a binary search tree on n nodes such that the average depth of a
node in the tree is Θ(lg 𝑛) but the height of the tree is 𝜔(lg 𝑛)

