
CIS 313:
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fifth slide



hash tables

• chapter 11
•we want to manage a dynamic set K (|K|=n) where each 

element has a key in universe U = {0,1,…,u-1}
• support efficient operations SEARCH, INSERT and DELETE (i.e, 

in O(1))
• if u is small, an array T[0,…,u-1] would suffice
• each slot in T corresponds to a key in the universe
• if the set doesn’t contain key k, then T[k] = NIL.



hash tables

• if u=|U| is large, an array of size |U| might be impractical/impossible
• idea: the number of keys actually used n might be much smaller than |U|
• we can thus reduce the storage requirement while still achieving the 

efficiency
• hash table: store n items of K in a table T of size m (m << |U|)
• hash function h determines where to put an item (ℎ: 𝑈 → {0,1, . . , 𝑚 − 1})
• issues

• what to do when two items hash to same location (collision)
• how to choose good hash function h (minimize collisions)
• how to choose table size m
• dynamically increase table size

• important in databases but not addressed here



collision resolution

• what to do with two items x and y that hash to same location?
• h(x.key) = h(y.key)
• open addressing
• look at other locations in the table
• table might overflow
• more complicated

• closed addressing
• all items that hash to location t stay there in some structure
• bucket, linked list, … 



chaining

• first: simple version of chaining
• table T with m slots, each containing a linked list
• hash function h maps keys to {0, 1, …, m-1}
• INSERT(T, x): put x in a node at the head of T[h(x.key)]
• SEARCH(T,k): search for an item with key k in the list T[h(k)]
• DELETE(T,x): delete x from the list T[h(x.key)] (done in O(1) with doubly 

linked list)
• load factor: 𝛼 = 𝑛/𝑚, where n is the number of items in the set.
• simple uniform hashing (ideal): search time is 1 + Θ(α) (average-case)
• also called closed addressing (since item stored at that location)



choosing a hash function

• let k be the key and T a table of size m
• want h(k) to distribute keys uniformly across locations {0,1,…,m-1} 

(i.e, approximate the simple uniform hashing)
• division method:  h(k) = k mod m
• choice of table size m important
• if m=2P, then only low order bits of k matter (poor choice)
• if k not distributed well, then h(k) prone to be biased
• best if m a prime



multiplication method

• pick constant A with 0<A<1
• ℎ 𝑘 = 𝑚 % ((𝑘 % 𝐴) 𝑚𝑜𝑑 1) (here “mod 1” means fractional part 

of real number)

• Knuth suggests 𝐴 = ! "#
$

≅ 0.6180339…
• nice example on p 264 of text



universal hashing

• problem with fixed hash function: all keys might hash to same slot
• universal hashing: family of hash functions ℋ, maps key universe U onto {0, 1, …, m-1}
• remark: no single input will always exhibit worst-case behavior (good average-case performance)

• want for any 𝑘, 𝑙 ∈ 𝑈 that the number of ℎ ∈ ℋ such that ℎ 𝑘 = ℎ 𝑙 is at most ℋ
"

(universal 
hashing)

• idea is to pick an ℎ ∈ ℋ randomly if possible
• intuitively if keys k ∈ 𝑈 not distributed well a random ℎ ∈ ℋ will still distribute the locations well 

and excess avoid collision
• example family: ℋ will depend on fixed p, m

• m is table size, p>m is a prime so that all keys k<p
• choose a,b with 0<a<p, b<p (randomly)
• h(k) = ((ak+b) mod p) mod m
• proof that ℋ is universal in text, depending on basic number theory (nice proof)



back to collision resolution: open addressing

• instead of using lists in chaining, all elements are stored in the hash table, 
so no storage requirement for points, saving spaces to reduce collisions
• for key k=x.key, if location T[h(k)] is full (via collision), need to put x in a 

different location
• look in a sequence of locations depending on k. This is called the probe 

sequence
• using the hash function h<k,i> to determine the slot to probe at time i on 

key k
• look in locations h<k,0>, h<k,1>, h<k,2>, … until find empty slot in which to 

place x
• requirement: for every key k, (h<k,0>, h<k,1>, …, h<k,m-1>) be a 

permutation of (0,1,…,m-1) so every position of the hash table is 
considered eventually



strategies for probe sequences

• simplest (and worst): linear probing
• h<k,i> = (h(k)+i) mod m
• that is, if h(k) is full, look in locations h(k)+1, h(k)+2, h(k)+3, …
• problem: primary clustering (slots are clustered in long lines)

• quadratic probing
• pick constants c, d
• h<k,i> = (h(k) + c*i + d*i2) mod m
• c, d, m need to be chosen carefully so that h<k,i> can probe entire table
• problem: secondary clustering (milder than primary clustering)

• double hashing (the current best one)
• use two hash functions h1, h2
• h<k,i> = (h1(k) + i*h2(k)) mod m
• need m and h2(k) to be relatively prime



other uses of hash functions

• database indexing
• need extendible hash tables as many insertions happen
• not good for range queries (“find all values between a and b”)
• B-tree indexes more popular

• cryptographically secure hashing
• password files
• multi-party communication
• hash functions very different looking

• Bloom filters, count-min sketch


