CIS 313:
 Intermediate Data Structure

fifth slide

hash tables

- chapter 11
- we want to manage a dynamic set $K(|K|=n)$ where each element has a key in universe $U=\{0,1, \ldots, u-1\}$
- support efficient operations SEARCH, INSERT and DELETE (i.e, in $O(1)$)
- if u is small, an array $T[0, \ldots, u-1]$ would suffice
- each slot in T corresponds to a key in the universe
- if the set doesn't contain key k, then $T[k]=$ NIL.

hash tables

- if $u=|U|$ is large, an array of size $|U|$ might be impractical/impossible
- idea: the number of keys actually used n might be much smaller than $|U|$
- we can thus reduce the storage requirement while still achieving the efficiency
- hash table: store n items of K in a table T of size $m(m \ll|U|)$
- hash function h determines where to put an item ($h: U \rightarrow\{0,1, . ., m-1\}$)
- issues
- what to do when two items hash to same location (collision)
- how to choose good hash function h (minimize collisions)
- how to choose table size m
- dynamically increase table size
- important in databases but not addressed here

collision resolution

- what to do with two items x and y that hash to same location?
- $h(x . k e y)=h(y . k e y)$
- open addressing
- look at other locations in the table
- table might overflow
- more complicated
- closed addressing
- all items that hash to location t stay there in some structure
- bucket, linked list, ...

chaining

- first: simple version of chaining
- table T with m slots, each containing a linked list

- hash function h maps keys to $\{0,1, \ldots, m-1\}$
- INSERT(T, x): put x in a node at the head of T[h(x.key)]
- $\operatorname{SEARCH}(T, k)$: search for an item with key k in the list $T[h(k)]$
- $\operatorname{DELETE}(T, x)$: delete x from the list $T[h(x . k e y)]$ (done in $O(1)$ with doubly linked list)
- load factor: $\alpha=n / m$, where n is the number of items in the set.
- simple uniform hashing (ideal): search time is $1+\Theta(\alpha)$ (average-case)
- also called closed addressing (since item stored at that location)

choosing a hash function

- let k be the key and T a table of size m
- want $h(k)$ to distribute keys uniformly across locations $\{0,1, \ldots, m-1\}$ (i.e, approximate the simple uniform hashing)
- division method: $\mathrm{h}(\mathrm{k})=\mathrm{k} \bmod \mathrm{m}$
- choice of table size mimportant
- if $m=2^{P}$, then only low order bits of k matter (poor choice)
- if k not distributed well, then $h(k)$ prone to be biased
- best if m a prime

multiplication method

- pick constant A with $0<A<1$
- $h(k)=\lfloor m \cdot((k \cdot A) \bmod 1)\rfloor$ (here "mod 1" means fractional part of real number)
- Knuth suggests $A=\frac{\sqrt{5}-1}{2} \cong 0.6180339$...
- nice example on p 264 of text

universal hashing

- problem with fixed hash function: all keys might hash to same slot
- universal hashing: family of hash functions \mathcal{H}, maps key universe U onto $\{0,1, \ldots, m-1\}$
- remark: no single input will always exhibit worst-case behavior (good average-case performance)
- want for any $k, l \in U$ that the number of $h \in \mathcal{H}$ such that $h(k)=h(l)$ is at most $\frac{|\mathcal{H}|}{m}$ (universal hashing)
- idea is to pick an $h \in \mathcal{H}$ randomly if possible
- intuitively if keys $\mathrm{k} \in U$ not distributed well a random $h \in \mathcal{H}$ will still distribute the locations well and excess avoid collision
- example family: \mathcal{H} will depend on fixed p, m
- m is table size, $p>m$ is a prime so that all keys $k<p$
- choose a, b with $0<a<p, b<p$ (randomly)
- $h(k)=((a k+b) \bmod p) \bmod m$
- proof that \mathcal{H} is universal in text, depending on basic number theory (nice proof)

back to collision resolution: open addressing

- instead of using lists in chaining, all elements are stored in the hash table, so no storage requirement for points, saving spaces to reduce collisions
- for key k=x. key, if location T[h(k)] is full (via collision), need to put x in a different location
- look in a sequence of locations depending on k. This is called the probe sequence
- using the hash function $h<k, i>$ to determine the slot to probe at time i on key k
- look in locations $h<k, 0>h<k, 1>, h<k, 2>, \ldots$ until find empty slot in which to place x
- requirement: for every key k, ($h<k, 0>, h<k, 1>, \ldots, h<k, m-1>)$ be a permutation of ($0,1, \ldots, \mathrm{~m}-1$) so every position of the hash table is considered eventually

strategies for probe sequences

- simplest (and worst): linear probing
- $h<k, i>=(h(k)+i) \bmod m$
- that is, if $h(k)$ is full, look in locations $h(k)+1, h(k)+2, h(k)+3, \ldots$
- problem: primary clustering (slots are clustered in long lines)
- quadratic probing
- pick constants c, d
- $h<k, i>=\left(h(k)+c^{*} i+d^{*} i^{2}\right) \bmod m$
- c, d, m need to be chosen carefully so that $h<k, i>$ can probe entire table
- problem: secondary clustering (milder than primary clustering)
- double hashing (the current best one)
- use two hash functions h_{1}, h_{2}
- $h<k, i>=\left(h_{1}(k)+i^{*} h_{2}(k)\right) \bmod m$
- need m and $h_{2}(k)$ to be relatively prime

other uses of hash functions

- database indexing
- need extendible hash tables as many insertions happen
- not good for range queries ("find all values between a and b")
- B-tree indexes more popular
- cryptographically secure hashing
- password files
- multi-party communication
- hash functions very different looking
- Bloom filters, count-min sketch

