CIS 313:
 Intermediate Data Structure
 sixth slide

expected behavior

- if list a is chosen randomly from among all n ! permutations
- how long does"for $\mathrm{i}=1$ to n T.insert($\left.\mathrm{a}_{\mathrm{i}}\right)$ " take?
- worst case: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- want to argue: on average $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$
- main fact: expected search time $(1+1 / n)$ in BST built from randomly chosen permutation is $2 \cdot \ln (n+1)+O(1) \approx 1.38 \log _{2} n+O(1)$

observations

- this does not bound the height of the tree
- exercise 12.4-2, p 303: describe a binary search tree on n nodes such that the average depth of a node in the tree is $\Theta(\lg n)$ but the height of the tree is $\omega(\lg n)$
- stronger result: height of randomly built BST is is $\Theta(\lg n)$
- new goal: maintain BST whose height is is $\Theta(\lg n)$ in the worst case
- self balancing search trees: AVL, red-black, B-trees

balanced tree

- not realistic to expect perfectly balanced tree
- one attempt (not common): weight-balance, where the number of nodes in left and right subtrees of any node must be close to each other
- better: height-balance, the height of the left and right subtrees must be close
- AVL: differ by one
- red-black: differ by factor of two
- balance maintained by rotations

rotation: single

rotations: double

AVL trees

- (not in text)
- named after inventors Adelson-Velskii and Landis
- store at each node the balance factor:
- bf(p) = height(p.lchild) - height(p.rchild)
- requirement: for every node $p, b f(p)$ equals $-1,0$, or 1
- requires two bits extra storage at each node

AVL height is $\mathrm{O}(\operatorname{lgn})$

- let G_{k} be an AVL tree (shape) of height k with the fewest number of nodes
- G_{k} can be constructed inductively as a node with a $\mathrm{G}_{\mathrm{k}-1}$ left child and a $\mathrm{G}_{\mathrm{k}-2}$ right child
- define g_{k} to be the number of nodes in a G_{k} tree
- $g_{0}=1, g_{1}=2, g_{k}=1+g_{k-1}+g_{k-2}$
- sequence: $1,2,4,7,12,20$
- fact: $\mathrm{g}_{\mathrm{k}}=\mathrm{F}_{\mathrm{k}+3}-1$ ("easy" to prove with induction)
trees G_{k} and values g_{k}

AVL tree height: the punchline

- if n is the number of nodes in an AVL tree of height H then

$$
n \geq g_{H}=F_{H+3}-1
$$

- we know $F_{k}=\left[\varphi^{k} / \sqrt{5}\right]$, where $\varphi=\frac{1+\sqrt{5}}{2} \approx 1.618$
- $\lg F_{H+3} \geq \lg \frac{\varphi^{H+3}}{\sqrt{5}}-1=(H+3) \lg \varphi-\lg \sqrt{5}-1 \geq(H+3) \lg \varphi-$ 4
- so $(H+3) \lg \varphi-4 \leq \lg F_{H+3} \leq \lg (n+1)$ (take log of both sides of top line)
- moving terms around: $H \leq \frac{\lg (n+1)+4}{\lg \varphi}-3 \approx 1.44 \lg (n+1)+O(1)$

AVL insertion

- insert node as with a BST (add it to a null pointer)
- update balance factors along path from new node to root
- the balance factors of some nodes may in violation: 2 or - 2
- find the critical node: the lowest out of balance node
- perform the appropriate rotation
- note: this will affect the balance factors of nodes above it
- total insertion time O(lg n)

AVL insertion

2-3 and 2-3-4 trees

- quick intro here, we will return to them later as B -trees
- a 2-3 tree is a B-tree of order 3 (see ex 18-2, p 503, of text)
- these use multi-way search nodes
- must be perfectly balanced: all paths from the root to a null node have the same length
- insertions cause splits rather than rotations
- important: red-black trees (our real focus) are a binary implementation of 2-3-4 trees

multiway search nodes

example

insertion: splitting nodes

- can split a node when it is full or has overflowed
- splitting on insertion can be bottom-up
- put node at bottom of tree, if over-flow, split on the way up
- or top-down
- when looking for insertion point, if full node seen, split it
- most B-tree implementations use bottom up (less space)
splitting a full node

red-black trees and 2-3-4 trees

- a 2-3-4 tree node would need up to 4 child pointers
- frequently unused so waste of space
- red-black tree is binary tree implementation of 2-3-4 tree
- uses rotations to handle the splits
- need one bit to indicate color
- descending the tree, black means "new node"
- red means "belong to parent"
- Java uses RB trees in the TreeMap class (https://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html)

2-3-4 nodes as RB nodes (2- and 3-nodes)

2-3-4 nodes as RB nodes (4-nodes)

in an RB tree
example RB tree

viewed as 2-3-4 tree

red-black tree rules

1. every node is either red or black
2. the root is black
3. every leaf (null) is black
4. if a node is red, both of its children are black
5. for each node, all simple paths from the node to descendant leaves contain the same number of black nodes
