
CIS 313:
Intermediate Data Structure

sixth slide

expected behavior

• if list a is chosen randomly from among all n! permutations
• how long does “for i=1 to n T.insert(ai)” take?
• worst case: O(n2)
• want to argue: on average O(n lg n)

• main fact: expected search time (1+I/n) in BST built from randomly
chosen permutation is 2 " ln 𝑛 + 1 + 𝑂 1 ≈ 1.38 log! 𝑛 + 𝑂(1)

observations

• this does not bound the height of the tree
• exercise 12.4-2, p 303: describe a binary search tree on n nodes such

that the average depth of a node in the tree is Θ(lg 𝑛) but the height
of the tree is 𝜔(lg 𝑛)
• stronger result: height of randomly built BST is is Θ(lg 𝑛)

• new goal: maintain BST whose height is is Θ(lg 𝑛) in the worst case
• self balancing search trees: AVL, red-black, B-trees

balanced tree

• not realistic to expect perfectly balanced tree
• one attempt (not common): weight-balance, where the number of

nodes in left and right subtrees of any node must be close to each
other
• better: height-balance, the height of the left and right subtrees must

be close
• AVL: differ by one
• red-black: differ by factor of two
• balance maintained by rotations

rotation: single

rotations: double

Composed from two
single rotations.

AVL trees

• (not in text)
• named after inventors Adelson-Velskii and Landis
• store at each node the balance factor:
• bf(p) = height(p.lchild) – height(p.rchild)
• requirement: for every node p, bf(p) equals -1, 0, or 1

• requires two bits extra storage at each node

AVL height is O(lgn)

• let Gk be an AVL tree (shape) of height k with the fewest number of
nodes
• Gk can be constructed inductively as a node with a Gk-1 left child and a

Gk-2 right child
• define gk to be the number of nodes in a Gk tree
• g0 = 1, g1 = 2, gk = 1+gk-1+gk-2

• sequence: 1, 2, 4, 7, 12, 20
• fact: gk = Fk+3 -1 (“easy” to prove with induction)

trees Gk and values gk

AVL tree height: the punchline

• if n is the number of nodes in an AVL tree of height H then
𝑛 ≥ 𝑔" = 𝐹"#$ − 1

• we know 𝐹% = 𝜑%/ 5 , where 𝜑 = &# '
!

≈ 1.618

• lg 𝐹"#$ ≥ lg (
!"#

'
− 1 = 𝐻 + 3 lg𝜑 − lg 5 − 1 ≥ 𝐻 + 3 lg𝜑 −

4
• so 𝐻 + 3 lg𝜑 − 4 ≤ lg 𝐹"#$ ≤ lg(𝑛 + 1) (take log of both sides of

top line)
• moving terms around: 𝐻 ≤)* +#& #,

)* (
− 3 ≈ 1.44 lg 𝑛 + 1 + 𝑂(1)

AVL insertion

• insert node as with a BST (add it to a null pointer)
• update balance factors along path from new node to root
• the balance factors of some nodes may in violation: 2 or -2
• find the critical node: the lowest out of balance node
• perform the appropriate rotation

• note: this will affect the balance factors of nodes above it
• total insertion time O(lg n)

AVL insertion

2-3 and 2-3-4 trees

• quick intro here, we will return to them later as B-trees
• a 2-3 tree is a B-tree of order 3 (see ex 18-2, p 503, of text)
• these use multi-way search nodes
• must be perfectly balanced: all paths from the root to a null node

have the same length
• insertions cause splits rather than rotations

• important: red-black trees (our real focus) are a binary
implementation of 2-3-4 trees

multiway search nodes

4

elements
< 4

elements
> 4

4 10

elements
< 4

elements
> 10

elements
> 4 and < 10

4 10 20

example

insertion: splitting nodes

• can split a node when it is full or has overflowed
• splitting on insertion can be bottom-up
• put node at bottom of tree, if over-flow, split on the way up

• or top-down
• when looking for insertion point, if full node seen, split it

• most B-tree implementations use bottom up (less space)

splitting a full node

4 10 20

T2 T4T3T1

20

10

4

T2 T4T3T1

insert 10 into parent

red-black trees and 2-3-4 trees

• a 2-3-4 tree node would need up to 4 child pointers
• frequently unused so waste of space
• red-black tree is binary tree implementation of 2-3-4 tree
• uses rotations to handle the splits
• need one bit to indicate color
• descending the tree, black means ”new node”
• red means “belong to parent”

• Java uses RB trees in the TreeMap class
(https://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html)

2-3-4 nodes as RB nodes (2- and 3-nodes)

4 4 10

4
10

4

4

10

2-3-4 tree nodes

in an RB tree--OR--

2-3-4 nodes as RB nodes (4-nodes)

4 10 20

10

4 20

a 4-node

in an RB tree

example RB tree

viewed as 2-3-4 tree

red-black tree rules

1. every node is either red or black
2. the root is black
3. every leaf (null) is black
4. if a node is red, both of its children are black
5. for each node, all simple paths from the node to descendant leaves

contain the same number of black nodes

