
CIS 313:
Intermediate Data Structure

seventh slide

red-black trees

1. every node is either red or black
2. the root is black
3. every leaf (null) is black
4. if a node is red, both of its children are black
5. for each node, all simple paths from the node to descendant leaves

contain the same number of black nodes

red-black trees

red-black tree height

• (too) simple analysis:
• the black-height is at most log2n
• the actual height is at most twice the black height
• so total at most 2log2n
• OK, text says at most 2log2(n+1)

turn a binary search tree into a red-black tree

code taken online

red-black tree insertion

• to insert new key x
• as always, search to the bottom of the tree for where x would go
• put x there and color it red (to maintain black-height)
• this might cause a problem: two reds in a row
• if no such problem, then done
• if double-red problem, then fix using
• color shifts or
• rotation

10

4

7example: insert 7

sample BST

RB-INSERT-FIXUP

• section 13.3 of text
• this deals with the double red case after an insertion
• let y be the current node, both it and its parent are red
• let z be the “uncle” of y: the sibling of y’s parent’s parent
• two cases:
• z is red

• color shift
• then check again for double red, possibly continue

• z is black
• rotate
• done

z is red

10

4

7

15

y

z

10

4

7

15

new y
color shift

this swaps a black and red level, preserving black
height along these paths, but may create another
double-red at the new y

z is black

10

4

7
t1

t2 t3

t4 = z 104

7

t1 t2 t3 t4

rotation (double)

done now

z is black (again, different case)

10

4

7

t1 t2

t3

t4 = z 104

7

t1 t2 t3 t4

rotation (single) also done

there are two other cases similar to
these needing single and double left
rotations

example insertions

2

4

6

1

53

after insertion of 1,2,3,4,5,6 into
empty RB tree

let’s continue with 7, 8, …

insert 7

2

4

6

1

53

7

2

4

7

1

63

5

single left rotate

insert 8
2

4

7

1

63

5

8

2

4

7

1

63

5

8
color shift

4

6

1 3

2

7

8

5

single left rotate
(at 2)

insert 9

9

4

6

1 3

2

7

8

5
7

4

6

1 3

2

8

9

5

insert 10

7

4

6

1 3

2

8

9

5

10

color shift

7

4

6

1 3

2

8

9

5

10

color shift

x

y

x

y

insert 10 (cont’d)

7

4

6

1 3

2

8

9

5

10

color shift

note: 4 as root gets colored
black at the end

x

RB Deletion

• BST Deletion Revisited: delete z
• If z has no children, then just remove it
• If z has only one child, then splice out z
• If z has two children, then:

• Find its successor y
• Splice out y
• Replace z’s value with y’s value

-> so the physical node deleted is z in the first two cases and y in the
third case

RB Deletion

• Delete z as in BST
• If z has two children, when replace z’s value with the successor’s

value, keep z’s color (don’t change z’s color)
• Let y be the node being removed or spliced out in this procedure

(y would be either z or successor of z, thus y has at most one child)
• If y is red, no violation of the red-black properties, done
• If y is black, some violations might arise and we need to restore the

red-black properties

RB Deletion: y is black

• Let x be the child of y before it was spliced out
So x is either nil (a leaf) or the only non-nil child of y

Restoring RB Properties

• The RB-DELETE-FIXUP routine in the text, applied to x
• If x is red, so easy, just change its color to black and done
• If x is black:
• Transform the tree and move x up, until:

• x points to a red node, or
• x is the root

• At each step:
• need to consider 8 cases; four when x is a left child and four when x is a right child.
• due to the symmetry, just consider the 4 cases when x is a left child here

• REMEMBER: set the color of x to black in the end

figure 13.7 from text

Restoring RB Properties: x is black and is a left child

The nodes with c or c’
can be either red or black

x’s sibling w is red:
Left rotate D, switch colors of B and D

x’s sibling w is black; both w’s children are black:
Move x up, change w’s color to red

x’s sibling w is black; w’s right child is red:
Left rotate on D, switch colors of B and D, change E’s color

to black

x’s sibling w is black; w’s right child is black, left child is red:
Right rotate on C, switch colors of C and D

example: delete 4

7

4

6

1 3

2

8

9

5

10

7

5

6

1 3

2

8

9

10

x

replace 4 with it’s
successor 5, remove
5’s node (y), x is a nil
node (child of 5) and
it’s black

delete 4 (cont’d)

7

5

6

1 3

2

8

9

10

x w

case 1: left rotate 8,
switch colors of 6 and 8

7

5

6
1 3

2
8

9

10x

delete 4 (cont’d)

7

5

6
1 3

2
8

9

10x w

7

5

6
1 3

2
8

9

10

x
case 2: change color
of 7 to red, move up x to 6

x is now red and we are done
with the moving up of x
FINAL STEP: change color of x
to black

delete 4 (done)

7

5

6
1 3

2
8

9

10

NEXT: delete 1 from this
y is 1 and x is the nil child of 1 (black)

deleting 1 from previous

7

5

6
3

2
8

9

10

x w

case 2: change color of 3 to red and move up x to 2

7

5

6
3

2
8

9

10

x

delete 1 (cont’d)

7

5

6
3

2
8

9

10

7

5

6
3

2
8

9

10

case 2 again: change color of 8 to red, move x up to 5

x

x

w

done since x is at root
(we’ve reduced the black
height of the tree)

remove 2

7

5

6
3

2
8

9

10

7

5

6

3
8

9

10

easy

NEXT: delete 3 from this
y is 3, x is the nil node (child of y)
x is black

y is 2, x is child of y (3), x is
red, so just need to change
color of x (3) to black

removing 3 from previous

7

5

6

8

9

10

x
w

7

5

6

8

9

10
x w

case 1: left rotate 8, switch colors
of 5 and 8

remove 3 (cont’d)

7

5

6

8

9

10
x w

set up as case 4:

A

B

C

D

E

case 4: left rotate D (6),
switch colors of 5 and 6,
change color of 7 to black
Done!

5

6

7

8

9

10
B

C

D

E

A x

motivated by a
“transfer” in 2-3-4
tree

remember: all cases come with mirror image

case 4

• here x is right child of parent
• the left child of w is red
• fix-up can be completed with a right rotation

and color changes
• note that the blue nodes (B and C) can be

either red or black

B-trees

• very important data structure in computer science
• database indexing, hard disk referencing, MongoDB, …
• balanced, multi-way search tree
• many slight variations, we will use definition in CLRS text
• idea is that nodes are large and fit into a disk block (minimum amount

of data that’s pulled off a hard drive)
• node size parameters (here called t) depend on disk speeds, block

sizes, etc.

B-tree specifications

• fixed parameter t, called minimum degree
• nodes have between t-1 and 2t-1 keys
• so therefore they have between t and 2t children
• root is exception: it may have as few as 1 key (2 children)
• all null pointers have the same depth (distance from root)
• a 2-3-4 tree is a B-tree with minimum degree t=2

different texts: things to look for

• top-down versus bottom-up insertion
• CLRS does top-down, split full nodes during search
• unlike how it does RB trees
• bottom-up more common in practice, less wasted space

• ties to left or right
• no duplicates here
• need to know for B+ trees, which have all keys at an additional “leaf level”

• left/right bias: if middle key not well defined (when splitting a node
with even number of keys)

B-tree node format

• each node can have between t and 2t children
• a node might look like
• <P0, K1, P1, K2, P2, … , Pq-2, Kq-1, Pq-1>
• for t <= q <= 2t (except for root 2<=q<=2t)

• during a search, we split full nodes
• a node is full when it has 2t-1 keys

node split (shown for t=3)

<a b c d e>

split a full node

c

<a b> <d e>

promote c by inserting
into parent

becomes

t1 t2 t3 t4 t5 t6

t1 t2 t3 t4 t5 t6

B-tree height

• theorem 18.1: if ! ≥ 1, then for any B-tree containing n keys of
height h and minimum degree $ ≥ 2, ℎ ≤ log+ ,-./ .
• example: t=50 and n=100,000,000
• ℎ ≤ log01 50,000,000.5 ≅ 4.53 ≤ 5

• suppose 20 records fit on a page
• without the index to find an item we’d need to search about half the

100,000,000/20=5,000,000
• with the index we need at most 5+1=6 disk accesses (5 for the tree

nodes and one for the page containing that key’s record)

exercise 18.2-1

insert into initially empty B-tree of min degree t=2 the key values
F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B, X, Y, D, Z, E

<F, Q, S>

after the first 3 values: a search to place K causes a split:

<Q>

<F> <S>

<Q>

<F, K> <S>

after which K is placed:

<Q>

<C, F, K> <S>

place C search for L splits full node:

<Q>

<C, F, K> <S>

L

<F, Q>

<C> <S>

L

<K>

<F, Q>

<S><K, L><C>

split

insert

insert into initially empty B-tree of min degree t=2 the key values
F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B, X, Y, D, Z, E

<F, Q>

<S, T, V><H, K, L><C>

place H, T, V

<F, Q>

<S, T, V><H, K, L><C>

insert W

<F, Q>

<S, T, V><H, K, L><C>

<F, Q, T>

<S><H, K, L><C> <V>

<F, Q, T>

<S><H, K, L><C> <V, W>

W

W

Wsearch

split

insert

insert into initially empty B-tree of min degree t=2 the key values
F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B, X, Y, D, Z, E

<F, Q, T>

<S><H, K, L><C> <V, W>

insert M

M

<F>

<S><H, K, L><C> <V, W>

M
<T>

<Q>
M

<F>

<S><H, K, L><C> <V, W>

<T>

<Q>

M

<F, K>

<S><H><C> <V, W>

<T>

<Q>

<L>

<F, K>

<S><H><C> <V, W>

<T>

<Q>

<L, M>

split

insert

search

split

insert into initially empty B-tree of min degree t=2 the key values
F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B, X, Y, D, Z, E

ETC….

aside: splay trees

• maintain balance kind of
• insertion, deletion, union take O(lg n) amortized time
• a series of m of these operations on n keys takes total time worst case

O(m*lgn)
• possible that one operation takes O(n) time but cannot happen often

• NO balance information needs to be stored at node (balance factor,
color)
• used in DNS servers sometimes

splay trees use rotations

• idea is that whenever a node is accessed, it is moved to the root by a series
of rotations
• LOTS OF ROTATIONS!
• and slightly different ones

• if x is child of root, it is moved upwards with a single rotation
• called a ZIG rotation

• if x has a (RL or LR) grandparent, it is moved up with a double rotation
• called a ZIG-ZAG rotation

• if x has a (LL or RR) rotation, then moved up with a special rotation
• ZIG-ZIG

• idea: zig-zigs and zig-zags tend towards rebalancing

zig-zig

zig-zag

example: find 7

1

2

3

4

5

6

7 x

zig-zig

1

2

3

4

5

6

7 x

zig-zig

1

2

3

4

5

6

7 x zig-zig
1

2

3

4

5

6

7 x, and done

