
CIS 313:
Intermediate Data Structure

eighth slide



theme

• Sorting
• Order statistics



merge sort

1. break list of n elements into two halves (time O(1))
2. recursively sort each half (time T(n/2)+T(n/2))
3. merge the two sorted lists (time O(n))

• total time T(n) = 2T(n/2) + O(n)
• this can be shown to be T(n) = O(n lgn)
• master method (powerful) can solve recurrence relations



master method
more general and 
complicated version in 
text

a > 0, b > 1, d ≥ 0



quicksort: ”dual” version of merge sort

1. ”unmerge” the array
1. use Partition method
2. break into “halves” of small elements and large elements
3. of course, they may not be same size, just hope so

2. sort each side recursively
3. put the two sides together (no work involved here)

• Partition is O(n)
• total is O(n2) worst case
• but O(n lgn) on average



Partition: the key method



Partition: observation

• in place operation
• merge requires workspace
• then need to copy items back into array

• single pass
• can choose other elements for pivot
• median of first, last, middle elements
• choose random location in [p,r], use element there as pivot

• that’s Randomized-Partition
• highly recommended



what partition does

unsorted elements

elements <= x

p

q rp

r

x elements >x

the sizes of the left and right 
sides depend on the value of x



quicksort easy with partition

QuickSort(p, r)

if p<r then
     q = Partition(p,r)
     QuickSort(p,q-1)
     QuickSort(q+1,r)



quicksort worst case

• suppose partition uses time cn
• let T(n) be the time for quicksort on n elements
• in the worst case, the pivot element is always the largest (or smallest) 

remaining element
• so T(n) = cn +T(n-1)
• expanding T(n) = cn +T(n-1)

= cn + c(n-1) +T(n-2)
= cn + c(n-1) + c(n-2) + T(n-3) …
= c( n + (n-1) + (n-2) + … + 1 ) + T(0)
= cn(n+1)/2 + T(0)
= O(n2)



quicksort average case

• in the call to Partition, suppose that each returned value of q is equally 
likely
• there are n possibilities: q = 1, 2, 3, …, n
• the recursive calls to QuickSort have sizes q-1 and n-q

• so the average case time is 𝑇 𝑛 = 𝑐𝑛 + !
"
∑#$!" (𝑇 𝑞 − 1 + 𝑇 𝑛 − 𝑞 )

• note that in the sum, each of T(0), T(1), …, T(n-1) appear twice, so we can 
rewrite it as

• 𝑇 𝑛 = 𝑐𝑛 + !
"
∑%$&"'! 2𝑇 𝑘 = 𝑐𝑛 + (

"
(𝑇 0 + 𝑇 1 +⋯+ 𝑇 𝑛 − 1 )



average case (2)

• rewrite
• 𝑛 " 𝑇 𝑛 = 𝑐𝑛! + 2(𝑇 0 + 𝑇 1 +⋯+ 𝑇 𝑛 − 1 )
• substitute n-1 for n
• (𝑛 − 1) " 𝑇 𝑛 − 1 = 𝑐(𝑛 − 1)!+2(𝑇 0 + 𝑇 1 +⋯+ 𝑇 𝑛 − 2 )
• subtract one from the other, and notice that T(0),…,T(n-2) cancel
• 𝑛𝑇 𝑛 − 𝑛 − 1 𝑇 𝑛 − 1 = 𝑐𝑛! − 𝑐(𝑛 − 1)!+2𝑇 𝑛 − 1
• simplify, collect terms
• 𝑛𝑇 𝑛 = 𝑐 2𝑛 − 1 + 𝑛 + 1 𝑇 𝑛 − 1 ≤ 2𝑐𝑛 + 𝑛 + 1 𝑇(𝑛 − 1)



average case (3)

• grind away, use ”standard” tricks

• 𝑇 𝑛 ≤ 2𝑐 + ("*!)
"

𝑇(𝑛 − 1)

• ,(")
"*!

	≤ (-
"*!

+ ,("'!)
"

• let 𝑓 𝑛 = ,(")
"*!

 and rewrite the previous line as

• 𝑓 𝑛 ≤ (-
"*!

+ 𝑓 𝑛 − 1
• expand (again)

• 𝑓 𝑛 ≤ (-
"*!

+ 𝑓 𝑛 − 1 = (-
"*!

+ (-
"
+ 𝑓 𝑛 − 2 ≤ (-

"*!
+ (-

"
+ (-

"'!
+

𝑓 𝑛 − 3 ≤ 	…



average case (4)

• …𝑓 𝑛 ≤ 2c "
#$"

+ "
#
+ "

#%"
+⋯+ "

!
+ 𝑓 0 = 2𝑐(𝐻#$"−1) +

𝑓(0) = 2𝑐 " 𝐻#$" + 𝜃(1)

• recall the Harmonic series 𝐻# =	∑&'"# "
&
=	 ln 𝑛 + 𝜃(1)

• so 𝑓 𝑛 = 2𝑐 " ln 𝑛 + 1 + 𝜃 1 ≅ 2.885𝑐 " log! 𝑛 + 1 + 𝜃 1

• remembering that 𝑓 𝑛 = ((#)
#$"

 we get

• ((#)
#$"

= 	θ(lg(𝑛 + 1)) or 𝑇 𝑛 = 	θ((𝑛 lg(𝑛 + 1))
• DONE!!



lower bounds

• O(nlgn) seems like a common time bound for sorting
• there is a reason for this
• look at the comparison-based model
• access to data items are only through comparisons of two items
• is 𝑎 ≤ 𝑏?

• the more common sorts are comparison based: merge-sort, heap-
sort, quick-sort, bubble-sort, etc.
• counting sort is O(n) times (sort of), but it is not comparison-based
• it uses data item as array index



comparison-based sorts require nlgn time

• the Ω 𝑛 " 𝑙𝑔𝑛  lower bound is on the number of comparisons 
required to sort n items
• use the decision tree model
• a decision tree is a full binary tree
• internal node represents a comparison between two items
• left/right branches indicate yes/no outcomes
• external nodes are the outcomes

• any comparison based sorting algorithm on n elements corresponds 
to a (BIG!!) decision tree
• height of the tree is the worst case number of comparisons



decision tree example
this tree has 3!=6 external nodes, 
one for each possible outcome of 
sorting 3 elements



observations about decision trees

• any decision tree for sorting n items must have at least n! external 
nodes (outcomes): #outcomes ≥ 𝑛!
• a decision tree of (internal) height h has at most 2h external nodes
• height h means h+1 comparisons

• combining:  𝑛! 	≤ #outcomes	 ≤ 	2+

• take logs of both sides: lg 𝑛! ≤ lg 2+ = ℎ

• Stirling’s Approx: lg 𝑛! = lg 2𝜋𝑛 " #
,

#
" (1 + Θ "

#
) = Θ(𝑛 lg 𝑛)



aside: avoid Stirling’s Approx 

• 𝑛! = 𝑛 𝑛 − 1 𝑛 − 2 ⋯2 " 1 ≥ 𝑛(𝑛 − 1)⋯ (#
!
+ 1)(#

!
	) ≥ (#

!
)
!
"

• so from previous page…

• ℎ = lg 2+ 	≥ lg 𝑛! ≥ lg(#
!
)
!
" 	= (#

!
)(lg 𝑛 − 1)

• conclude: ℎ = Ω(𝑛 lg 𝑛)



lower bound: conclusion

• theorem 8.1: Any comparison sort algorithm requires Ω 𝑛 " 𝑙𝑔𝑛  
comparisons in the worst case
• this general technique is called an information theoretic lower bound
• general idea: find number of outcomes, take logarithm

• application: merge 2 sorted lists of n elements, requires n 
comparisons



exercise 8.1-4 from text



linear time sorts

• Counting sort, Radix sort
• for Counting sort, we sort n elements, each in the range 0 to k (k 

fixed)
• sometimes k=n
• use element as array index

• simple version:  count the number of items with value i, for 0 ≤ 𝑖 ≤ 𝑘
• use i as index to an array C
• then for each i print C[i] copies of i
• problem: i may be a key to larger element, need associated info





example run: n=8, k=5

1 2 3 4 5 6 7 8

2 5 3 0 2 3 0 3A

0 1 2 3 4 5

2 0 2 3 0 1C

0 1 2 3 4 5

2 2 4 7 7 8C

C[i] contains the number of elements i

C[i] now contains the number of 
elements <=  i



0 1 2 3 4 5

2 2 4 7 7 8C

1 2 3 4 5 6 7 8

3B

1 2 3 4 5 6 7 8

2 5 3 0 2 3 0 3A

B[C[A[8]]=A[8]

0 1 2 3 4 5

2 2 4 7 6 7 8new C
next 3 goes into location 6


