CS 313, Intermediate Data Structures

Logarithm Cheat Sheet

Definition: $m=\log _{a} n$ if and only if $n=a^{m}$, where $a>0($ thus $n>0)$.
In other words, logarithms are exponents.
a is called the base of the algorithm.
Example: $\log _{2} 8=\log _{2} 2^{3}=3$ as $2^{3}=8$.
In order for $\log _{a} n$ to be valid, both a and n have to be strictly greater than 0 .
In this class, n is often the size of the input, so it's often a positive integer, thus satisfying the requirement to take logarithms.

Properties of Logarithms

For all $a>0, b>0, n>0$ and $m>0$:

1. $\log _{a} a=1$
2. $\log _{a} 1=0$
3. $\log _{a} n m=\log _{a} n+\log _{a} m$
4. $\log _{a} \frac{n}{m}=\log _{a} n-\log _{a} m$
5. $\log _{a} n^{m}=m \log _{a} n$
6. $\log _{a} a^{n}=n$
7. $a^{\log _{a} n}=n$
8. $\log _{a} n=\frac{\log _{b} n}{\log _{b} a}$ (taking $\log _{b}$ on both sides of property 7. and applying property 5.)

Remarks:

- Because of property 8., the base of the logarithms does not matter when we apply asymptotic notations
- When the base $a=e \approx 2.71828$ (i.e, the Euler number), we often write $\log _{a} n=\ln n$ (called the natural logarithm)
- As the base doesn't matter, we often use the base of $2(a=2)$ in the asymptotic notations. So, we often simply write $\log n$ or sometime $\lg n$ to imply $\log _{2} n$ in class (i.e., $\log n=\lg n=$ $\log _{2} n$).
- In general, the logarithm functions grow much slower than the polynomial functions that are in turn, grow much slower than the exponential functions, (in the o notation: $\log ^{k} n=$ $o\left(n^{\alpha}\right)=o\left(c^{n}\right)$ for all $\left.k>0, \alpha>0, c>1\right)$.

