CIS 313 Intermediate Data Structures

Sample Proof of Correctness by Loop Invariant

We wish to prove the correctness of the following piece of code, which converts an integer n to its representation in binary b:

```
input: integer n>=0
output: integer k, array b of k bits
convert_to_binary(n)
                         {
-- initialization
int k=0
int t=n
array b = [] of bit
--loop
while t>0 do
     b[k] = (t \mod 2)
     k = k+1
     t = t \operatorname{div} 2
--end
return b, k
}
```

An invariant α for a general loop *init* while γ do \mathcal{L} must satisfy the following three properties:

- (i) *(initialization)* α is true after the initialization phase *<init>*.
- (ii) (maintenance) Suppose γ is true so that the loop can be entered. If α is true, then after one execution of the body of the loop \mathcal{L} , the invariant α will still be true.
- (iii) (termination) Eventually $\neg \gamma$ will occur, so the loop will halt. The desired outcome is $\neg \gamma \land \alpha$.

For convert_to_binary, the loop condition is clearly $\gamma = "t > 0"$ and the loop invariant α we will use is

- $t \ge 0$, and
- Let $m = \sum_{i=0}^{k-1} b[i] \cdot 2^i$ be the number represented by b. Then $n = 2^k \cdot t + m$.

Let's work through the three steps of the process of using a loop invariant.

- (i) (initialization) Initially, $t = n \ge 0$, so part 1 of α holds. Also, k = 0 and b = [], so m = 0. Part 2 of α holds now since $2^k \cdot t + m = 2^0 \cdot n + 0 = n$.
- (ii) (maintenance) Suppose that both γ and α are true. Then t > 0 and $n = 2^k \cdot t + m$ (where m is defined as above). The new values of t, k, m we will call t', k', m', and clearly k' = k + 1. Also, $t' = \lfloor t/2 \rfloor$.

We need to show that α holds for these new values t', k', m'. Part 1 of α is easy: t > 0 so $t' = \lfloor t/2 \rfloor \geq 0$. For part 2, it remains to show that $n = 2^{k'} \cdot t' + m'$ There are two cases, depending on whether t is even or odd.

(t is even) Here b[k] = 0, m' = m, and $t' = \frac{t}{2}$. Now

$$2^{k'} \cdot t' + m' = 2^{k+1} \cdot \frac{t}{2} + m = 2^k \cdot t + m = n$$

(the last step follows by hypothesis) and part 2 is true.

(t is odd) In this case b[k] = 1, $m' = 2^k + m$, and $t' = \frac{t-1}{2}$. Substituting as above,

$$2^{k'} \cdot t' + m' = 2^{k+1} \cdot \frac{t-1}{2} + (2^k + m) = 2^k \cdot t - 2^k + (2^k + m) = 2^k \cdot t + m = n$$

and again part 2 of α holds.

(iii) *(termination)*

The loop terminates, since $t > \lfloor t/2 \rfloor$.

At termination, both α and $\neg \gamma$ are true. Part 1 of α tells us that $t \ge 0$ while $\neg \gamma$ says that $t \le 0$. From these we get t = 0.

Now let's look at part 2 of α at termination. Remember that $m = \sum_{i=0}^{k-1} b[i] \cdot 2^i$ is the number represented by the bits stored in the array b. Part 2 says that $n = 2^k \cdot t + m$. But we know that t = 0, so n = m. That is what we wanted to prove, namely that b stores the binary representation of the number n.