
CIS 313 Intermediate Data Structures

Sample Proof of Correctness by Loop Invariant

We wish to prove the correctness of the following piece of code, which converts an integer n to its
representation in binary b:

input: integer n>=0

output: integer k, array b of k bits

convert_to_binary(n) {

-- initialization

int k=0

int t=n

array b = [] of bit

--loop

while t>0 do

b[k] = (t mod 2)

k = k+1

t = t div 2

--end

return b, k

}

An invariant α for a general loop <init> while γ do L must satisfy the following three proper-
ties:

(i) (initialization) α is true after the initialization phase <init>.

(ii) (maintenance) Suppose γ is true so that the loop can be entered. If α is true, then after one
execution of the body of the loop L, the invariant α will still be true.

(iii) (termination) Eventually ¬γ will occur, so the loop will halt. The desired outcome is ¬γ ∧α.

For convert to binary, the loop condition is clearly γ = “t > 0” and the loop invariant α we will
use is

• t ≥ 0, and

• Let m =
∑k−1

i=0 b[i] · 2i be the number represented by b. Then n = 2k · t+m.

Let’s work through the three steps of the process of using a loop invariant.

1



(i) (initialization) Initially, t = n ≥ 0, so part 1 of α holds. Also, k = 0 and b = [], so m = 0.
Part 2 of α holds now since 2k · t+m = 20 · n+ 0 = n.

(ii) (maintenance) Suppose that both γ and α are true. Then t > 0 and n = 2k · t + m (where
m is defined as above). The new values of t, k,m we will call t′, k′,m′, and clearly k′ = k+ 1.
Also, t′ = bt/2c.
We need to show that α holds for these new values t′, k′,m′. Part 1 of α is easy: t > 0 so
t′ = bt/2c ≥ 0. For part 2, it remains to show that n = 2k

′ · t′ + m′ There are two cases,
depending on whether t is even or odd.

(t is even) Here b[k] = 0, m′ = m, and t′ = t
2 . Now

2k
′ · t′ +m′ = 2k+1 · t

2
+m = 2k · t+m = n

(the last step follows by hypothesis) and part 2 is true.

(t is odd) In this case b[k] = 1, m′ = 2k +m, and t′ = t−1
2 . Substituting as above,

2k
′ · t′ +m′ = 2k+1 · t− 1

2
+ (2k +m) = 2k · t− 2k + (2k +m) = 2k · t+m = n

and again part 2 of α holds.

(iii) (termination)

The loop terminates, since t > bt/2c.
At termination, both α and ¬γ are true. Part 1 of α tells us that t ≥ 0 while ¬γ says that
t ≤ 0. From these we get t = 0.

Now let’s look at part 2 of α at termination. Remember that m =
∑k−1

i=0 b[i] ·2i is the number
represented by the bits stored in the array b. Part 2 says that n = 2k · t + m. But we know
that t = 0, so n = m. That is what we wanted to prove, namely that b stores the binary
representation of the number n.

2


