CIS 313 Intermediate Data Structures

Sample Proof of Correctness by Loop Invariant

We wish to prove the correctness of the following piece of code, which converts an integer n to its representation in binary b :

```
input: integer n>=0
output: integer k, array b of k bits
convert_to_binary(n) {
-- initialization
int k=0
int t=n
array b = [] of bit
--loop
while t>0 do
    b[k] = (t mod 2)
    k = k+1
    t = t div 2
--end
return b, k
}
```

An invariant α for a general loop <init> while γ do \mathcal{L} must satisfy the following three properties:
(i) (initialization) α is true after the initialization phase <init>.
(ii) (maintenance) Suppose γ is true so that the loop can be entered. If α is true, then after one execution of the body of the loop \mathcal{L}, the invariant α will still be true.
(iii) (termination) Eventually $\neg \gamma$ will occur, so the loop will halt. The desired outcome is $\neg \gamma \wedge \alpha$.

For convert_to_binary, the loop condition is clearly $\gamma=" t>0$ " and the loop invariant α we will use is

- $t \geq 0$, and
- Let $m=\sum_{i=0}^{k-1} b[i] \cdot 2^{i}$ be the number represented by b. Then $n=2^{k} \cdot t+m$.

Let's work through the three steps of the process of using a loop invariant.
(i) (initialization) Initially, $t=n \geq 0$, so part 1 of α holds. Also, $k=0$ and $b=[]$, so $m=0$. Part 2 of α holds now since $2^{k} \cdot t+m=2^{0} \cdot n+0=n$.
(ii) (maintenance) Suppose that both γ and α are true. Then $t>0$ and $n=2^{k} \cdot t+m$ (where m is defined as above). The new values of t, k, m we will call $t^{\prime}, k^{\prime}, m^{\prime}$, and clearly $k^{\prime}=k+1$. Also, $t^{\prime}=\lfloor t / 2\rfloor$.
We need to show that α holds for these new values $t^{\prime}, k^{\prime}, m^{\prime}$. Part 1 of α is easy: $t>0$ so $t^{\prime}=\lfloor t / 2\rfloor \geq 0$. For part 2 , it remains to show that $n=2^{k^{\prime}} \cdot t^{\prime}+m^{\prime}$ There are two cases, depending on whether t is even or odd.
(t is even) Here $b[k]=0, m^{\prime}=m$, and $t^{\prime}=\frac{t}{2}$. Now

$$
2^{k^{\prime}} \cdot t^{\prime}+m^{\prime}=2^{k+1} \cdot \frac{t}{2}+m=2^{k} \cdot t+m=n
$$

(the last step follows by hypothesis) and part 2 is true.
(t is odd) In this case $b[k]=1, m^{\prime}=2^{k}+m$, and $t^{\prime}=\frac{t-1}{2}$. Substituting as above,

$$
2^{k^{\prime}} \cdot t^{\prime}+m^{\prime}=2^{k+1} \cdot \frac{t-1}{2}+\left(2^{k}+m\right)=2^{k} \cdot t-2^{k}+\left(2^{k}+m\right)=2^{k} \cdot t+m=n
$$

and again part 2 of α holds.
(iii) (termination)

The loop terminates, since $t>\lfloor t / 2\rfloor$.
At termination, both α and $\neg \gamma$ are true. Part 1 of α tells us that $t \geq 0$ while $\neg \gamma$ says that $t \leq 0$. From these we get $t=0$.
Now let's look at part 2 of α at termination. Remember that $m=\sum_{i=0}^{k-1} b[i] \cdot 2^{i}$ is the number represented by the bits stored in the array b. Part 2 says that $n=2^{k} \cdot t+m$. But we know that $t=0$, so $n=m$. That is what we wanted to prove, namely that b stores the binary representation of the number n.

