
Project 1: EasyA (or JustPass)
CS 422 Software Methodologies
Prof. Anthony Hornof - 1-9-2024

0. Deadlines
Initial submission: Due at on Wednesday, January 17, at 8PM. This will be submitted as a single
PDF on Canvas. This initial submission will include everything discussed under "Initial Project
Plan / SRS / SDS" at https://classes.cs.uoregon.edu/24W/cs422/Project_Evaluation.html except
that you will not submit an SRS unless you substantially modify this project description.

Final submission: Due on Wednesday, February 5, at 8PM. It will be submitted as a zip file on
Canvas. It will include everything else discussed at:
https://classes.cs.uoregon.edu/24W/cs422/Project_Evaluation.html

Presentations: In class on Monday, February 6. Eight minutes per group.
Please see: https://classes.cs.uoregon.edu/24W/cs422/How_to_Present.html

1. Concept of Operations (ConOps)
The goal of the project is to build a system called EasyA that students can use to figure out which
professors in which classes are giving the most As, and which professors are giving the fewest
Ds or Fs. The system could help students to an “easy A” or make sure that they “just pass”. The
system will use grade data from 2013-2016 at the University of Oregon. The data are provided
by the Daily Emerald.

Current System
The goal is to improve up on the current system at https://emeraldmediagroup.github.io/grade-
data/ by providing better side-by-side comparisons of different faculty teaching the same class,
and different faculty across different class levels (such as 200-level classes versus 400-level
classes). The system you build could be
either a standalone system that produces
PDF or screen output, or an online
system such as the current system.

Justification of a New System
The current system does not adequately
show views of the data that would be
most useful to students. For example,
Figure 1 shows a side-by-side
comparisons, within a single graph, of
the percent of As assigned by different
faculty teaching the same class across

1

Sm
ith

W
ang

Patel

G
arcía

%
As

Math 111100

0

50

Instructor

Sm
ith

W
ang

Patel

G
arcía

%
 D

s
/ F

s Math 111100

0

50

Instructor

Figure 1. Side-by-side comparison of different
instructors teaching the same class. The left panel

 shows the percent of As assigned by the instructor,
and the right panel the percent of Ds and Fs.

https://classes.cs.uoregon.edu/24W/cs422/Project_Evaluation.html
https://classes.cs.uoregon.edu/24W/cs422/Project_Evaluation.html
https://classes.cs.uoregon.edu/24W/cs422/How_to_Present.html
https://emeraldmediagroup.github.io/grade-data/
https://emeraldmediagroup.github.io/grade-data/

multiple years, and the percent of Ds and Fs assigned by the same instructors for the same
classes. This is a view of the data that would be more useful to students.

User Classes
The two main users classes here include:
(1) A student using the system to select a class or instructor.
(2) A system administrator installing the system, or updating it with new data.

Operational Scenarios (Use Cases)
There are two main use-cases, described here very briefly:
(1) A student needs to take Math 111 this term, and there are many different faculty teaching the

class. The student wants to know which instructors are most likely to give As, and which are
most likely to give Ds and Fs. The student uses the system to compare the grading history of
the instructors teaching this term, side-by-side.

(2) A system administrator acquires new data for the system, and updates the system with the
new data.

2. Functional Requirements
Views of the Data

The user should be able to view data in the following manner:

(a) Within a single graph, broken out by instructor for:
(1) A single class (such as “Math 111”).
(2) A single department (such as “Math”).
(3) All classes of a particular level within a department (such as all “Math 100-level” classes,

from 100-level classes through 600-level classes).

Figure 2 shows examples of such graphs.

%
As

All Math Classes100

0

50

Sm
ith

W
ang

Patel

G
arcía

%
As

All Math 100-level100

0

50

Instructor

Sm
ith

W
ang

Patel

G
arcía

Instructor

Sm
ith

W
ang

Patel

G
arcía

%
As

Math 111100

0

50

Instructor

Figure 2. Within a single graph, instructor data for a single class,
a single department, or a single level within a department.

2

(b) All classes of a particular level within a department. This
would help students, for example to choose which electives to
take. Figure 3 shows an example.

(c) “All Instructors” versus “Regular Faculty”
For all graphs, there should be two options as follows:

(1) “All instructors” (the default)
(2) “Regular Faculty”, which are the faculty listed within

departments in the 2014-2015 UO Course Catalog, the
listings of which are available here:
https://web.archive.org/web/20140901091007/http://
catalog.uoregon.edu/arts_sciences/
Open a department name in the list on the right, and click on
the “Faculty” Button.

(d) “Easy As” versus “Just Pass”
For all graphs, there should be two options, as follows. The
selection should be indicated on the Y-axis label:

(1) “Percent As” or “% As” (the default)
(2) “Percent Ds or Fs” or “% Ds / Fs”

(e) An option to show the class count
Ideally, your system will have an option to show the number of
classes represented in each bar in the bar graph. Figure 4 shows
an example.

Side-by-Side Viewing
The system should support some sort of side-by-side viewing of
graphs, such as to show Figure 3 (for Math 400-level classes) alongside a separate, similar graph
for all Computer Science 400-level classes.

Graph Formatting
Graphs should be easy-to-use and easy-to-read such as those shown in Figures 1 through 4. For
example, bars in bar graphs should be narrow, clearly visible, easy to compare, and ordered to
support the user’s task, which will usually be from highest to lowest, or lowest to highest.

Fully-Populated Initial System
The system that is delivered should not require any administrator steps to convert or prepare data
for the system other than (optionally) setting up a database (if your system uses a database). But,
for example, there should not be any web scraping or data conversion required for the initial use
of the system.

3

426
453
413

499

%
As

All Math 400-level100

0

50

Class

Figure 3. Side-by-side
comparison of different

classes at the same level.

Sm
ith (1)

W
ang (11)

Patel (5)

G
arcía (12)

%
As

All Math Classes100

0

50

Instructor (and number
of classes taught)

Figure 4. A class-count
has been added to the

X-axis labels.

https://web.archive.org/web/20140901091007/http://catalog.uoregon.edu/arts_sciences/
https://web.archive.org/web/20140901091007/http://catalog.uoregon.edu/arts_sciences/

The Administrator Adding New Data
With regards of the use-case of a system administrator updating the system with that new data:

1. You should provide a program that permits an administrator (such as the instructor) to
replace all of the data in the system (all grade data, and all instructor data) using the
“gradedata.js” file that was provided to you (or a .csv or other single file that you created
from the gradedata.js file), and by scraping the instructor names from the “way back
machine”. Replacing the data should be quick and easy (such as, able to be accomplished by
an administrator unfamiliar with the system in less than five minutes).

2. The data file (that the system administrator will use to load the new grade data) can be in a
file format of your choice, such as the original “gradedata.js” file that is provided to you for
this project, or a CSV file. If it is a format of your choice, you would ideally provide an
appropriately-formatted file that contains all of the data in “gradedata.js”.

3. A “scraper” for extracting the faculty names from the “way back machine” data at
https://web.archive.org/web/20140901091007/http://catalog.uoregon.edu/arts_sciences/
would ideally be provided. You can use the python library BeautifulSoup to help with this.

4. When replacing the system data, ideally, discrepancies between names found in
“gradedata.js” and the names found in the scraped instructor data would be easy to resolve
using the administrator tools, to ensure that the data in your tables is clean, consistent and
accurate. (Optionally, as the two sources of data are brought into alignment, the tools could
generate statistics such as lists of names from both data sources that have yet to find a match,
so you can see how your data resolving process needs to be further improved.)

5. Any software tools that you create for the administrator to load data can be separate
standalone applications, not integrated with the main program used by students. These can be
command-line tools (without a graphical user interface). Instructions for their use should of
course be provided. (Optional: Some sort of statistics could be provided when loading the
new data, such as how many classes or instructors were added, and any naming discrepancies
that were resolved.)

6. The new data should overwrite the old data.

3. Non-Functional Requirements
Natural Sciences Only
Your systems only needs to include departments that are in the Natural Sciences, which are listed
here: https://casstudent.uoregon.edu/departments-and-programs/natural-sciences/. If you can
gather and provide data beyond that, that would be great, but not necessary.

State the Source of the Data
The system should clearly and prominently state the source and nature of the data. This would
include, at a minimum:

(1) That the data were copied directly from https://emeraldmediagroup.github.io/grade-data/
(and the date the data were copied).

4

https://web.archive.org/web/20140901091007/http://catalog.uoregon.edu/arts_sciences/
https://casstudent.uoregon.edu/departments-and-programs/natural-sciences/
https://emeraldmediagroup.github.io/grade-data/

(2) That the data are limited as stated on that website. The exact text should be included,
starting with “If your class doesn't show up here, it means the data was redacted….”. This
explanation should be in quotes and should include an appropriate reference to this web
page, including the date that the data were copied.

(3) The years that are included in the data.

Grade Data
The Daily Emerald article presenting the grade data is here:
https://www.dailyemerald.com/news/academics/check-out-the-emerald-grade-tracker-to-see-
what-grades-uo-professors-give-out/article_6794975c-7fad-5550-b2be-e32a496b3cab.html

A file containing the grade data is here:
https://emeraldmediagroup.github.io/grade-data/gradedata.js

4. Technical Requirements
Standalone or UO-CS-Web-Based
The system can be standalone, with all data on a local hard drive, or it can be a web-based
system. If it is a web-based system, must provide a thorough set of instructions, and all files
necessary, to create a mysql server on ix.cs.uoregon.edu, and access the system on ix. Installation
must be as straightforward as the instructions at: https://systems.cs.uoregon.edu/wiki/index.php?
n=Help.ToolsMysql

No Internet Access Required to Install or Run
The system should not require Internet access to be installed, or to run. The one exception is that
instructions may be provided to install, run, and access software running on a UO CS server. Do
not submit a URL of an installed system for your project. Your system, installation, and your
code may not access any pre-installed server.

Data Storage
Data should be stored either local, or on ix.cs.uoregon.edu using either mysql or mongo.

No Login. There should be no login required for a student to use the software.

———————————————————————————————————————
Build-Related Constraints

Target Platform. The software should run on a laptop or desktop machine. It can optionally be
accessed on a web browser on smartphone.

5

https://www.dailyemerald.com/news/academics/check-out-the-emerald-grade-tracker-to-see-what-grades-uo-professors-give-out/article_6794975c-7fad-5550-b2be-e32a496b3cab.html
https://www.dailyemerald.com/news/academics/check-out-the-emerald-grade-tracker-to-see-what-grades-uo-professors-give-out/article_6794975c-7fad-5550-b2be-e32a496b3cab.html
https://emeraldmediagroup.github.io/grade-data/gradedata.js
https://systems.cs.uoregon.edu/wiki/index.php?n=Help.ToolsMysql
https://systems.cs.uoregon.edu/wiki/index.php?n=Help.ToolsMysql

System Document File Formats
All system-related and system-development-related documents that are intended for human
reading must be in either plain text or PDF. For example, Microsoft Word, Microsoft Excel, or
markdown language documents must be converted into plain text or PDF.

Programming Constraints
• The system may be built using Python 3 along with The Python Standard Library https://

docs.python.org/3/library/index.html, but no other imports except for:
 mysql, pymongo, and matplotlib

This means that the only GUI package that can be used is tkinter.
• Python code must run in Python 3.10 through 3.12.
• The system may be built using Java and Java Standard Edition modules, no other imports.
• The system may be built in C/C++, the C++ standard library, Cocoa, and no other components.
• Java code must run in Java 19 or 20.
• Instructions must be provided for how to compile the code.
• No server connections may be required for either installing or running the software, except for

setting up mysql on ix, and you must provide instructions on how to set this up. The
instructions should be as the MongoDB and MySQL guidance at
https://systems.cs.uoregon.edu/wiki/index.php?n=Help.Tools
(along with whatever files are need to create your tables and such)

• No virtual environments may be required to run your projects.
• No gaming engines such as Unity may be required to run your projects.

Installation
• There can be at most 20 user actions to compile the code and run the program.
• An experienced computer programmer should not require more than 30 minutes working alone

with the submitted materials to compile and run the code.

6

https://systems.cs.uoregon.edu/wiki/index.php?n=Help.Tools

