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Problem Formulation
● Traces (i.e., lists of what traffic was observed passing through a network) 

are critical for many networking tasks.
– We’ll consider packet-level and flow-level traces.
– In particular, lack of access to high-quality data is a road block for traffic 

monitoring system design, ML-based event/anomaly detection, etc.
● The people with interesting traces will never share them directly. 



  

Problem Formulation
● Given: unsampled trace of IPv4 headers.
● Goal: learn a generative model that satisfies fidelity metrics.

– Header-level distributional properties like popularity of distinct values.
– Flow-level properties like flow size or flow duration.
– Use-case specific properties like accuracy preservation or order preservation.

● (Later) If we can do this, then we can get people with interesting traces to train 
these models and use them to generate new traces with same properties but no 
private information so they’ll be more comfortable sharing them.
– (Don’t share the model cause we really don’t know what it’s learned!)



  

What are the technical challenges? 



  



  

Similarly, 
baselines fail to 
reproduce 
prevalence of 
common service 
L4 ports (eg., 53, 
80, 443, etc.) 
seen in real data, 
but of course 
NetShare does.
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Better

JSD: Jensen-Shannon Divergence, a 
metric for comparing similarity of 
(categorical) probability distributions 
(based on relative entropy).

EMD: Earth Mover’s Distance, a metric 
for comparing similarity of continuous 
probability distributions (based on 
difference of CDFs). 
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More private

Naive DP means using DP-SGD for 
all training.

(Other lines are NetShare’s 
modifications explained later.)

DP-SGD: differentially-private 
stochastic gradient descent, a 
popular variant of SGD that messes 
with the gradients a bit to limit the 
amount of privacy loss in a controlled 
manner.



  

How does NetShare address these 
challenges?



  

Per-epoch data



  

* Log-transform for packets/bytes per flow.

* Word2Vec type thing (from prior work called IP2Vec) for ports.
→ Solves the problem of the model not “understanding” semantics of well-

known service ports.
→ Forms a dictionary of ports from large CAIDA trace assuming all 

relevant ports are seen.
→ (Implicit point) Non-service ports are typically chosen at random and not 

considered a leak of private information.

* Bitwise encoding of IP addresses.
→ Can’t use Word2Vec type thing because it’s dictionary based to the IPs 

would leak.



  

Flow tag: a binary 
vector with info about 
which chunk/epoch the 
flow is active in (i.e., one 
bit per epoch).

(Does anyone 
understand why this is 
expected to “capture the 
inter-chunk correlation”?)



  



  

How do we know NetShare actually works?
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(start time) (duration)

(pkt. size) (arrival time) (pkts. per flow)

Note these are 
all still based on 
distributions…

…how many 
times each 
distinct field 
value is 
observed.



  

Example application: traffic type prediction from labeled netflow data
Comparison between:
(i) train on real, test on real and
(ii) train on synthetic, test on real.

Comparison between:
(i) train on real, test on real and
(ii) train on synthetic, test on synthetic.

Other examples: ranking sketch algorithms, header-based anomaly 
detection with NetML.



  

No added noise,
i.e., no privacy.

...still sort of an open problem.



  

(Already shown!)

… that’s it!



  

Discussion Questions
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