
 Presented for UO CS607 on 2023-01-10 by Chris Misa

Problem Formulation
● Traces (i.e., lists of what traffic was observed passing through a network)

are critical for many networking tasks.
– We’ll consider packet-level and flow-level traces.
– In particular, lack of access to high-quality data is a road block for traffic

monitoring system design, ML-based event/anomaly detection, etc.
● The people with interesting traces will never share them directly.

Problem Formulation
● Given: unsampled trace of IPv4 headers.
● Goal: learn a generative model that satisfies fidelity metrics.

– Header-level distributional properties like popularity of distinct values.
– Flow-level properties like flow size or flow duration.
– Use-case specific properties like accuracy preservation or order preservation.

● (Later) If we can do this, then we can get people with interesting traces to train
these models and use them to generate new traces with same properties but no
private information so they’ll be more comfortable sharing them.
– (Don’t share the model cause we really don’t know what it’s learned!)

What are the technical challenges?

Similarly,
baselines fail to
reproduce
prevalence of
common service
L4 ports (eg., 53,
80, 443, etc.)
seen in real data,
but of course
NetShare does.

B
et

te
r

Better

JSD: Jensen-Shannon Divergence, a
metric for comparing similarity of
(categorical) probability distributions
(based on relative entropy).

EMD: Earth Mover’s Distance, a metric
for comparing similarity of continuous
probability distributions (based on
difference of CDFs).

B
et

te
r

More private

Naive DP means using DP-SGD for
all training.

(Other lines are NetShare’s
modifications explained later.)

DP-SGD: differentially-private
stochastic gradient descent, a
popular variant of SGD that messes
with the gradients a bit to limit the
amount of privacy loss in a controlled
manner.

How does NetShare address these
challenges?

Per-epoch data

* Log-transform for packets/bytes per flow.

* Word2Vec type thing (from prior work called IP2Vec) for ports.
→ Solves the problem of the model not “understanding” semantics of well-

known service ports.
→ Forms a dictionary of ports from large CAIDA trace assuming all

relevant ports are seen.
→ (Implicit point) Non-service ports are typically chosen at random and not

considered a leak of private information.

* Bitwise encoding of IP addresses.
→ Can’t use Word2Vec type thing because it’s dictionary based to the IPs

would leak.

Flow tag: a binary
vector with info about
which chunk/epoch the
flow is active in (i.e., one
bit per epoch).

(Does anyone
understand why this is
expected to “capture the
inter-chunk correlation”?)

How do we know NetShare actually works?

B
et

te
r

(start time) (duration)

(pkt. size) (arrival time) (pkts. per flow)

Note these are
all still based on
distributions…

…how many
times each
distinct field
value is
observed.

Example application: traffic type prediction from labeled netflow data
Comparison between:
(i) train on real, test on real and
(ii) train on synthetic, test on real.

Comparison between:
(i) train on real, test on real and
(ii) train on synthetic, test on synthetic.

Other examples: ranking sketch algorithms, header-based anomaly
detection with NetML.

No added noise,
i.e., no privacy.

...still sort of an open problem.

(Already shown!)

… that’s it!

Discussion Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

