Practical GAN-based Synthetic IP Header
Trace Generation using NetShare

Yucheng Yin Zinan Lin

Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA Pittsburgh, PA
yyind@andrew.cmu.edu zinanl@andrew.cmu.edu

Minhao Jin Giulia Fanti Vyas Sekar
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA Pittsburgh, PA Pittsburgh, PA
minhaoj@andrew.cmu.edu gfanti@andrew.cmu.edu vsekar@andrew.cmu.edu

Presented for UO CS607 on 2023-01-10 by Chris Misa



Problem Formulation

* Traces (i.e., lists of what traffic was observed passing through a network)

are critical for many networking tasks.

- We’'ll consider packet-level and flow-level traces.

— In particular, lack of access to high-quality data is a road block for traffic
monitoring system design, ML-based event/anomaly detection, etc.

* The people with interesting traces will never share them directly.

Fidelity  Flexibility

Privacy  Effort

Raw High X
Anonymized Depends X
Synthetic Possible High

X Low
Depends Low
Possible High

Table 1: Trade-offs for data holders sharing Raw wvs.

Anonymized vs. Synthetic traces



Problem Formulation

* Given: unsampled trace of IPv4 headers.

* Goal: learn a generative model that satisfies fidelity metrics.
— Header-level distributional properties like popularity of distinct values.
- Flow-level properties like flow size or flow duration.
— Use-case specific properties like accuracy preservation or order preservation.

 (Later) If we can do this, then we can get people with interesting traces to train
these models and use them to generate new traces with same properties but no
private information so they’ll be more comfortable sharing them.

- (Don'’t share the model cause we really don’t know what it's learned!)



What are the technical challenges?



Challenge 1 (C1): Baselines do not accurately capture header
correlations of packets/flows, e.g., flow length.
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five tuples on UGR16 (NetFlow, left) and CAIDA (PCAP, right).
All baselines are missing in Fig. 1b as they don’t generate
flows with > 1 packet.



Challenge 2 (C2): Baselines struggle to accurately capture the
distributions for fields with large support.
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UGR16 dataset: left: flow size; right: flow volume. NetShare does.



Better

Challenge 3 (C3): Existing GAN-based frameworks exhibit poor
scalability-fidelity tradeoffs on network traces.
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Figure 4: Scalability-fidelity trade-offs: Scalability is mea-
sured with total CPU hours (]) and fidelity is measured with
the average JSD across categorical fields and the average
normalized EMD across continuous fields ().

JSD: Jensen-Shannon Divergence, a
metric for comparing similarity of
(categorical) probability distributions
(based on relative entropy).

EMD: Earth Mover’s Distance, a metric
for comparing similarity of continuous
probability distributions (based on
difference of CDFs).



Better

Challenge 4 (C4): Existing frameworks exhibit poor
privacy-fidelity tradeoffs.

More private
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How does NetShare address these
challenges?



Per-epoch data

Insight 1 (I1): We reformulate header trace generation as a time
series generation problem of generating flow records for the
entire trace rather than a per-epoch tabular approach (Fig-

Figure 6: Instead of generating measurement epochs D;
through a tabular GAN, we merge multiple epochs D; into
a giant trace D, split the trace into flows D/ and use

ure 6).
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Insight 2 (I12): We use a careful combination of domain knowl-
edge and machine learning to inform the representation of
header fields to balance fidelity-privacy-scalability tradeoffs
(Table 2).

* Log-transform for packets/bytes per flow.

* Word2Vec type thing (from prior work called IP2Vec) for ports.

- Solves the problem of the model not “understanding” semantics of well-
known service ports.

— Forms a dictionary of ports from large CAIDA trace assuming all
relevant ports are seen.

- (Implicit point) Non-service ports are typically chosen at random and not
considered a leak of private information.

* Bitwise encoding of IP addresses.

— Can't use Word2Vec type thing because it's dictionary based to the IPs
would leak.



Insight 3 (I3): We can improve the scalability-fidelity tradeoff

via fine tuning and parallel training (Fig. 7).

ffow Model D’f“’“’

Tfme -series
GAN

(a) Strawman Approach
Model, p/ftv

flow . Uit s
Dflow Drflow

4

Model; D;”**"

M Evenly slice T Time-series |8 9
chunks by time|| D1 GAN = ;§g/
interval &>

(b) NetShare Approach =

Figure 7: We split D" into M evenly time-spaced chunks

with explicit “flow tags” to capture cross-chunk correlations.

We use the first chunk as a pre-trained model for parallel
training of later chunks.

Flow tag: a binary
vector with info about
which chunk/epoch the
flow is active in (i.e., one
bit per epoch).

(Does anyone
understand why this is
expected to “capture the
inter-chunk correlation”?)



Insight 4 (I4): We canimproveprivacy-fidelitytradeoffs by care-
fully using public datasets (Fig.8).
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Figure 8: We use public traces to pre-train a public model
Model,pj;c, then fine-tune on private data.



How do we know NetShare actually works?



Better

Finding 1: NetShare achieves 46% better fidelity than baselines
on feature distribution metrics across traces.
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Figure 10: Jensen-Shannon divergence () and normalized
Earth Mover’s Distance (EMD) (|) between real and synthetic
distributions on UGR16 (NetFlow) and CAIDA (PCAP).



Finding 2: NetShare provides better fidelity for downstream net-
work management tasks across different traces.

Example application: traffic type prediction from labeled netflow data

Comparison between:
(i) train on real, test on real and
(i) train on synthetic, test on real.
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Figure 12: NetFlow traffic type prediction accuracy (T) on TON:
all classifiers achieve the highest accuracy with synthetic

data generated by NetShare.

Comparison between:
(i) train on real, test on real and
(i) train on synthetic, test on synthetic.

Table 3: Rank correlation (T) of prediction algorithms on
CIDDS and TON. Higher is better.

NetShare CTGAN STAN E-WGAN-GP

CIDDS 0.90 0.60 0.60 0.70
TON 0.70 0.10 0.60 -0.60

Other examples: ranking sketch algorithms, header-based anomaly

detection with NetML.



Finding 3: Pre-training NetShare on public data can improve
the fidelity of differentially-private traces.
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Figure 15: Packet length and port CDFs computed without
noise and under the same (¢,6) with or without pre-training.

...still sort of an open problem.



Finding 4: NetShare achieves a better scalability-fidelity trade-
off than baselines.

(Already shown!)

... that’s it!



Discussion Questions
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