Practical GAN-based Synthetic IP Header
Trace Generation using NetShare

Yucheng Yin Zinan Lin

Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA Pittsburgh, PA
yyind@andrew.cmu.edu zinanl@andrew.cmu.edu

Minhao Jin Giulia Fanti Vyas Sekar
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA Pittsburgh, PA Pittsburgh, PA
minhaoj@andrew.cmu.edu gfanti@andrew.cmu.edu vsekar@andrew.cmu.edu

Presented for UO CS607 on 2023-01-10 by Chris Misa

Problem Formulation

* Traces (i.e., lists of what traffic was observed passing through a network)

are critical for many networking tasks.

- We’'ll consider packet-level and flow-level traces.

— In particular, lack of access to high-quality data is a road block for traffic
monitoring system design, ML-based event/anomaly detection, etc.

* The people with interesting traces will never share them directly.

Fidelity Flexibility

Privacy Effort

Raw High X
Anonymized Depends X
Synthetic Possible High

X Low
Depends Low
Possible High

Table 1: Trade-offs for data holders sharing Raw wvs.

Anonymized vs. Synthetic traces

Problem Formulation

* Given: unsampled trace of IPv4 headers.

* Goal: learn a generative model that satisfies fidelity metrics.
— Header-level distributional properties like popularity of distinct values.
- Flow-level properties like flow size or flow duration.
— Use-case specific properties like accuracy preservation or order preservation.

 (Later) If we can do this, then we can get people with interesting traces to train
these models and use them to generate new traces with same properties but no
private information so they’ll be more comfortable sharing them.

- (Don'’t share the model cause we really don’t know what it's learned!)

What are the technical challenges?

Challenge 1 (C1): Baselines do not accurately capture header
correlations of packets/flows, e.g., flow length.

1.0
1.00 4
0.98 | 0.9
0.96 w 0.8 — Real
5 0.94- —— Real = —— CTGAN
- 0.9 —— CTGAN 0.7 —— PAC-GAN
' — STAN PacketCGAN
0.90 E-WGAN-GP 0.6 — Flow-WGAN
0.88 | —— NetShare . —— NetShare
10° 10! 10 10° 100 10! 102 10° 104
of records with the same five tuple Flow size (# of packets perflow)

(a) CDF of NetFlow records with (b) CDF of flow size (# of packets)
same five tuples (UGR16). on CAIDA.

Figure 1: Distribution of # of records/packets with the same
five tuples on UGR16 (NetFlow, left) and CAIDA (PCAP, right).
All baselines are missing in Fig. 1b as they don’t generate
flows with > 1 packet.

Challenge 2 (C2): Baselines struggle to accurately capture the
distributions for fields with large support.

1.0 1.0
0.8 1 0.8
0.6 0.6
é — Real E = Real
0.4 —— CTGAN © 04 —— CTGAN
—— STAN —— STAN ..
0-21 E-WGAN-GP 0.21 E-WGAN-GP Slmlle.lrly’ .
. — NetShare . — NetShare baselines fail to
10° 10' 102 10 10* 10° | 10* 10 10° 10 10° reproduce
of packets per flow # of bytes per flow prevalence of
common service
L4 ports (eg., 53,
(a) # of packets per flow (b) # of bytes per flow 80, 443, etc.)
Figure 2: Distribution of NetFlow’s (unbounded) fields on seen in real data,

but of course

UGR16 dataset: left: flow size; right: flow volume. NetShare does.

Better

Challenge 3 (C3): Existing GAN-based frameworks exhibit poor
scalability-fidelity tradeoffs on network traces.

Better
<4
0.351
A 0-30] *e ® CTGAN
¥ 0.251 STAN
& ® E-WGAN-GP
z 0.201 %X NetShare-VO0
0.151 % NetShare
] #
0.10 %
102
Training time (CPU hours)
(a) UGR16 (NetFlow) JSD
0.6
0.5 o % CTGAN
o) .+ PAC-GAN
D 0.4 B PacketCGAN
o ® Flow-WGAN
= 0.3
<<+ » NetShare-V0
0.2 * NetShare
T * ><|
102 10°

Training time (CPU hours)

(c) CAIDA (PCAP) JSD

S

Wos|®

E ® CTGAN

N 0.44 STAN

© ® E-WGAN-GP
0.31

g % NetShare-V0

c 0.2 * NetShare

o

é 0.14 . - , ><

102

Training time (CPU hours)

(b) UGR16 (NetFlow) EMD

a)
=
= 0.6
- % CTGAN
© 031 PAC-GAN
= 0.4k B PacketCGAN
£ ® Flow-WGAN
£ 0.31
[e) . NetShare-V0
€ 0.24 * NetShare
o
2 0.11 * X
102 103

Training time (CPU hours)

(d) CAIDA (PCAP) EMD

Figure 4: Scalability-fidelity trade-offs: Scalability is mea-
sured with total CPU hours (]) and fidelity is measured with
the average JSD across categorical fields and the average
normalized EMD across continuous fields ().

JSD: Jensen-Shannon Divergence, a
metric for comparing similarity of
(categorical) probability distributions
(based on relative entropy).

EMD: Earth Mover’s Distance, a metric
for comparing similarity of continuous
probability distributions (based on
difference of CDFs).

Better

Challenge 4 (C4): Existing frameworks exhibit poor
privacy-fidelity tradeoffs.

More private

0.30 < - g MNaive DP
| —e— Naive DP w 0.6 —— Nalve . 2 i . i .
0.25 —=— DP Pretrained-SAME - —=— DP Pretrained-SAME | Figure 5: Privacy-fidelity trade-offs: Privacy is measured with
o 0-261 —— DP Pretrained-DIFF N —«— DP Pretrained-DIFF (e,0) in DP (]) and fidelity is measured as average JSD across
2.0'24_ categorical fields and the average normalized EMD'across
ch0.221 :
> continuous fields (|).
Z 0.201
0.18+
0.161 .
107107 107 10° 10° 107 10° < 107 10° 107 10° 10° 107 10° Naive DP means using DP-SGD for
Epsilon Epsilon . .
all training.
(a) NetFlow (UGR16) JSD N (b) NetFlow (UGR16) EMD (Other lines are NetShare's
0.375 —— Z .. —— Naive DP modifications explained later.)
g:zg —=— DP Pretrained-SAME B . = DP Pretra?ned-SAME
% , —«_ DP Pretrained-DIFE N 0.4 —=— DP Pretrained-DIFF
2.0.3001 , s DP-SGD: differentially-private
o 0. £ 0. . .
Eo 5 . stochastic gradient descent, a
0.225 s popular variant of SGD that messes
T T T T o 107 107 107 1o 1e° 1 ¢ with the gradients a bit to limit the
Epsilon =psilon amount of privacy loss in a controlled

manner.
(c) PCAP (CAIDA) JSD (d) PCAP (CAIDA) EMD

How does NetShare address these
challenges?

Per-epoch data

Insight 1 (I1): We reformulate header trace generation as a time
series generation problem of generating flow records for the
entire trace rather than a per-epoch tabular approach (Fig-

Figure 6: Instead of generating measurement epochs D;
through a tabular GAN, we merge multiple epochs D; into
a giant trace D, split the trace into flows D/ and use

ure 6).
Real Data Synthetic Data
N AL = oy time-series GAN.

based GAN

(a) Strawman Approach

Flow-based [)flow

=

Real Data
D,
=1=1=] _Merge
—> D,

split =

Time-series

(b) NetShare Approach

Synthetic Data

D:flaw
Five Record,
L Record,

Insight 2 (I12): We use a careful combination of domain knowl-
edge and machine learning to inform the representation of
header fields to balance fidelity-privacy-scalability tradeoffs
(Table 2).

* Log-transform for packets/bytes per flow.

* Word2Vec type thing (from prior work called IP2Vec) for ports.

- Solves the problem of the model not “understanding” semantics of well-
known service ports.

— Forms a dictionary of ports from large CAIDA trace assuming all
relevant ports are seen.

- (Implicit point) Non-service ports are typically chosen at random and not
considered a leak of private information.

* Bitwise encoding of IP addresses.

— Can't use Word2Vec type thing because it's dictionary based to the IPs
would leak.

Insight 3 (I3): We can improve the scalability-fidelity tradeoff

via fine tuning and parallel training (Fig. 7).

ffow Model D’f“’“’

Tfme -series
GAN

(a) Strawman Approach
Model, p/ftv

flow . Uit s
Dflow Drflow

4

Model; D;”**"

M Evenly slice T Time-series |8 9
chunks by time|| D1 GAN = ;§g/
interval &>

(b) NetShare Approach =

Figure 7: We split D" into M evenly time-spaced chunks

with explicit “flow tags” to capture cross-chunk correlations.

We use the first chunk as a pre-trained model for parallel
training of later chunks.

Flow tag: a binary
vector with info about
which chunk/epoch the
flow is active in (i.e., one
bit per epoch).

(Does anyone
understand why this is
expected to “capture the
inter-chunk correlation”?)

Insight 4 (I4): We canimproveprivacy-fidelitytradeoffs by care-
fully using public datasets (Fig.8).

pflow Model 5 ke

prwate DP-SGD prwate prwate
Time-series
GAN

(a) Strawman Approach

MOdelpubHC

1flow
MOdelprivate Dprivate

=

— DP-SGD N

= > Time-series —_
GAN

(b) NetShare Approach

Dﬂow

prwate

Figure 8: We use public traces to pre-train a public model
Model,pj;c, then fine-tune on private data.

How do we know NetShare actually works?

Better

Finding 1: NetShare achieves 46% better fidelity than baselines
on feature distribution metrics across traces.

006 w gﬁﬁ”) 2 WE CTGAN
st i E-WGAN- = 0. 7 - STAN
5 04| 8 MeE e = oo Note these are
s §050 all still based on
0" Eos distributions...

0.0 0.00

(start time) (duration) ...how many
(a) UGR16 (NetFlow) JSD (b) UGR16 (NetFlow) EMD tlm(?S ea_ch
distinct field
e CTGAN GAN i

g 0o mm ricom | D0 gs] M paca vzlue IS 4
£0.4 e | B | mmEonweA observed.
g N 0.50
=iz E 0.25

00—"sAa DA SP DP 0.00 - ML PAT FS

(pkt. size) (arrival time) (pkts. per flow)

(c) CAIDA (PCAP) JSD (d) CAIDA (PCAP) EMD

Figure 10: Jensen-Shannon divergence () and normalized
Earth Mover’s Distance (EMD) (|) between real and synthetic
distributions on UGR16 (NetFlow) and CAIDA (PCAP).

Finding 2: NetShare provides better fidelity for downstream net-
work management tasks across different traces.

Example application: traffic type prediction from labeled netflow data

Comparison between:
(i) train on real, test on real and
(i) train on synthetic, test on real.

1.0 #EH Real

E= NetShare
2% CTGAN
E=S STAN

s E-WGAN-GP

e o it
2 o o

Accuracy

o
]

0.0

DT LR RF GB MLP

Figure 12: NetFlow traffic type prediction accuracy (T) on TON:
all classifiers achieve the highest accuracy with synthetic

data generated by NetShare.

Comparison between:
(i) train on real, test on real and
(i) train on synthetic, test on synthetic.

Table 3: Rank correlation (T) of prediction algorithms on
CIDDS and TON. Higher is better.

NetShare CTGAN STAN E-WGAN-GP

CIDDS 0.90 0.60 0.60 0.70
TON 0.70 0.10 0.60 -0.60

Other examples: ranking sketch algorithms, header-based anomaly

detection with NetML.

Finding 3: Pre-training NetShare on public data can improve
the fidelity of differentially-private traces.

1.0 1.0
0.8 0.8
W 0.6 w 0.6
8 (]
@) =
0.471 / —— Real A [[=——Real
; —— NetShare (g = 24, Naive DP) 0.24 /— NetShare (& =24, Naive DP)
0.2 —— NetShare (¢ = 24, DP-pretrain-SAME) ' {{/ — NetShare (& = 24, DP-pretrain-SAME)
: —— NetShare (&£ = =) [—— NetShare (& = »)
No added noise, ¥ .~) ool T _EEETY
. . 10° 10! 102 103 104 10° 0 250 500 750 1000 1250 1500
I.€., N0 privacy. Source port number Packet length (bytes)
(a) Source port (b) Packet length (bytes)

Figure 15: Packet length and port CDFs computed without
noise and under the same (¢,6) with or without pre-training.

...still sort of an open problem.

Finding 4: NetShare achieves a better scalability-fidelity trade-
off than baselines.

(Already shown!)

... that’s it!

Discussion Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

