
c� 2011 Taylor and Francis Group, LLC

Preface
In the context of human history, computers are a fairly recent invention. But the idea
of computation—of solving a complex problem by repeated, systematic execution of a se-
ries of simple and straightforward operations—is thousands of years old. Ancient Greek,
Egyptian, and Chinese philosophers discovered many important facts about numbers and
their relationships, and developed computational methods that are still used today. In post-
Renaissance Europe, mathematicians and scientists used computational techniques to fill
books of mathematical tables. Numeric integration, carried out painstakingly by hand, was
used to calculate the future positions the Moon and planets, and the nautical almanacs pro-
duced by “human computers” were essential for navigation well into the twentieth century.

Computation is now an essential part of modern life. Every day we write mail, share
photographs, play music, read the news, and pay bills using our personal computers. Engi-
neers use computers to design cars and airplanes, meteorologists use computers to predict
the weather, pharmaceutical companies use computers to design new drugs, and invest-
ment firms use computational models to predict whether complex transactions are likely to
succeed. Modern astronomers also rely heavily on computation. Computers perform cal-
culations that track the movement of planets, asteroids, and comets, keeping an eye out
for bodies that pose a potential hazard to the Earth. Astrophysicists use computation to
investigate theories on how black holes are formed and how planets coalesce from clouds of
interstellar dust. Telescopes today gather massive amounts of data, requiring sophisticated
new methods to sift through the information and catalog objects.

Computer science is the study of computation. Given the name “computer science” one
might think the field could be characterized as “the study of computers,” but as the discus-
sion above showed, the idea of computing has been around a lot longer than there have
been machines to do the computations. In the words of one influential computer scientist,
Edsger Dijkstra (1930–2002), “computer science is no more about computers than astron-
omy is about telescopes.” Computer hardware plays a huge role, of course, since much of
the motivation for studying computer science comes from the fact that computations are
run on machines that perform a wide variety of essential tasks. For many people, a large
part of the satisfaction of working in computer science derives from the fact that abstract
ideas can be turned into programs that run on real computer systems and address important
real-world problems.

Another misconception is that computer science is the same as “programming” and com-
puter science courses are all about teaching students to write programs. Computer science is
much more than simply writing software. Computer science is a rich intellectual field where
practitioners apply a computational approach to address a wide variety of interesting and
challenging problems. Computer scientists are engaged in research in core areas of theoret-
ical computer science, computer systems design, algorithms, and programming languages,
as well as more application-oriented areas such as databases, networking, and informatics.

vii

viii

This book is a textbook, intended for courses that are an introduction to computer science.
The emphasis is on how computation helps people solve problems. Computer science is
a huge field, and entire books have been written about algorithms, theory, programming
languages, databases, networks, and other areas. Rather than trying to survey the entire
field and give a brief introduction to each important area, the goals in this book are to
focus on the fundamental idea of computation itself and to give readers some insight into
how computation can be used to solve a variety of interesting and important real-world
problems.

Active Learning

The distinguishing feature of this book is its active learning approach. Each chapter includes
a tutorial project that guides students as they use an interactive environment to explore
important ideas in computing by running programs, modifying them, and trying them out
on different inputs.

One of the inspirations for this approach was the active learning embodied in a role-
playing game called The Oregon Trail. Students who played this game learned about the
great westward migration of the nineteenth century by making decisions for their character
as they traveled from Missouri to Oregon in 1848, trying to manage their resources and
avoid hazards along the way. By actively engaging with the material in a virtual environ-
ment, and making decisions that would affect the outcome of the game, students gained a
much deeper appreciation of what life was like for the people who set out on that journey.
One of the factors often cited for the success of this game is that students were able to
try many different variations. Students could play the game several times, assuming sev-
eral different roles, and often seeing a different outcome, even when they made the same
decisions.

The title of this book, Explorations in Computing, conveys the idea of how we will use a
similar active learning approach to study computation. Each chapter is organized around
a single project that introduces an important concept or application in computer science.
To complete the project, students type commands in Ruby, an interactive programming lan-
guage, following a detailed script set out in the text. The aim is for the students to immerse
themselves in the interactive environment and experience first-hand what goes on inside a
computer as it solves some interesting problems. Many parts of the projects are open-ended,
and students are encouraged to continue exploring on their own, after using the exercises
in the book as a starting point.

An example of this approach is the project in a chapter on the N -body problem, where
students set up an experiment that simulates the motion of the planets in the solar system.
After running the basic exercises, which lead up to a simulation that shows the planets
moving in elliptical orbits around the Sun, students can explore on their own, to see what
happens in a chaotic system when the initial conditions change just slightly, or when the
mass of one of the planets is increased to the point where the system has two bodies the
size of the Sun. Another example is a project on the traveling salesman problem, where
students run experiments based on a genetic algorithm. After running a set of preliminary
experiments to learn how the algorithm evolves an efficient tour through random mutations,
students can run more simulations, varying the simulation parameters to see what effect
each has on the outcome.

c� 2011 Taylor and Francis Group, LLC

ix

Intended Audience

This book was written for students who want to learn what computer science is about. It was
written with two different audiences in mind: students who intend to continue on to major
in computer science, and would like a general overview of the field, and students who have
chosen to major in a different field, but who would like to take a computer science course
as a science elective.

Although the projects in this book are set up to run in an interactive programming en-
vironment, no prior experience with programming is necessary. To complete a project,
students follow detailed instructions from the text, much like working on a tutorial to learn
how to use a new software application. By working through the projects in each chap-
ter, readers will build up a working knowledge of the concepts and terminology of Ruby
programming, but the projects do not require students to write any of their own programs.

Although students do not need programming experience, they should be proficient com-
puter users. Students who want to do the projects on their own computers will need to
install some software (explained in more detail below), so they should be comfortable with
the process of connecting to the Internet and downloading and installing applications. Sev-
eral projects also require students to create folders and navigate through a file system, and
to open, edit, and save text files.

The projects are based on a variety of different subjects, but none of the exercises assume
any detailed knowledge of the subject area. The introduction to each section should provide
the necessary background to work on the project in that chapter.

As might be expected for a science class, many projects do require a basic proficiency
in math. Students should be comfortable with logarithms, exponents, square roots, and
other basic mathematical functions. Projects do not require students to solve equations or
to work through proofs, as they would in a math course, but students should understand
what the functions are and how they are used. Students will gain a deeper appreciation for
scalability and other important concepts in computer science when they have the necessary
math background.

♦ Advanced Topics

Some chapters include more challenging ideas or exercises. In some cases there will be an
entire section devoted to an advanced topic, and in other cases there may be recommended
projects for students who want to learn more about a topic or do some more exploration on
their own. These sections and projects are indicated by a ♦ symbol, to indicate material that
requires more advanced skills, like the trails marked with a “black diamond” at a downhill
ski area.

Notes for Students

You have no doubt heard the adage, “What you get out of a course depends on what you
put into it.” That saying is especially true for learning about computation with this book.
Each chapter is built around a project that helps you explore a particular problem and
ways of solving it computationally. If you work through the project and spend some time

c� 2011 Taylor and Francis Group, LLC

x

thinking about what your computer is doing as it runs a computation, you will be rewarded
by gaining a deeper insight into how computers can help solve a wide variety of important
problems.

A useful analogy for these projects are the lab projects that go along with an introductory
chemistry course. An instructor selects a set of concepts the students should learn and then
develops a set of lab projects to help students gain some experience and reinforce their
learning of the concepts. The materials and methods are all spelled out in great detail,
and students follow a set of well-specified steps. Those who continue on in chemistry will
later learn to design their own experiments, but for beginners everything is set up by the
instructor.

That same approach is taken here in this book. The “computational experiments” in each
chapter are tutorials that contain detailed instructions for how to start a piece of software
and then what to type in order to run the experiment. As you interact with the software
you will see how the computation unfolds. The tutorials are designed so that you should be
able to complete them in about the same amount of time you would spend on a lab project
in a chemistry class. You could run through the tutorials in less time—about as fast as you
can type, or if you get examples from web pages, as fast as you can cut and paste—but you
should take the time to make sure you understand what your computer is doing as you carry
out each step in the tutorial.

At the end of each chapter you will find a set of exercises. These are similar to the ques-
tions you would find in a more traditional textbook and are designed to test your under-
standing of the material in that chapter. If you have completed the tutorial and understood
what happened at each step along the way you should be able to answer these questions.

Notes for Instructors

This book is an introduction to computer science for premajors and nonmajors, a course
commonly called CS0 in the computer science literature. As part of a program for premajors,
the book would be a suitable text for a first course in an introductory computer science
sequence, or as part of a “great ideas” course. The book would also be a good text for a
stand-alone science elective, or for a course on computational thinking. When augmented
with programming assignments, it could also be used in a programming-first or objects-first
CS1 course.

As mentioned above, the book is organized around a set of projects that give students
an opportunity to experiment with important ideas in computer science. In most cases, the
important concepts are algorithms, and the projects are examples of how algorithms pro-
vide computational solutions to important problems. An interactive programming language
provides a “computational workbench” where students can experiment with algorithms by
typing expressions and seeing the results. The interactive language sets up an environment
where students can run computations and explore the effects of changing parameters or
modifying operations performed at key steps of the computation.

But using an interactive programming language raises a difficult issue: won’t students
have to learn to write programs? The approach taken in this book is to base the experiments
on a set of scripted tutorials. Each project in the book has a detailed set of instructions for
how to perform an experiment by loading software that has been written already. The

c� 2011 Taylor and Francis Group, LLC

xi

expressions students enter create and manipulate objects and call methods that implement
the algorithm being studied.

The viability of the scripted tutorial approach is based on the fact that is is much easier
to learn to read existing programs than to write new ones. Anyone who has tried to learn a
foreign language knows how much easier it is to read phrases in the new language than it
is to speak or write a sentence. A similar effect applies to programming languages as well.
Beginning students can reach a surprising level of literacy by just learning a few fundamental
concepts of object-oriented programming—objects, classes, methods, variables, and control
flow—with the view that they are learning a language that is a notation for describing
algorithms. Since students are only expected to understand programs, they do not need to
learn how to design, implement, test, and debug their own code, and several messy details
covered in introductory programming courses, like scope rules, call by reference, variable
lifetimes, etc., can safely be ignored.

I chose to use Ruby for these projects for several reasons, the foremost being the inter-
active programming environment that supports experimentation. Ruby has a very clean
syntax, and for most operations it provides an intuitive notation. Ruby is open source and
is easily downloaded and installed on a wide variety of systems.

An important question was whether to try to make the book a comprehensive introduction
to the entire field of computer science, or whether to focus on fewer topics and go into them
in more depth. I chose the latter. I think the projects will be much more interesting, and
students will gain a better overall understanding of what computer science is about and
how computer scientists think about problems, if the book has a few well-chosen examples,
even if it means leaving out several important topics.

The topics presented in the book are outlined below. The general pattern for each chapter
will be to first introduce the concept presented in that chapter; this introductory section will
essentially be an essay that tries to make the case that the idea is interesting and worth un-
derstanding in more detail. The main part of the chapter will be the development, through a
series of projects, of one or more algorithms that illustrate the idea and provide the student
with a chance to experiment.

1 Introduction

The book starts with a general introduction to computation, expanding on the themes men-
tioned in the first section of this preface: computer science is not just about computers and
is not just programming.

2 The Ruby Workbench

The second chapter is a practical introduction to Ruby and how it can be used as a “com-
putational workbench” to set up experiments with computations. The tutorial takes the
students through the construction of a simple program to convert temperature from Celsius
to Fahrenheit, and introduces the ideas of variables, objects, and methods.

c� 2011 Taylor and Francis Group, LLC

xii

3 The Sieve of Eratosthenes

This chapter introduces the first real algorithm studied in the book. It also introduces a few
more practical techniques used later in the book: making lists of numbers and iterating over
a list. The tutorial starts with simple expressions involving integers, shows how to make a
list of numbers, then how to selectively remove composite numbers, and leads finally to an
algorithm that creates a complete list of prime numbers.

4 A Journey of a Thousand Miles

This chapter builds on the basic idea of iteration presented in the previous chapter. The
project shows how iteration can be used to solve two common problems, searching and
sorting, using linear search and insertion sort. An important idea in computing in this
chapter is scalability, and students are introduced to O notation.

5 Divide and Conquer

The important idea in this chapter is that a more sophisticated strategy for solving a problem
can lead to a more efficient computation. The tutorial shows how binary search takes up to
log2 n steps instead of n, and merge sort takes at most n log2 n steps instead of n2.

6 When Words Collide

The new concept in this chapter is that our ability to solve a problem computationally de-
pends not only on the sequence of steps defined by an algorithm, but also on how the data
is organized. The tutorial project is based on a data structure that implements an index for a
large collection of data. Students learn about hash functions and eventually do experiments
with a hash table that resolves collisions with buckets.

7 Bit by Bit

The projects in this chapter are related to encoding data: using patterns of binary digits
to encode numbers and letters, the number of bits required to encode a set of items, text
compression with Huffman trees, and error correction with parity bits.

8 The War of the Words

This chapter introduces the important ideas that functions can also be encoded as a string
of bits and that instructions (bit patterns representing steps that implement functions) are
stored in a computer’s memory along with data. The tutorial uses the game of Corewar,
which is a contest between two programs running in the same virtual machine; a program
wins if it can write a halt instruction over the opponent’s code. The tutorial leads the student
through the phases of a processor’s fetch-decode-execute cycle and emphasizes how a word
that is a piece of data (the constant 0) for one program becomes an instruction (halt) for
the other program.

c� 2011 Taylor and Francis Group, LLC

xiii

9 Now for Something Completely Different

The big idea in this chapter is randomness, and how random numbers can be used in a
variety of algorithms, from games to scientific applications. There is an interesting paradox
here: can we really generate random outputs from an algorithm? Isn’t a method in Ruby
supposed to carry out exactly the same calculations and produce the same result each time
it is called? The answer is that random numbers generated by an algorithm are pseudoran-
dom, and the project takes students through the steps in the development and testing of a
pseudorandom number generator.

10 Ask Dr. Ruby

The tutorial project in this chapter is based on a Ruby implementation of Joseph Weizen-
baum’s ELIZA program, and shows how very simple pattern matching rules can be used to
transform input sentences, giving the illusion that the computer is carrying on a conversa-
tion. By the end of the chapter students will see how difficult natural language processing
is, and how semantics and real-world knowledge are required for effective natural language
understanding.

11 The Music of the Spheres

The big idea in this chapter is computer simulation. The project leads to an ab initio simu-
lation of the motion of planets in the solar system. The chapter introduces issues related to
verification and other topics in computer simulation.

12 The Traveling Salesman

The last chapter introduces the idea of intractable problems, building on ideas of scalability
from earlier chapters. The project is based on a genetic algorithm, and gives students the
opportunity to explore probabilistic solutions. The tutorial has students use predefined code
for Map and Tour classes to create random tours, so they can see how tours can be mutated
and how collections of tours evolve until an optimal or near-optimal solution is obtained.

Pedagogical Considerations

The chapters and projects described above have been used in a course at the University of
Oregon (CIS 170: The Science of Computing). We cover the first two chapters during the first
week, but after that we spend between one and two weeks on the remaining topics chosen
for that term. Lectures emphasize material from the first sections of a chapter, describing the
problem and how it might be solved computationally, and explaining how that week’s lab
project gives some experience with the computation. Students have an option of attending
a lab session, where an instructor is available to help them work through the material, but
many students do the tutorials on their own. Live demonstrations of the tutorial projects,
both in lecture and in lab sessions, have proved to be very effective.

c� 2011 Taylor and Francis Group, LLC

xiv

1: Introduction

2: Ruby Workbench

3: Sieve of Eratosthenes

4: Journey of a Thousand Miles

5: Divide and Conquer

6: When Words Collide

7: Bit by Bit

8: War of the Words

9: Something Completely Different

10: Ask Dr Ruby

11: Music of the Spheres

12: Traveling Salesman

At the end of each chapter there is a set of exercises that ask questions about issues raised
in the chapter. After the students have completed the tutorial, they are asked to answer
a selected set of questions and submit them as a “lab report” that gives them a chance to
explain what they learned. Similar questions are given on exams.

When selecting topics to use in a course, Chapters 1 through 4 should be used every
term, since they introduce key concepts (algorithms, scalability) and practical lab skills (in-
stantiating objects, calling methods, creating and iterating over containers) used in other
projects. The remaining chapters are mostly independent, and can be selected according to
the interests of the students. The chapters on data representations (Bit by Bit) and machine
language programming (War of the Words) are both based on the idea of encoding informa-
tion, but students will have no trouble completing the Corewar project without having done
the data representation projects. Similarly, The Traveling Salesman uses random numbers,
but students will get a lot out of this project even if they haven’t seen how random numbers
are generated.

It is also possible to organize a course that includes additional topics and activities beyond
those described in this book. In Spring 2008, a few months before the national elections in
the U.S., we used electronic voting as a theme for CIS 170. There were additional units on
the history of elections and the need for privacy and security in voting, and the computer
science topics included networking, encryption, and software engineering, all of which play
a role in the design of electronic voting machines.

Software, Documentation, and Lab Manuals

All of the software used for the tutorial projects is written in Ruby. Students can do the
projects on computers in an instructional lab, or they can install Ruby on their own comput-
ers. Ruby is open-source, and it is a straightforward process to install the Ruby interpreter
and associated applications:

• Users of Microsoft Windows XP can download a “one-click installer” that automates
all the installation steps.

c� 2011 Taylor and Francis Group, LLC

xv

• A single command typed in a terminal window will install Ruby on a Linux system.

• Ruby is already installed on Mac OS X 10.4 and later (although users running Mac OS
X 10.6 may have to reinstall Ruby to work on labs that have interactive visualizations).

The software students will use for the projects is named RubyLabs. RubyLabs is written
exclusively in Ruby, using only libraries and modules that are part of the standard Ruby
distribution. There is one Ruby module for each lab project. All of the modules have been
collected into a single “Ruby gem,” which makes it easy to install all the lab software in one
step at the beginning of the term. The RubyLabs gem also includes data files and sample
Ruby code that students can copy and modify.

A Lab Manual with step-by-step instructions for installing Ruby and the RubyLabs gem
is available from the book web site at http://www.cs.uoregon.edu/eic. There is a
separate version of the manual for Windows XP, Mac OS X, and Linux. The manual also
includes tips for editing programs and running commands in a terminal emulator.

The web site also has on-line documentation of all the modules in the RubyLabs gem.
After the gem has been installed, this documentation can be read locally by a web browser,
without having to connect to the Internet.

Web Site

The web site for this book is

http://www.cs.uoregon.edu/eic

The web site will have
• copies of the lab manual (PDF documents that can be

downloaded for free)
• links to the latest versions of the RubyLabs software

and documentation
• errata and other news

Explorations in Computing

Mac OS X Lab Manual

c� 2011 Taylor and Francis Group, LLC

xvi

Acknowledgments

The most important group of people who influenced the development of this book are, with-
out a doubt, the students at the University of Oregon who have been involved in one way
or another with CIS 170, the Science of Computing course I have taught each year since the
2005-06 academic year. Students who took the course and provided invaluable suggestions
(often without waiting for me to ask) include: Joyce Corrao-Clanon, Alex Forbes, Emily
Hayes, Isla Globus-Harris, Peri Moritz, Paul Russ, Charles Sheinin, Richard Suhr, and Ace
Taylor. Jeff Blakeslee developed an early version of the binary tree visualizations used in
Chapter 7, and Michael Maag made a key contribution to the RubyLabs canvas that is used
in all the visualizations.

Anyone who has taught a college or university level course knows how important it is to
have motivated and engaged teaching assistants, and I have been lucky to work with the
best: Megen Brittell, Tom Bulatewicz, Victor Hanson-Smith, and Shad Stafford. Shad also
used an early draft of Chapters 2 and 3 in a course he taught at Pacific University in Forest
Grove, Oregon, and I received many helpful comments from Shad and his students.

I was thrilled when Phil Foglio responded to my e-mail and said he would be willing to
make a set of illustrations for the book. Many thanks to Phil, Kaja Foglio (self-proclaimed
“scanning bot”), and the other folks at Studio Foglio, LLC for making it happen.

John Impagliazzo and Andrew McGettrick, the series editors for Chapman & Hall/CRC
Press, provided several constructive suggestions during the early phase of the development
of the book. From the rough draft I initially submitted, they were able to help me focus
on a better choice of topics and more readable presentation. I am also indebted to the
external reviewers, especially Jessen Havill, of Denison University, and Andrew Neel, from
the University of Memphis.

While the students, reviewers, and editors all had a tremendous influence on the contents
of the book, it would have remained just another interesting idea instead of a real book if
not for the efforts of Randi Cohen, my editor at CRC Press. Randi somehow knew exactly
when I needed encouragement and positive feedback, to keep me going when it seemed like
there was no end in sight, and when to set a firm deadline, when it looked like I was going
to keep exploring forever.

Finally, I am grateful for the support of my wife Leslie and my daughter Kathleen. Kath-
leen looked over my lecture notes, read early versions of some of the chapters, and, thank-
fully, let me know how some of my attempts at humor would have been received by others
of her generation. I love you both.

John Conery
Eugene, Oregon

c� 2011 Taylor and Francis Group, LLC

