

Hardwa Advance	r e <i>Layer</i> d Configurati	on and Power Inte	erface (ACPI)	SIEMENS	
ACPI Pro	cessor States	s:			
G- States G0 Working	. define global s G1 sleeping, G	s tates 2 soft-off, G3…mechanic	cal off	P0	
C-States C0 Process	C-States define incremental levels of processor idle C0 Processor active, C1,C2,C3, lower power idle states				
P-States P0 most pe	define level of performance, P1,P2,	processor in operation P3, less performance/	on performance power states		
D-State o	define levels of	device in operation i	dle states	Info: View not complete!	
D0 full performance, D1,D2,D3, Lower idle power device states			ACPI also supports thermal state		
T-States to throttle power consumption by reducing clock rate management.					
T0 full spee	ed, T1, T2, T3 r	educed clock rates			
T-States are used if processor does not support P-States					
Page 16	May 2009	Dr. Gerald Kaefer	Copyright © Siemens A © Siemer	AG 2009. All rights reserved. ns AG, Corporate Technology	

App SPE	o <i>lica</i> ECpo	<i>tion</i> ower	Layer _ssj2008	}			SIEMENS
	Benchmark Results Summary						
Pe	rformanc	e	Power	Performance to		Performance to Power Ratio	Results can be
Target Load	Actual Load	ssj_ops	Average Active Power (W)	Power Ratio		0 500 1,000 1,500 2,000 1,746 overall ssj_ops/watt 100% 2,287	published at
100%	99.5%	541,345	237	2,287		90% 2,256	www.spec.org
90%	90.4%	492,017	218	2,256		80% 2,199	
80%	80.0%	435,393	198	2,199	_	70% 2,114	
70%	70.0%	380,801	180	2,114	oad	50% 2,000	
60%	60.2%	327,674	164	2,000	1	50% 1,813	Sample of an energy
50%	50.2%	273,097	151	1,813	Tar	40% 1,559	efficient machine
40%	40.2%	218,697	140	1,559		30% 1,254	
30%	29.7%	161,721	129	1,254		20% 926	
20%	20.2%	109,761	119	926		10% 519	
10%	10.0%	54,213	105	519		·	
	Active Idle	0	/ 5.0	4 740		0 25 50 75 100 125 150 175 200 225	
).S	si obs/>.bower=i	1.740 Renchmark Res	sults Summan	Average Active Power (w)	
Per	formance		Power			Performance to Power Patio	-
Target Load	Actual	ssj_ops	Average Active Power (W)	Performance to Power Ratio		0 50 100 150 200 250 300 350 400	
100%	98.5%	141,739	353	402		90% 374	
90%	90.0%	129,541	346	374		80% 343	
80%	79.8%	114,893	335	343		70% 311	Sample of an not energy
70%	69.9%	100,585	324	311	oad	60% 276	efficient machine
60%	59.7%	85,907	311	276	et L	50% 243	chicient indefinite
50%	50.4%	72,541	298	243	Targ	40% 200	
40%	39.4%	56,623	283	200		30% 162	
30%	30.1%	43,382	268	162		20% 115	
20%	20.1%	28,946	252	115		10% 61	
10%	9.9%	14,206	233	61.0		•	
	cuve Idle		213	245		0 50 100 150 200 250 300 350	
Pag	je 30	288	May 2009	Dr. Ger	ald Kaefer	© Siemen	G 2009. All rights reserved. s AG, Corporate Technology

Application Layer Minimum Power Management APIs e.g.	SIEMENS Windows Vista
Available Power Notifications:	Asynchronous Notification: r WM_POWERBROADCAST:
hPowerSrc AC/DC, suspend, hBattCapacitybattery level in percent hMonitorOn monitor powered up or down hPowerScheme Automatic, HighPerformance,	 PBT_APMSUSPEND: "System is suspending operation " PBT_APMSTANDBY: "System is standing by "
PowerSaver, Power Management Manipulation:	PBT_APMRESUMECRITICAL: "Resuming after critical suspension." PBT_APMRESUMESUSPEND: "Operation resuming after suspension."
EXECUTION_STATE: - ES_SYSTEM_REQUIRED	PBT_APMRESUMINg after stappension: "Operation resuming after stand by." PBT_APMBATTERYLOW: "Battery nower is low "
 ES_DISPLAY_REQUIRED //ES_USER_PRESENT (only for legacy) ES_CONTINUOUS 	PBT_APMPOWERSTATUSCHANGE: "Power status has changed." PBT_APMOEMEVENT:
SetThreadExecutionState (EXECUTION_STATE)	"OEM-defined event occurred."; PBT_APMRESUMEAUTOMATIC: "Resuming automatically after event."
Page 36 May 2009 Dr. Gerald Kaefer	© Siemens AG, Corporate Technology

Software Engineering Integrate Energy Efficien	cy in all Development Phases
Requirement Engineering	Check integration of dynamic power management requirements and platform requirements. Specify according requirements, also for test.
System Design & Software Architecture	Choose platforms with power management capabilities. Incorporate power management application and test interfaces to system components. Choose development environment supporting energy profiling. Design for an event driven architecture.
Implementation	Implement power management interfaces and monitoring interfaces. Use method profiling to find out energy consumption hotspots in libraries and own source code (processor cycles). Define "energy budgets" for methods.
Test	Integrate unit tests to profile "energy budget" for method tests. Integrate test tools for testing system suspend/resume and application scaling
Improvement Loop (Feedback)	Integrate power/energy management/ monitoring and reporting to allow improvement on changing in the field.
Page 38 May 2009	Dr. Gerald Kaefer Copyright © Stemens AG 2009. All rights reserved. © Siemens AG, Corporate Technology

SIEMENS

References

c't 4,2008 magazine	: Energy c VW Golf	osts Germany 20 Cent/kWh, Diesel/ 90hp/ 5.1l per 100km	Germany energy mix: 616g CO2/kWh (0.5018kWh/km)/ 135g CO2/km / 9.84kWh per liter		
MMS 2008 - Las Ve	gas "How Sy	stem Center helps with your	Green IT Initiatives ", Frank Koch, 2008		
Energy Star®	http://ww	w.eu-energystar.org/en/en_0	07c.shtml		
Processor Power Ma	anagement in	Windows Vista and Window	vs Server 2008		
	http://ww	w.microsoft.com/whdc/systen	n/pnppwr/powermgmt/ProcPowerMgmt.mspx		
How to Enable Proc	How to Enable Processor Power Management in Windows Server 2003				
	http://ww	w.microsoft.com/whdc/systen	n/pnppwr/powermgmt/w2k3_ProcPower.mspx		
Windows Vista Ener	rgy Conservat	ion			
	http://ww	w.microsoft.com/whdc/systen	n/pnppwr/powermgmt/VistaEnergyConserv.mspx		
Best practices for d	atacenters				
	http://dov	vnload.microsoft.com/downloa	ad/a/7/b/a7b72ab1-ca17-4589-923a-83b0ff57be6d/Energy-		
	Efficie	ency-Best-Practices-in-Micros	oft-Data-Center-Operations-CeBIT.doc		
The Green Grid orga	anization				
	http://ww	w.thegreengrid.org			
PhD Thesis	"Adaptive	Power Aware Remote Proce	essing Gerald Kaefer 2004"		
	http://ww	w.iti.tugraz.at/en/people/kaefe	er/publications/phdthesis kaefer.pdf		
		Dr. Carold Kasfer	Copyright © Siemens AG 2009. All rights reserved.		
Page 43	May 2009	Dr. Gerald Kaeter	© Siemens AG, Corporate Technology		

References	5		SIEMENS	
Intel 2007:	"Creatin Krishnar	g Energy-Efficient Software", n, Jun De Vega	by Bob Steigerwald, Rajshree Chabukswar, Karthik	
Microsoft 2009:	"Windo	"Windows 7 Power Management, Power Management Improvements in Windows 7, beta",		
PDC 2005:	"Windov	"Windows Vista: Developing Power-Aware Applications", Pat Stemen, Geralyn Miller		
IBM 2006:	"Trends	"Trends in der ITK", Antonio Palacin, IBM SAP International Competence Center		
Page 44	May 2009	Dr. Gerald Kaefer	Copyright © Siemens AG 2009. All rights reserved © Siemens AG, Corporate Technology	

SIEMENS

Power / Energy Taxonomy

Joule … Energy …	the international standard unit of energy measurement [1 Joule = 1 Ws] "capacity to work", for this talk, the term means the amount of joules required to carry out a specific task. E.g. the energy required to lift a 0.1kg object 1 meter			
	against the pull of earth's gravity	is about 1 Joule		
Power	the amount energy consumed per unit of time, typically measured in Watts, 1 Watt equals 1 Joule per second.			
Heat (energy)	the form of energy dissipated by electronic equipment during			
Electric Energy costs	Germany 20 Cent/ kWh			
Germany energy mix	0.616kg CO2/ kWh			
CO2 car reference	VW Golf Diesel (90hp/ 5.1l per 100km)with 0.5018kWh/ km; 135g CO2/ km; 9.84kWh/ liter			
Page 45 May	2009 Dr. Gerald Kaefer	Copyright © Siemens AG 2009. All rights reserved. © Siemens AG, Corporate Technology		