University Karlsruhe
Research University - founded 1825

The Multicore Software
Challenge

Walter F. Tichy

=2=~__School of Informatics
u . 1 .
wam ', Chair of Programming Systems

We re Witnessing a Paradigm
Shift in Computing

« For 60 years, the sequential computing paradigm
was dominant.

- Parallelism occurred in niches only:
* Numeric computing
« Distributed computing (client/server)
- Operating systems, data base mgmt systems
* Instruction level parallelism

- With multi/manycore, parallel computers have
become affordable to everyone, and they will be
everywhere.

- |t is already difficult to buy a computer with a single
main processor.

School of Informatics
. ” Chair of Progrlamming Systems

o Important Parallel Computers
Atanasoff-Berry-Computer (1942)

bhase-10to drum #2 timing control

I L~ drum # (ca)
base-2 (ka) contacts '

b r'l_,yai'|es b DIZIS'[i& camy-
N o owver drum
\‘\"‘-. _/'/

4—_\-(\
T _.rootor
: oL

tem porary
one-c '3-13I e
swtch

First digital, base-2out
electonic computer.
Before ENIAC

/A
, “/—— gear box

power supply
regulator

(1946) | > I

30 adds/subtragfg/amert S

in parallel. g

Not programmable. subtract units one add{subtract

//f \ card reader module
L TNE l » (f dual triodes)
transfonmers - * thyratron punchipg circuit

for punching .

=z=-___ School of Informatics — memory igenerating cirsit 3

” Chair of Progrlamming Systems

o Important Parallel Computers

llliac-IV: SIMD, distributed memory

> Only one built: 1976 / E
64 processors

» Worlds fastest
computer until
1981

et

School of Informatics
. ” Chair of Progrlamming Systems

o Important Parallel Computers

Cray-1 vector computer
»Shared memory
»Vector registers with 64 elements
»Vector instructions implemented (ERET

by pipelining.
»First delivery 1976

»Second fastest computer
after llliac-VI

School of Informatics
. ” Chair of Progrlamming Systems

Transputer
»MIMD computer,
»Distributed memory

> Processors with 4 fast
connections

»First delivery 1984
»Up to 1024 processors

»QOccam programming
language

»Developed by Inmos,
Bristol, GB

sun School of Informatics
s ” Chair of Progrlamming Systems

o Important Parallel Computers

>
4
2
|
3
i)
A
)
)
s
&
£
A
Y
L
S
3
A

_BECLERFERRELEELERREL

o Important Parallel Computers

CM-1 Connection Machine
»SIMD
» Distributed memory
»65.536 processors (1-Bit)
»Hypercube interconnect
»First delivery 1986

»First massively parallel
computer

School of Informatics
. ” Chair of Progrlamming Systems

o Important Parallel Computers

Computer Clusters

» Off-the-shelf PCs connected by off-the-shelf
networks

»MIMD, distributed memory

»>Low cost because of
mass market parts

»Today’s fastest machines

»Hundreds of thousands of
processors

»See top500.org

Nasa Avalon with 140
School of Informatics Alpha processors, 1998

s » Chairof Progrlamming Systems

Your Laptop—
a Parallel Computer?

Prices June 2007

< L
NEU ¥

Inspiron™™ 6400 InspironT™ 1520 InspironT™ 1720 Inspiron™™ 1520
15" Notebook flur vielseitige Stylischer Denker, der es Unterhaltung & Spafi Schlank, elegant und noch
Unterhaltung & 1 GB RAM. geniesst seine Qualitaten garantiert! Technologie etwas schlauer und starker.
zeigen zu kénnen und gerne genau angepasst far lnren Jetzt in 8 Farben.
im Mittelpunkt steht. Lifestyle. Jetzt in 8 Farben.
729-€ 999-€ 1.049 € +129-€
659 € 899 € inkl. MwSt. und Versand | 1.079 €
inkl. MwSt., zzgl. 78 € inkl. MwSt., zzgl. 78 € inkl. MwSt., zzgl. 78 €
Versand Versand Versand
Prozessor © Prozessor © Prozessor © Prozessor @
Intel® Pentium® Dual-Core Intel® Core™ 2 Duo T5450 Iintel® Core™ 2 Duo Iintel® Core™ 2 Duo T7100
T2080 Prozessor (1,73 GHz, Prozessor (1,66 GHz, 667 T5250 Prozessor (1,5 Prozessor (1,8 GHz, 800
533 MHz, 1 MB L2-Cache) MHz, 2 MB L2-Cache) GHz, 667 MHz, 2 MB MHz, 2 MB L2-Cache)

L2-Cache) 9

O

3 x 2 Xeon
Processors

(no HW

multithreading)

2,6 GHz

130 W

45nm technology

Up to 4 of those on

one board

Qo
=
O
')
c
O
C c
S o
>
= O
S n
cC v
3§
— 9|
QSal
S o

Sun Niagara 2:
8 Processors on 3,42 cm?

8 Sparc

r
]
IR
P
-
|
b
e e

iz onte

;‘ =esidl: | | Processors

. ed

;'.':‘_, L2284 "5

F e ,-‘j 8 HW-threads per
s =

= sbiiill | | processor

bt e

e {3

bray ¢

L lis&| | 8x9 cross bar
:F'-.‘

b5

1,4 GHz

N R .;;
!-..1.-!;4

d

L2 Date

- -

’i Bank 7 (j::’i 75 W
3 L2B6 | 3‘
7 L2 Data ?:3
asunatstl | | 69nm techology

4 per bo

P Pt e e e o m
BT R R I o L B N L
g N . %, Pogre - . . o™

irst Niaga

64 VLIW processors
plus grid on a chip

For network and video
applications

700 MHz

22 W

Available 2007

SCNool or Intormatics 12
.. » Chairof Progrlamming Systems

Nvidia GeForce 8
Graphics Processing Unit

processor,

1,35 GHz,
32-Bit FPU,

1024 registers

Paaliel Dt Paallel Dt A 0 AN Pataliel Data e B Paaliel Data
Cache Cache d Cache Cache

Load store Load store Load store

128 cores altogether, each with 96 threads in HW
Total of 12288 HW threads!
SIMD, distributed memory

=mn Sch

13

unm L Chair of Progrlamming Systems

Intel’s Larrabee:
32 Pentiums on a Chip

« 32 x86 cores (45nm),
* (48 cores with 32 nm)
« Cache coherent,

* Ring interconnect

* 64 bit arithmetic

* 4 reqister sets per
processor

« Special vector
instructions for
graphics

- Expected 2010

Intel’s Larrabee Processor

»8s., Chair of Programming Systems Source: www.pcgameshardware.com, May 12, 2009

School of Informatics

o What Happened?

10,000,000 . ,
] | :
! .
! e
| D -
o .0
1,000,000 :
Intel CPU Trends | ACN
100,000 {(sources: Intel, Wikipedia, K. Oluko‘iun)
| -
l !
j !
10,000 | !
!
: ’....
! t
1,000 ! amm ‘
100 paws’ |54
10
/ RN
[=]
>
1 = Transistors (000) =
’, P ! o Clock Speed (MHZX)
* e ! a Power (W)
‘ @ PerfiClock
o l _ : | l J |

2 1970 1975 1980 1985 1990 1995 2000 2005 2010

o Moore’s Law, New Version

Doubling the numer of
processors per chip

with each chip-generation,
at about the same clock rate.

Parallel computers will be everywhere.in a s
time.

. School of Informatics

o What to do with all the Cores?

,Who needs 100 processors for M/S Word?*“

« Lack of creativity, CS education?
- Looking for applications that can use 100°s of cores.

How could ordinary users of PCs, mobile phones,
embedded systems benefit?

Run faster!

More compute intensive applications
Speech and video interfaces

Better graphics, games.

Smart systems that model the user and environment
and can predict what the user wants, therefore act
more like a human assistant.

School of Informatics

. ” Chair of Progrlamming Systems

Example 1: Logistic Optimization
(MS thesis with SAP)

Given:
- Delivery orders
- Trucks

- Road network

Which
deliveries?

T
it

On which Goal: optimal transportation

routes
trucks?

Which routes? == < = =3

Generalization of travelling salesman problem

School of Informatics 18
. ” Chair of Progrlamming Systems

o Why parallelize?

Real logistics scenarios

Scenario I 2 3 Also important:

Rest periods of drivers,
Time to load, trailers,
Deliveries 804 1177 | 7040 With/without refrigeration,
Ferry schedules, ships,....

Load dimensions 3 2 4
Loading stations I I 3 Sequential
Delivery points 31 559 1872 implementation:
-150.000 lines of C++

Intermediate 0 5 0 -Evolutionary algorithm
stations

_ Runs several hours for
Vehicles 281 680 2011 good solutions.
Vehicle types 7 3 |10

Time window

(days)
== SchooT of Informatics 19

LT e Chair of Progrlamming Systems

© Search Algorithm

cost

A

1. Start with initial solution

2. While cost bound not satisfied:
* Improve solution with local
changes
(explore neighboring
solutions)
© Individuum » Occasionally escape from
> local optimum with a jump in

Neighboring solutions soution space

==x. School of Informatics 20

LT e Chair of Progrlamming Systems

o General Procedure

B: random move
TS: depth first search

el ILS: iterated local
) search
1 thread ZB> TS > ILS> ZB > TS> ILS> ZB TS > |L?‘>
>
sequential time
threads
A Replicate for more

threads

Thread 1|z Y z8 ZB> ZB> ZB > ZB
Thread 2 TS > TS TS > TS > W/
Thread 3 ILS> |Ls>¢ ILS > |Ls> ILS> ILS > ILS> ILS§ ILS >

parallel time
School of Informatics 21
- 'y Chair of Progrlamming Systems

OSqutions examined in 2 Min.

Solutions examined

500.000.000

375.000.000

250.000.000

125.000.000

©O Optimierung eines Szenarios (2 min)

Factor 23
iImprovement!!!

4 8 12

parallel
4 431,000,000

solutions

sequential
16 20 24 18,000,000
cores solutions

Computer with 4 Intel Dunnington Chips

School of Informatics

. ” Chair of Progrlamming Systems

(4 * 6 cores)

22

o Speedup with 24 Threads

Speedup for reaching a cost bound
240

S 3 runs each:

192 Random B min M avg max
168 fluctuations

| 44

120

speedup

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Scenarios

Average speedup: 17,37

Super-linear speedups if good candidates are found early

School of Informatics
. ” Chair of Progrlamming Systems

23

" aum ” Chair of Programming Systems

What is the Basic Challenge In
Parallel Software?

« Speedup, programmer productivity, and software
quality must be satisfactory simultaneously.
- Parallelization only interesting if there is a speedup

* Programmer productivy and software quality should
not get any worse!

- Current languages and tools are unsatifactory
(Thread = Goto?)

* Most programmers are poorly prepared for
parallelism.

School of Informatics

24

o Example 2: Metabolite Hunter

O

I C21H3:NsO,
| R
I ‘e’ - =
I -2 Agilent Technologies
i R
1
|
Load
— Load drug
spectrograms
TIC CONTROL CIP(C21H32N503) s
TIC Compound Spectrum("Time Range")
x107 x1047,24933
L e | R 94 ihy+
——— L a5 i3z
2 4 6 8 10 12 14 2 .{;;-
BPC CONTROL 7.5
1 2 3 4 PC 7]
é n ;(1:.15 II 654
aaa -1 W, ¥ L 5
T T T T T T r L 554
| a 2. 4 6 .8 1001 14 5]
ECC 4.5
Algorithms pipeline 04| 54 b
searches for metabolites in spectrograms. L s B - o 5 «
2y & bt 8 CN03120 14 <97
EIC CONTROL(402,24997) 24
EIC{40 7 154
x10 14
3 10,631 0

T y
8 10 12 14

o Result: time-dependent graph of
Desktop application metabolites

School of Informatics 25
Chair of Progrlamming Systems

l Input data

Stage 1 F

Stage 2

—

Stage 4

lResuIt data

Pipeline Layer

o Multi-Level Parallel Architecture

Pre-
Pracessing

1
e —

_/

Module Layer

School of Informatics

”

Chair of Progrlamming Systems

Data
Partitioning

l'

S S

‘->

e
=
.

Mg Result .
Instancei bln 1 ;

Mig Result
(Instance 2) bln 2

Myo Result
(Instance m) bln m

S

Result Data
Consolidation

Data Layer

26

o Auto-Tuning

* Problem: Find parameter configuration that optimizes
performance.

- Parameters are platform and algorithm dependent

« Parameters:
* humber of cores,
« humber of threads,
 parallelism levels,
« number of pipeline stages, pipeline structure,
 Number of workers in master/worker, load distribution
* size of data partitions,
« choice of algorithm

- Manual adjustment is too time-consuming
 Let the computer find the optimum!

School of Informatics
. ” Chair of Progrlamming Systems

27

o Auto-Tuning (2)

« Solution: Aftune Parameter Optimizer

- Library that searches for the optimum, given
annotations about which parameters can be changed
« specified with annotation language Atune-IL

- Search space can be huge, so sampling, learning, and
other optimization techniques need to be explored.

- Difference between best and worst configuration in

Metabolite Hunter: Factor of 1.9 (total speedup 3.1 on
8 cores)

« Gene expression application: Auto-tuning contributes a
Factor 4.2 to a total speedup of 7.7 on 8 cores.

Tested on 2x Intel Xeon E5320 Quad-Core 1,86 GHz
School of Informatics 28
- 'y Chair of Progrlamming Systems

o Example: BZip2

- BZip2
- Compression program
« Used on many PCs worldwide
« 8000 LOC, open source

- Parallelized in student competition

* 4 teams of 2 students each

» Preparation in 3 month lab course on OpenMP and
Posix threads

- Competition in the final 3 weeks (course project)

School of Informatics
. ” Chair of Progrlamming Systems

29

Speedup

#Threads

Winners reached a ten-fold speedup on Sun Niagara T1
(8 processors, 32 HW-threads).

School of Informatics

LB Chair of Progrlamming Systems

30

o How did they do it?

- Massive restructurings of the code

- Teams who invested little in restructuring were
unsuccessful.

* Winners parallelized only on the day before

submission; they spent the preceding 3 weeks on
refactoring to enable parallelization.

» Dependencies, side effects, sequential optimizations

needed to be removed before parallelization became
possible.

School of Informatics
. ” Chair of Progrlamming Systems

31

o What did not work?

- Adding parallelization incrementally did not work
for any team.

 Parallelizing the critical path only was not
enough.

- Parallelizing inner loops did not work.

- Parallel steps must encompass larger units (coarse
grained parallelization)

- BZip2 contains specialized algorithms, so help
from algorithms libraries is unlikely.

School of: Informatics 32

" aum ” Chair of Programming Systems

The Good News:
Parallelization is not a Black Art

- Have a plan. Trial and error does not work.

* Develop hypothesis were parallelization might
produce the most gains.

« Consider several parallelization levels.

- Use parallel design patterns.

* Producer/consumer, pipeline, domain decomposition,
parallel divide and conquer, master/worker.

* Don't despair while refactoring!
- Build tools that help.

School of: Informatics 33

" aum ” Chair of Programming Systems

How Can We Use all this
Computing Power?

- Intuitive interfaces with speech and video,

» Applications that anticipate what users will do
and assist them,

- Extensive modeling of users, their needs, and
their environments for truly smart applications,

* New types of applications that are too slow
today,

 Improved reliability and security
* Run all kinds of checks in parallel with applications

School of Informatics

34

Some Research Topics for
Parallel Software Engineering

Better programming languages for clear and explicit expression of
parallel computations

Compilation techniques
Processor/process scheduling

Parallel design patterns and architectures
Parallel algorithms and libraries

Testing, debugging

- Automated search for data races, synchronization bugs.
Performance prediction for parallel architectures
Auto-tuning, auto-scaling, adaptability
Tools for sequential-to-parallel refactoring
New classes of applications

Your favorite research topic/technique/expertise applied to parallel
software.

School of Informatics

. ” Chair of Progrlamming Systems

35

. ” Chair of Programming Systems

XJava: Parallelism Expressed
Compactly

Operator ,=>" links processes in pipeline, as in Unix

compress (File in, File out) {

read(in) => compress() => write(out);
}
Buffered Buffered
Reads file, stream stream Writes blocks
outputs Reads blocks, in file
blocks compresses
them

All filters run in parallel, until end of input.

Streams are typed and typesafe.
... Also suitable for master/worker, producer/consumer .

o XJava

Operator , | | | runs processes in parallel:

compress (f1, flout) ||| compress(f2,

Methods executed by their own threads,
implicit barrier at the end.

For process and data parallelism.
Multilevel (nested) parallelism.

School of Informatics
. ” Chair of Progrlamming Systems

f2o0ut) ;

37

o Masterl\l\'nrker In XJava

npu ype
Output type
« One master .iree workers:

void => X master() { /* master*/ }
X => void w() { /* worker*/ }

X => void gang() { w(@) Il w() Il w(); }
| workers (dynamic):
X => void gang() { w():12; }

- master () => gang()

master passes Elements of type X to workers in
round-robin fashion.

master () =>* gang()
broadcasts elements to all workers.

School of Informatics
. ” Chair of Progrlamming Systems

38

o XJava Extensions

- Easy to understand

Fully integrated in Java

Typesafe

Easier to handle than threads or libraries
Less code, fewer ,opportunities” for bugs

» Specialized autotuning possible

- Example: tune stages in a pipeline in such a fashion
that they take about the same time.

School of Informatics
. ” Chair of Progrlamming Systems

39

o Summary

 Future performance gains by parallelism
- Goal: Faster, intelligent applications

- ... of the same quality and at the same
programmer productivity as sequential
applications now.

* ... while the number of processors per chip
doubles every two years.

* Lots of the basics of computer science need to
be reinvented.

»,Reinventing Software Engineering“

School of: Infprmatlcs 40

International Workshop Multicore Software Engineering, May 2009, Vancouver.
http://www.multicore-systems. org/|wmse

B T
Working Group Software Englneerlng for paraIIeI Systems (SEPARS)
http: //www multlcore svstems orq/ql ak- sepas

Allons!
. Vamos!
\._ Gehn'mas an!

