
University Karlsruhe 
Research University · founded 1825 

 Chair of Programming Systems
 School of Informatics

The Multicore Software
Challenge

Walter F. Tichy

Chair of Programming Systems
 School of Informatics

We´re Witnessing a Paradigm
Shift in Computing

•  For 60 years, the sequential computing paradigm
was dominant.

•  Parallelism occurred in niches only:
• Numeric computing
• Distributed computing (client/server)
• Operating systems, data base mgmt systems
•  Instruction level parallelism

•  With multi/manycore, parallel computers have
become affordable to everyone, and they will be
everywhere.

•  It is already difficult to buy a computer with a single
main processor.

2

Chair of Programming Systems
 School of Informatics

Important Parallel Computers
Atanasoff-Berry-Computer (1942)

30 add-
subtract units

First digital,
electonic computer.
Before ENIAC
(1946).
30 adds/subtracts
in parallel.
Not programmable.

3

Chair of Programming Systems
 School of Informatics

Important Parallel Computers

Illiac-IV: SIMD, distributed memory
 Only one built: 1976

64 processors
 Worlds fastest

 computer until
1981

4

Chair of Programming Systems
 School of Informatics

Important Parallel Computers

Cray-1 vector computer
 Shared memory
 Vector registers with 64 elements
 Vector instructions implemented

by pipelining.
 First delivery 1976
 Second fastest computer

after Illiac-VI

5

Chair of Programming Systems
 School of Informatics

Important Parallel Computers

Transputer
 MIMD computer,
 Distributed memory
 Processors with 4 fast

connections
 First delivery 1984
 Up to 1024 processors
 Occam programming

language
 Developed by Inmos,

Bristol, GB

6

Chair of Programming Systems
 School of Informatics

Important Parallel Computers

CM-1 Connection Machine
 SIMD
 Distributed memory
 65.536 processors (1-Bit)
 Hypercube interconnect
 First delivery 1986
 First massively parallel

computer

7

Chair of Programming Systems
 School of Informatics

Important Parallel Computers

Computer Clusters
 Off-the-shelf PCs connected by off-the-shelf

networks
 MIMD, distributed memory
 Low cost because of

mass market parts
 Today´s fastest machines
 Hundreds of thousands of

processors
 See top500.org

Nasa Avalon with 140
Alpha processors, 1998 8

Chair of Programming Systems
 School of Informatics

Your Laptop—
a Parallel Computer?

Prices June 2007

9

Chair of Programming Systems
 School of Informatics

Intel Dunnington
6 Processors on one Chip

3 x 2 Xeon
Processors

(no HW
multithreading)

2,6 GHz

130 W

45nm technology

Up to 4 of those on
one board

Available 2008

10

Chair of Programming Systems
 School of Informatics

Sun Niagara 2:
8 Processors on 3,42 cm2

8 Sparc
Processors

8 HW-threads per
processor

8x9 cross bar

1,4 GHz

75 W

65nm techology

4 per board

Available 2007

First Niagara 2005
11

Chair of Programming Systems
 School of Informatics

Tilera´s TILE64

12

64 VLIW processors
plus grid on a chip

For network and video
applications

700 MHz

22 W

Available 2007

Chair of Programming Systems
 School of Informatics

Nvidia GeForce 8
Graphics Processing Unit

processor,
1,35 GHz,

32-Bit FPU,
1024 registers

16 KB 128 cores altogether, each with 96 threads in HW
Total of 12288 HW threads!
SIMD, distributed memory

13

Chair of Programming Systems
 School of Informatics

Intel´s Larrabee:
32 Pentiums on a Chip

14

•  32 x86 cores (45nm),
•  (48 cores with 32 nm)
•  Cache coherent,
•  Ring interconnect
•  64 bit arithmetic
•  4 register sets per

processor
•  Special vector

instructions for
graphics

•  Expected 2010

Source: www.pcgameshardware.com, May 12, 2009

Chair of Programming Systems
 School of Informatics

What Happened?

15

Chair of Programming Systems
 School of Informatics

Moore´s Law, New Version

Parallel computers will be everywhere in a short
time.

Doubling the numer of
processors per chip
with each chip-generation,
at about the same clock rate.

16

Chair of Programming Systems
 School of Informatics

What to do with all the Cores?

•  „Who needs 100 processors for M/S Word?“
•  Lack of creativity, CS education?
•  Looking for applications that can use 100´s of cores.

•  How could ordinary users of PCs, mobile phones,
embedded systems benefit?

•  Run faster!
•  More compute intensive applications
•  Speech and video interfaces
•  Better graphics, games.
•  Smart systems that model the user and environment

and can predict what the user wants, therefore act
more like a human assistant.

17

Chair of Programming Systems
 School of Informatics

Example 1: Logistic Optimization
(MS thesis with SAP)

Generalization of travelling salesman problem

Goal: optimal transportation
routes

Which
deliveries?

On which
trucks?

Which routes?

18

Chair of Programming Systems
 School of Informatics

Why parallelize?

Scenario 1 2 3

Deliveries 804 1177 7040

Load dimensions 3 2 4

Loading stations 1 1 3

Delivery points 31 559 1872

Intermediate
stations 0 5 0

Vehicles 281 680 2011

Vehicle types 7 3 10

Time window
(days) 1 2 64

19

Real logistics scenarios

Sequential
implementation:

- 150.000 lines of C++
- Evolutionary algorithm

Runs several hours for
good solutions.

Also important:
Rest periods of drivers,
Time to load, trailers,
With/without refrigeration,
Ferry schedules, ships,....

Chair of Programming Systems
 School of Informatics

Neighboring solutions

cost

1.  Start with initial solution

2.  While cost bound not satisfied:
•  Improve solution with local

changes
(explore neighboring
solutions)

•  Occasionally escape from
local optimum with a jump in
soution space

Search Algorithm

20

Chair of Programming Systems
 School of Informatics

General Procedure

parallel time

Thread 2

threads

Thread 1

Thread 3

sequential time

1 thread

threads

21

Chair of Programming Systems
 School of Informatics

S
ol

ut
io

ns
 e

xa
m

in
ed

cores

Solutions examined in 2 Min.

parallel

sequential
18,000,000
solutions

431,000,000
solutions Factor 23

improvement!!!

Computer with 4 Intel Dunnington Chips
(4 * 6 cores)

22

Chair of Programming Systems
 School of Informatics

Speedup with 24 Threads
sp

ee
du

p

scenarios
Average speedup: 17,37
Super-linear speedups if good candidates are found early

3 runs each:

23

Speedup for reaching a cost bound

Chair of Programming Systems
 School of Informatics

What is the Basic Challenge in
Parallel Software?

•  Speedup, programmer productivity, and software
quality must be satisfactory simultaneously.

• Parallelization only interesting if there is a speedup
• Programmer productivy and software quality should

not get any worse!
•  Current languages and tools are unsatifactory

(Thread ≅ Goto?)
•  Most programmers are poorly prepared for

parallelism.

24

Chair of Programming Systems
 School of Informatics 25

Example 2: Metabolite Hunter

Algorithms pipeline
searches for metabolites in spectrograms.
Parallelization potential

Load
spectrograms Load drug

C21H31N5O2

1 2 3 4 n...

Result: time-dependent graph of
metabolites

Mass spectrograms

Desktop application

drug

25

Chair of Programming Systems
 School of Informatics

Multi-Level Parallel Architecture

26 26

Chair of Programming Systems
 School of Informatics

Auto-Tuning

•  Problem: Find parameter configuration that optimizes
performance.

•  Parameters are platform and algorithm dependent
•  Parameters:

•  number of cores,
•  number of threads,
•  parallelism levels,
•  number of pipeline stages, pipeline structure,
•  Number of workers in master/worker, load distribution
•  size of data partitions,
•  choice of algorithm

•  Manual adjustment is too time-consuming
•  Let the computer find the optimum!

27 27

Chair of Programming Systems
 School of Informatics

Auto-Tuning (2)

•  Solution: Atune Parameter Optimizer
• Library that searches for the optimum, given

annotations about which parameters can be changed
•  specified with annotation language Atune-IL

• Search space can be huge, so sampling, learning, and
other optimization techniques need to be explored.

• Difference between best and worst configuration in
Metabolite Hunter: Factor of 1.9 (total speedup 3.1 on
8 cores)

• Gene expression application: Auto-tuning contributes a
Factor 4.2 to a total speedup of 7.7 on 8 cores.

28
Tested on 2x Intel Xeon E5320 Quad-Core 1,86 GHz

28

Chair of Programming Systems
 School of Informatics

Example: BZip2

•  BZip2
• Compression program
• Used on many PCs worldwide
• 8000 LOC, open source

•  Parallelized in student competition
• 4 teams of 2 students each
• Preparation in 3 month lab course on OpenMP and

Posix threads
• Competition in the final 3 weeks (course project)

29

Chair of Programming Systems
 School of Informatics

Speedup

Winners reached a ten-fold speedup on Sun Niagara T1
(8 processors, 32 HW-threads).

30

Chair of Programming Systems
 School of Informatics

How did they do it?

•  Massive restructurings of the code
• Teams who invested little in restructuring were

unsuccessful.
• Winners parallelized only on the day before

submission; they spent the preceding 3 weeks on
refactoring to enable parallelization.

• Dependencies, side effects, sequential optimizations
needed to be removed before parallelization became
possible.

31

Chair of Programming Systems
 School of Informatics

What did not work?

•  Adding parallelization incrementally did not work
for any team.

•  Parallelizing the critical path only was not
enough.

•  Parallelizing inner loops did not work.
• Parallel steps must encompass larger units (coarse

grained parallelization)
•  BZip2 contains specialized algorithms, so help

from algorithms libraries is unlikely.

32

Chair of Programming Systems
 School of Informatics

The Good News:
Parallelization is not a Black Art

•  Have a plan. Trial and error does not work.
•  Develop hypothesis were parallelization might

produce the most gains.
•  Consider several parallelization levels.
•  Use parallel design patterns.

• Producer/consumer, pipeline, domain decomposition,
parallel divide and conquer, master/worker.

•  Don't despair while refactoring!
•  Build tools that help.

33

Chair of Programming Systems
 School of Informatics

How Can We Use all this
Computing Power?

•  Intuitive interfaces with speech and video,
•  Applications that anticipate what users will do

and assist them,
•  Extensive modeling of users, their needs, and

their environments for truly smart applications,
•  New types of applications that are too slow

today,
•  Improved reliability and security

• Run all kinds of checks in parallel with applications

34

Chair of Programming Systems
 School of Informatics

Some Research Topics for
Parallel Software Engineering

•  Better programming languages for clear and explicit expression of
parallel computations

•  Compilation techniques
•  Processor/process scheduling
•  Parallel design patterns and architectures
•  Parallel algorithms and libraries
•  Testing, debugging

•  Automated search for data races, synchronization bugs.
•  Performance prediction for parallel architectures
•  Auto-tuning, auto-scaling, adaptability
•  Tools for sequential-to-parallel refactoring
•  New classes of applications
•  Your favorite research topic/technique/expertise applied to parallel

software.

35

Chair of Programming Systems
 School of Informatics

XJava: Parallelism Expressed
Compactly

Operator „=>“ links processes in pipeline, as in Unix

 compress(File in, File out) {
 read(in) => compress() => write(out);
 }

36

Reads file,
outputs
blocks

Buffered
stream

Reads blocks,
compresses

them

Writes blocks
in file

Buffered
stream

All filters run in parallel, until end of input.
Streams are typed and typesafe.
Also suitable for master/worker, producer/consumer

Chair of Programming Systems
 School of Informatics

XJava

Operator „|||“ runs processes in parallel:

 compress(f1, f1out) ||| compress(f2, f2out);

Methods executed by their own threads,
implicit barrier at the end.

 For process and data parallelism.
Multilevel (nested) parallelism.

37

Chair of Programming Systems
 School of Informatics

Master/Worker in XJava

•  One master, three workers:
 void => X master() { /* master*/ }
 X => void w() { /* worker*/ }
 X => void gang() { w() ||| w() ||| w(); }

•  i workers (dynamic):
 X => void gang() { w():i; }

• master() => gang()
master passes Elements of type X to workers in
round-robin fashion.

• master() =>* gang()
broadcasts elements to all workers.

38

Input type
=>

Output type

Chair of Programming Systems
 School of Informatics

XJava Extensions

•  Easy to understand
•  Fully integrated in Java
•  Typesafe
•  Easier to handle than threads or libraries
•  Less code, fewer „opportunities“ for bugs
•  Specialized autotuning possible

• Example: tune stages in a pipeline in such a fashion
that they take about the same time.

39

Chair of Programming Systems
 School of Informatics

Summary

•  Future performance gains by parallelism
•  Goal: Faster, intelligent applications
•  … of the same quality and at the same

programmer productivity as sequential
applications now.

•  … while the number of processors per chip
doubles every two years.

•  Lots of the basics of computer science need to
be reinvented.

„Reinventing Software Engineering“
40

Chair of Programming Systems
 School of Informatics

Allons!
Vamos!

Gehn´mas an!
Let´s go!

International Workshop Multicore Software Engineering, May 2009, Vancouver.
http://www.multicore-systems.org/iwmse

Working Group Software Engineering for parallel Systems (SEPARS)
http://www.multicore-systems.org/gi-ak-sepas

41

Papers:
http://www.ipd.uka.de/Tichy

