
Faculty of Computer Science

University of Karlsruhe (TH)
Research University · founded 1825

Transactional Memory versus Locks -
A Comparative Case Study

Victor Pankratius

Technical Briefing Session „Multicore Software Engineering“ @ ICSE 2009

Head of Young Investigator Group
www.ipd.uni-karlsruhe.de/~pankratius updated Sep 2, 2009

http://www.ipd.uni-karlsruhe.de/~pankratius

Dr. Victor Pankratius
Faculty of Computer Science

2

Traditional Parallel Programming

• Synchronize critical sections using locks
• Explicit lock / unlock

• Claimed to to be advantageous for performance

• Problems
• Very low-level
• Error-prone
• Burden on developers

Dr. Victor Pankratius
Faculty of Computer Science

3

Transactional Memory

• Instead of explicit locks, use atomic transactions
atomic { /*critical section code*/ }

• Sounds promising in theory, but…

• A run-time system allows threads to execute atomic
blocks concurrently, while making it appear that only one
thread at a time executes within an atomic block.

• Intention: relieve developer from locking details, esp. in
situations with many locks and complex locking protocols

• A transaction is aborted and re-executed if it conflicts with
another transaction (operations must be reversible)

• Run-time system ensures atomicity, consistency, isolation

Dr. Victor Pankratius
Faculty of Computer Science

4

Predjudices Against TM from the Literature

• Transactional Memory is slow

• Transactional Memory is only a research toy

• Transactional Memory may not be applicable to
more complex, non-numerical programs

• Transactional Memory does not offer any real
benefits for parallel software development

Based on the empirical results of this study, I want
to show you that this is not generally true.

Dr. Victor Pankratius
Faculty of Computer Science

5

Traditional Approaches of Evaluating TM

• Small (numerical) programs

• Micro-benchmarks

• Translating lock-based programs into TM

• Mostly worst-case analyses

...is this enough?

Dr. Victor Pankratius
Faculty of Computer Science

6

About the Case Study

• 12 students, semester project in C
parallel desktop search engine
from scratch (indexing and search)

• Competition: best performance, given target features
• 3 teams randomly assigned to use Pthreads (i.e., locks)
• 3 teams Phreads + TM (i.e., transactions)
• Realistic scenario: just end product matters. Students were

allowed to re-use any code from Web, employ different strategies
and data structures

• Questions
• What happens? E.g., performance, code, effort, difficulties

Dr. Victor Pankratius
Faculty of Computer Science

7

About the Case Study

• Cooperation with Intel
• Provided Software Transactional Memory compiler
• Most advanced STM compiler so far
• Based on Intel's widely-used C compiler

• Initially, 3 weeks teaching for all students
• Parallel programming, search engine technology
• Pthreads library, Transactional Memory (using Intel‘s STM

compiler)

• 6 teams randomly created (2 students each)

Dr. Victor Pankratius
Faculty of Computer Science

8

Performance Summary

• Indexing time
• Locks winners (team 5) : 605 s with 4 threads
• TM winners (team 6) : 178 s with 7 threads

• 18 types of queries
• TM teams faster than locks teams on 9 out of 18 queries

• Determining winners:
• Equally weighted score for indexing and query time of correct queries
• Benchmark: 51,000 text files, 742MB, 8 core machine

• TM winners combined TM with a few semaphores for producer-consumer
synchronization and outperformed team 5 on indexing and search.

• TM team 2 (one of the most inexperienced teams) was excluded; program
crashed on benchmark

Dr. Victor Pankratius
Faculty of Computer Science

9

Program Sizes

Pthreads Teams TM Teams
Team 1 Team 4 Team 5 Team 2 Team 3 Team 6

Total LOC 2014 2285 2182 1501 2131 3052
avg: 2160, stddev: 137 avg: 2228, stddev: 780

Total LOC with
Parallel Constructs

157
8%

261
11%

120
5%

53
4%

45
2%

151
5%

avg: 179, stddev: 73 avg: 83, stddev: 59

..but TM teams have fewer LOC with parallel constructs

Total LOC are about the same....

Remarks: Team2: incomplete program,
Team 6: implemented many low-level library functions

(to ensure that they worked with TM)

Dr. Victor Pankratius
Faculty of Computer Science

10

Effort

• Collected data on a day-by-day basis
• Students kept track of hours

1-reading doc
2-search for libs
3-conceptual design
4-implementation
5-experiments
6-testing
7-debugging
8-other

Dr. Victor Pankratius
Faculty of Computer Science

11

Effort in Person Hours

Less for TM

Winners
(delta: 67h)
Winners
(delta: 67h)

1-reading doc
2-search for libs
3-conceptual design
4-implementation
5-experiments
6-testing
7-debugging
8-other

Dr. Victor Pankratius
Faculty of Computer Science

Pthreads teams 168 121 50 9 348
48% 35% 14% 3% 100%

TM teams 173 65 17 13 268
65% 24% 6% 5% 100%

12

Implementation Effort

TM teams spent more time on sequential code,
less on parallel code.

Sequential
Code

Parallel
Code

Refactoring Other

Dr. Victor Pankratius
Faculty of Computer Science

13

TM Performance Is Not Well-Understood

„Late restructuring problem“

• TM teams run into performance
problems at the end of the
project

• TM performance hard to predict

• Atomic sections too long,
needed restructuring (team 3)

Dr. Victor Pankratius
Faculty of Computer Science

14

Code Inspections

• Done by myself and Ali Adl-Tabatabai's STM
compiler team at Intel

• Parallel code of TM teams was easier to understand

• TM teams had comparable functionality, but fewer
critical sections than the locks teams;
about 12 - 24 atomic blocks

• Locks teams: up to thousands of locks (!)

• Both winning teams had races detected by
inspection

Dr. Victor Pankratius
Faculty of Computer Science

15

Questionnaire – Psychological Issues

• TM teams apparently had less fear that adding parallel constructs
would break their program.

• Yet TM winners tried to postpone parallelization work more often
than the locks winners.

• Personal observations and interviews show this for all TM teams.

• Compared to locks teams, TM teams thought that their programs
were more difficult to understand

• Not true according to code inspections.

• TM winners thought they were not advancing fast enough due to TM.
• Not true: they had first parallel program and lowest total effort.

Dr. Victor Pankratius
Faculty of Computer Science

16

Other Results

• First demo of working parallel program presented
by TM winners

• At the beginning of the fifth project week
• Four weeks earlier than locks winners

• Combination of TM with locks or semaphores
worked (team 3 and 6)

• Usage of TM and locks can be complementary
• We don‘t have to think of TM or locks as alternatives

Dr. Victor Pankratius
Faculty of Computer Science

17

Summary

• TM alone is no silver bullet, but combined with lower-
level parallel constructs, it can

• improve quality of parallel code,
• reduce implementation and debugging effort, and
• provide acceptable performance.

• If programmers are inexperienced (team 2), then TM
does not help them either. Parallel programming remains
difficult.

• Better software engineering for TM needed
• Patterns, library support, program understanding, performance

monitoring, debugging
• TM community needs to address these issues

Dr. Victor Pankratius
Faculty of Computer Science

18

Thank you for your attention!

• Full technical report is available:
Victor Pankratius, Ali-Reza Adl-Tabatabai, Frank Otto.
``Does Transactional Memory Keep Its Promises? Results from an Empirical
Study.’’, Technical Report 2009-12, September 2009, University of Karlsruhe,
Germany

http://www.rz.uni-karlsruhe.de/~kb95/papers/pankratius-TMStudy.pdf

• I‘m happy to receive feedback:

pankratius@ipd.uka.de

http://www.rz.uni-karlsruhe.de/~kb95/papers/pankratius-TMStudy.pdf

Dr. Victor Pankratius
Faculty of Computer Science

19

Student Experience Prior to Study

Dr. Victor Pankratius
Faculty of Computer Science

20

Performance
-Winner for locks: team 5

-Winner for TM: team 6
- combined TM with semaphores

for producer-consumer
synchronization

- outperformed team 5 on
indexing and search

Indexing

Queries

Determining winners: weighted score
- 50% for indexing time
- 50% for query time of correct queries
- Benchmark: 50,887 text files, 742MB

Inexperienced team 2: program crashed
excluded

Dr. Victor Pankratius
Faculty of Computer Science

21

Implementation Effort

4.1 Implementation of mostly sequential code

4.2 Implementation of mostly parallel code
(using Pthreads of TM constructs)

4.3 Refactoring

4.4 Other implementation tasks

TM teams spent more
time on sequential code,
less on parallel code

Dr. Victor Pankratius
Faculty of Computer Science

22

Program sizes

Pthreads Teams TM Teams
Team 1 Team 4 Team 5 Team 2 Team 3 Team 6

Total LOC 2014 2285 2182 1501 2131 3052
avg: 2160, stddev: 137 avg: 2228, stddev: 780

LOC pthread* 157 261 120 17 23 12
LOC tm_* 0 0 0 36 22 139

Total LOC with
Parallel Constructs

157
8%

261
11%

120
5%

53
4%

45
2%

151
5%

avg: 179, stddev: 73 avg: 83, stddev: 59

..but TM teams have fewer LOC with parallel constructs

Total LOC are about the same....

	Transactional Memory versus Locks - �A Comparative Case Study
	Traditional Parallel Programming
	Transactional Memory
	Predjudices Against TM from the Literature
	Traditional Approaches of Evaluating TM
	About the Case Study
	About the Case Study
	Performance Summary
	Program Sizes
	Effort
	Effort in Person Hours
	Implementation Effort
	TM Performance Is Not Well-Understood
	Code Inspections
	Questionnaire – Psychological Issues
	Other Results
	Summary
	Thank you for your attention!
	Student Experience Prior to Study
	Performance
	Implementation Effort
	Program sizes

