

University of Karlsruhe (TH)

Research University - founded 1825

Technical Briefing Session "Multicore Software Engineering" @ ICSE 2009

Transactional Memory versus Locks -A Comparative Case Study

Victor Pankratius

Faculty of **Computer Science** Head of Young Investigator Group <u>www.ipd.uni-karlsruhe.de/~pankratius</u>

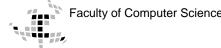
updated Sep 2, 2009

Traditional Parallel Programming

- Synchronize critical sections using locks
 - Explicit lock / unlock
- Claimed to to be advantageous for performance
- Problems

aculty of Computer Science

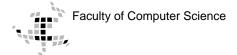
- Very low-level
- Error-prone
- Burden on developers


- Instead of explicit locks, use atomic transactions
 atomic { /*critical section code*/ }
- A run-time system allows threads to execute atomic blocks concurrently, while making it appear that only one thread at a time executes within an atomic block.
 - Intention: relieve developer from locking details, esp. in situations with many locks and complex locking protocols
 - A transaction is aborted and re-executed if it conflicts with another transaction (operations must be reversible)
 - Run-time system ensures atomicity, consistency, isolation
- Sounds promising in theory, but...

aculty of Computer Science

Predjudices Against TM from the Literature

- Transactional Memory is slow
- Transactional Memory is only a research toy
- Transactional Memory may not be applicable to more complex, non-numerical programs
- Transactional Memory does not offer any real benefits for parallel software development


Based on the empirical results of this study, I want to show you that this is not generally true.

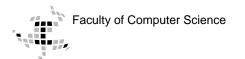
Traditional Approaches of Evaluating TM

- Small (numerical) programs
- Micro-benchmarks
- Translating lock-based programs into TM
- Mostly worst-case analyses

... is this enough?

- 12 students, semester project in C parallel desktop search engine from scratch (indexing and search)
- **Competition:** best performance, given target features
 - 3 teams randomly assigned to use Pthreads (i.e., locks)
 - 3 teams Phreads + TM (i.e., transactions)
 - Realistic scenario: just end product matters. Students were allowed to re-use any code from Web, employ different strategies and data structures

Questions


aculty of Computer Science

• What happens? E.g., performance, code, effort, difficulties

Dr. Victor Pankratius

About the Case Study

- Cooperation with Intel
 - Provided Software Transactional Memory compiler
 - Most advanced STM compiler so far
 - Based on Intel's widely-used C compiler
- Initially, 3 weeks teaching for all students
 - Parallel programming, search engine technology
 - Pthreads library, Transactional Memory (using Intel's STM compiler)
- 6 teams randomly created (2 students each)

- Indexing time
 - Locks winners (team 5) : 605 s with 4 threads
 - **TM winners** (team 6) : 178 s with 7 threads
- 18 types of queries
 - TM teams faster than locks teams on 9 out of 18 queries
- Determining winners:
 - Equally weighted score for indexing and query time of correct queries
 - Benchmark: 51,000 text files, 742MB, 8 core machine
- TM winners combined TM with a few semaphores for producer-consumer synchronization and outperformed team 5 on indexing and search.
- TM team 2 (one of the most inexperienced teams) was excluded; program crashed on benchmark

Total LOC are about the same

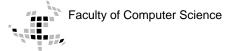
	Pth	reads Tea	ams	TM Teams					
	Team 1	Team 4	Team 5	Team 2	Team 3	Team 6			
Total LOC	2014	2285	2182	1501	2131	3052			
	avg: 21	60, stdd	ev: 137	avg: 2228, stddev: 780					
Total LOC with	157	261	120	53	45	151			
Parallel Constructs	8%	11%	5%	4%	2%	5%			
	avg: 1	79, stdd	ev: 73	avg:	83, stdde	ev: 59			

..but TM teams have fewer LOC with parallel constructs

Remarks: Team2: incomplete program,

Team 6: implemented many low-level library functions (to ensure that they worked with TM)

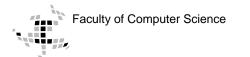
Faculty of Computer Science


Dr. Victor Pankratius

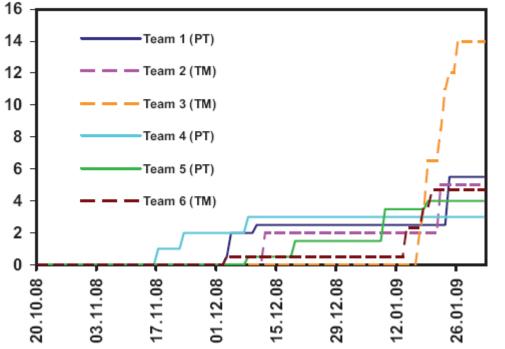
- Collected data on a day-by-day basis
- Students kept track of hours

1-reading doc
2-search for libs
3-conceptual design
4-implementation
5-experiments
6-testing
7-debugging
8-other

Team 1		1	2	3	4					5					6						7									8
						4.1	4.2	4.3	4.4		5.1	5.2	5.3	5.4		6.1	6.2	6.3	6.4	6.5		7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	
Sum of person hours	149,5				79,5	46,5	30	1	2	10	5	2	3	0	13,5	6	5,5	0	2	0	29	16	4	2	0	0	3	0	4	0
	100%	4%	2%	6%						7%	_				9%						19%									0%
Mo, 20.10.08	0				0					0					0						0									
Di, 21.10.08	0				0					0					0						0									
Mi, 22.10.08	0				0					0					0						0									
Do, 23.10.08	0				0					0					0						0									
Fr, 24.10.08	0				0					0					0						0									
Sa, 25.10.08	0				0					0					0						0									
So, 26.10.08	0				0					0					0						0									
Mo, 27.10.08	0				0					0					0						0									
Di, 28.10.08	0				0					0					0						0									
Mi, 29.10.08	0				0					0					0						0									
Do, 30.10.08	0				0					0					0						0									
Er 31 10 08	0				0					0					0						0									



	Effo		 1-reading doc 2-search for libs 3-conceptual design 4-implementation 5-experiments 								
Less fo	or T r	M						-	6-testin 7-debu 8-other	ng gging	
	1	2	3	4	5	6	7	8	total		
Team 1 (L)	6	3	9	80	10	14	29	0	151		
Team 5 (L)	24	12	17	106	7	52	16	19		Winners	
Team 4 (L) Team 6 (TM)	29 18	12 4	14	196 55	12 6	21 18	48 19	2	334 141	(delta: 67h)	
Team 2 (TM)	7	6	33	74	18	38	22	10	208		
Team 3 (TM)	6	6	21	139	12	39	38	0	261		
sum all	90	32	106	616	65	182	172	40	1303		
	7%	2%	8%	47%	5%	14%	13%	3%	100%		
sum L	59	16	40	348	29	87	93	21	693		
_	9%	2%	6%	50%	4%	13%	13%	3%	100%		
sum TM	31	16	66	268	36	95	79	19	610		
	5%	3%	11%	44%	6%	16%	13%	3%	100%		
sum L - sumTM	28	0	-26	80	-7	-8	14	2	83		11


	Sequential Code	Parallel Code	Refactoring	Other	
Pthreads teams	168	121	50	9	348
	48%	35%	14%	3%	100%
TM teams	173	65	17	13	268
	65%	24%	6%	5%	100%

TM teams spent more time on sequential code, less on parallel code.

6.2) Accumulated hours for performance tests (of search engine)

"Late restructuring problem"

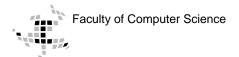
- TM teams run into performance problems at the end of the project
- TM performance hard to predict
- Atomic sections too long, needed restructuring (team 3)



- Done by myself and Ali Adl-Tabatabai's STM compiler team at Intel
- Parallel code of TM teams was easier to understand
 - TM teams had comparable functionality, but fewer critical sections than the locks teams; about 12 - 24 atomic blocks
 - Locks teams: up to thousands of locks (!)
- Both winning teams had races detected by inspection

Questionnaire – Psychological Issues

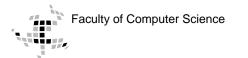
- TM teams apparently had less fear that adding parallel constructs would break their program.
- Yet TM winners tried to postpone parallelization work more often than the locks winners.
 - Personal observations and interviews show this for all TM teams.
- Compared to locks teams, TM teams thought that their programs were more difficult to understand
 - Not true according to code inspections.
- TM winners thought they were not advancing fast enough due to TM.
 - Not true: they had first parallel program and lowest total effort.



- First demo of working parallel program presented by TM winners
 - At the beginning of the fifth project week
 - Four weeks earlier than locks winners
- Combination of TM with locks or semaphores worked (team 3 and 6)
 - Usage of TM and locks can be complementary
 - We don't have to think of TM or locks as alternatives

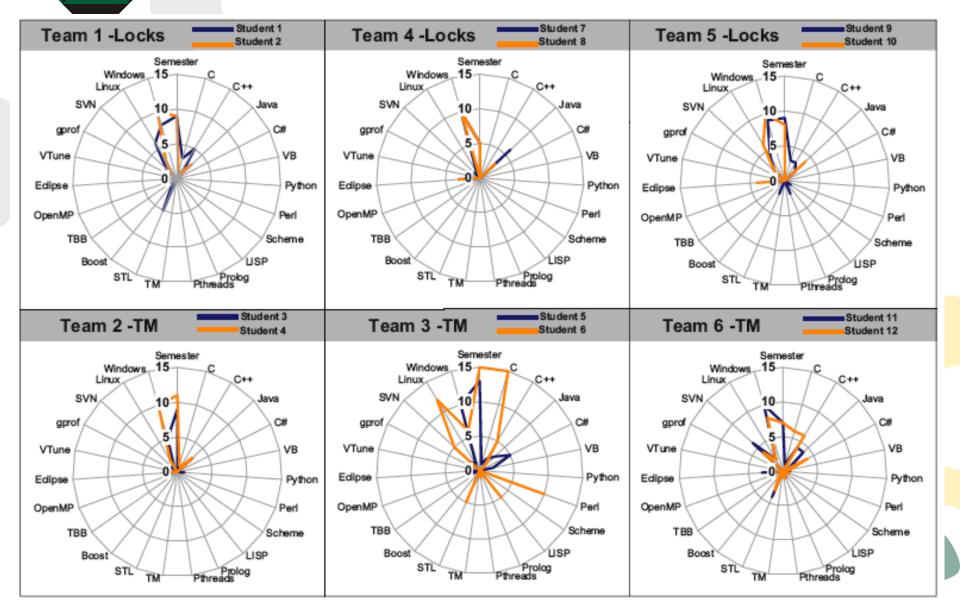
- TM alone is no silver bullet, but combined with lowerlevel parallel constructs, it can
 - improve quality of parallel code,
 - reduce implementation and debugging effort, and
 - provide acceptable performance.
- If programmers are inexperienced (team 2), then TM does not help them either. Parallel programming remains difficult.
- Better software engineering for TM needed
 - Patterns, library support, program understanding, performance monitoring, debugging
 - TM community needs to address these issues

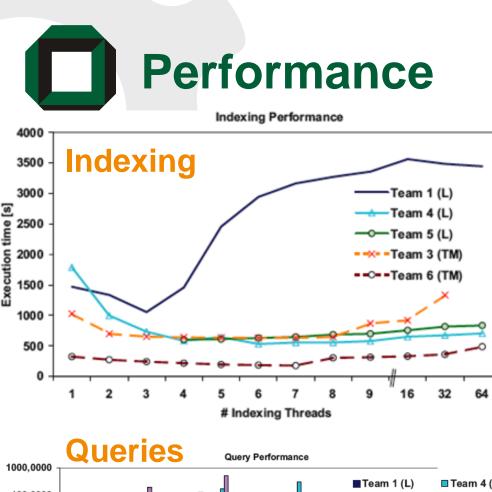
Thank you for your attention!

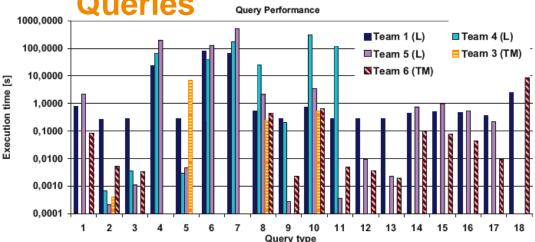

• Full technical report is available:

Victor Pankratius, Ali-Reza Adl-Tabatabai, Frank Otto. **``Does Transactional Memory Keep Its Promises? Results from an Empirical Study.**", Technical Report 2009-12, September 2009, University of Karlsruhe, Germany

http://www.rz.uni-karlsruhe.de/~kb95/papers/pankratius-TMStudy.pdf


• I'm happy to receive feedback:

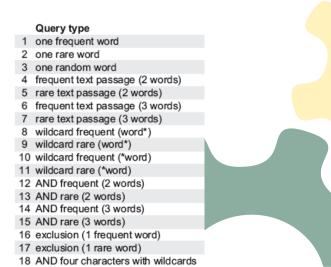

pankratius@ipd.uka.de



Dr. Victor Pankratius

Student Experience Prior to Study

Determining winners: weighted score

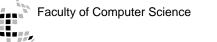

- 50% for indexing time
- 50% for query time of correct queries
- Benchmark: 50,887 text files, 742MB

-Winner for locks: team 5

-Winner for TM: team 6

- combined TM with semaphores for producer-consumer synchronization
- outperformed team 5 on indexing and search

Inexperienced team 2: program crashed \rightarrow excluded

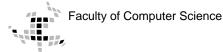


Implementation Effort

	4.1	4.2	4.3	4.4	
Team 5 (L)	35	5	27	5	72
Team 1 (L)	47	30	1	2	80
Team 4 (L)	86	86	22	2	196
Team 6 (TM)	42	7	3	3	55
Team 2 (TM)	25	33	6	10	74
Team 3 (TM)	106	25	8	0	139
sum all	341	186	67	22	616
	55%	30%	11%	4%	100%
sum L	168	121	50	9	348
	48%	35%	14%	3%	100%
sum TM	173	65	17	13	268
	65%	24%	6%	5%	100%

- 4.1 Implementation of mostly sequential code
- 4.2 Implementation of mostly parallel code (using Pthreads of TM constructs)
- 4.3 Refactoring
- 4.4 Other implementation tasks

TM teams spent more time on sequential code, less on parallel code



Total LOC are about the same....

	Pth	reads Tea	ams	TM Teams					
	Team 1	Team 4	Team 5	Team 2	Team 3	Team 6			
Total LOC	2014	2285	2182	1501	2131	3052			
	avg: 21	60, stdd	ev: 137	avg: 2228, stddev: 780					
LOC pthread*	157	261	120	17	23	12			
LOC tm_*	0	0	0	36	22	139			
Total LOC with Parallel Constructs	157 8%	261 11%	120 5%	53 4%	45 2%	151 5%			
	avg: 1	79, stdd	ev: 73	avg: 83, stddev: 59					

..but TM teams have fewer LOC with parallel constructs

