
Automatically Automatically
Finding Patches Finding Patches
Using Genetic Using Genetic
ProgrammingProgramming

Westley WeimerWestley Weimer
Claire Le Goues Claire Le Goues
ThanVu Nguyen ThanVu Nguyen

Stephanie ForrestStephanie Forrest

2

Motivation
● Software Quality remains a key problem

● Over one half of 1 percent of US GDP each year
● Programs ship with known bugs

● Reduce debugging costs
● Bug reports accompanied by patches are addressed

more rapidly
● Automated Patch Generation

● Transform a program with a bug
● Into a program without the bug
● By modifying relevant parts of the program

3

The Cunning Plan
● We can automatically and efficiently repair

certain classes of bugs in off-the-shelf,
unannotated legacy programs.

● Basic idea: Biased search through the space of
all programs until you find a variant that
repairs the problem. Key insights:
● Use existing test cases to evaluate variants.
● Search by perturbing parts of the program likely to

contain the error.

4

The Process
● Input:

● The program source code
● Some regression test cases passed by the program
● A test case failed by the program (= the bug)

● Genetic Programming Work:
● Create variants of the program
● Run them on the test cases
● Repeat, retaining and combining variants

● Output:
● New program source code that passes all tests
● or “no solution found in time”

5

This Talk

● Genetic Programming
● Weighted Paths
● Our Technique
● Example
● Repair Experiments
● Big Finish

6

What's In A Name?
● Genetic programming is

the application of
evolutionary or genetic
algorithms to program
source code.
● Population of variants
● Mutation, crossover
● Fitness function

● Similar in ways to search-
based software
engineering:
● Regression tests to

guide the search

7

Two Secret Sauces

● In a large program, not every line is equally
likely to contribute to the bug.

● Insight: since we have the test cases, run them
and collect coverage information.

● The bug is more likely to be found on lines
visited when running the failed test case.

● The bug is less likely to be found on lines
visited when running the passed test cases.

● Also: Do not try to invent new code!

8

The Weighted Path

● We define a weighted path to be a list of
<statement, weight> pairs.

● We use this weighted path:
● The statements are those visited during the failed

test case.
● The weight for a statement S is

– High (1.0) if S is not visited on a passed test
– Low (0.1, 0.0) if S is also visited on a passed test

9

Genetic Programming for
Program Repair: Mutation

● Population of Variants:
● Each variant is an <AST, weighted path> pair

● Mutation:
● To mutate a variant V = <AST

V
, wp

V
>, choose a

statement S from wp
V
 biased by the weights

● Delete S, replace S with S1, or insert S2 after S
– Choose S1 and S2 from the entire AST

● Assumes program contains the seeds of its own
repair (e.g., has another null check elsewhere).

10

Genetic Programming for
Program Repair: Fitness

● Compile a variant
● If it fails to compile, Fitness = 0
● Otherwise, run it on the test cases
● Fitness = number of test cases passed
● Weighted: passing the bug test case is worth more

● Selection and Crossover
● Higher fitness variants are retained and combined

into the next generation
● Repeat until a solution is found

11

Example: GCD
/* requires: a >= 0, b >= 0 */
void print_gcd(int a, int b) {
if (a == 0)
printf(“%d”, b);

while (b != 0) {
if (a > b)
a = a – b;

else
b = b – a;

}
 printf(“%d”, a);
return;

}

Bug: when
a==0 and b>0,
it loops forever!

12

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Abstract Syntax Tree

13

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Weighted Path (1/3)

(printf ...b)

Nodes visited on
Negative test case
(a=0,b=55) :

14

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Weighted Path (2/3)

(printf ...b)

Nodes visited on
Negative test case
(a=0,b=55) :

b = b - a

Nodes visited on
Positive test case
(a=1071,b=1029) :

15

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Weighted Path (3/3)

(printf ...b)

Weighted Path:

16

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Mutation (1/2)

Mutation Source: Anywhere in AST
Mutation Destination: Weighted Path

17

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Mutation (2/2)

Mutation Source: Anywhere in AST
Mutation Destination: Weighted Path

return

18

{ block }

if (a==0) while
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Final Repair

return

19

Minimize The Repair
● Repair Patch is a diff between orig and variant
● Mutations may add unneeded statements

● (e.g., dead code, redundant computation)
● In essence: try removing each line in the diff

and check if the result still passes all tests
● Delta Debugging finds a 1-minimal subset of

the diff in O(n2) time
● Removing any single line causes a test to fail

● We use a tree-structured diff algorithm (diffX)
● Avoids problems with balanced curly braces, etc.

20

Experimental Results
Program LOC | Path | Time (s) Success Bug

gcd 22 1.3 149 54% inf loop

uniq 1146 81.5 32 100% segfault

ultrix look 1169 213.0 42 99% segfault

svr4 look 1363 32.4 51 100% inf loop

units 1504 2159.7 107 7% segfault

deroff 2236 251.4 129 97% segfault

nullhttpd 5575 768.5 502 36% buffer overrun

indent 9906 1435.9 533 7% inf loop

flex 18775 3836.6 233 5% segfault

atris 21553 34.0 69 82% buffer overrun

average 881.4 184.7 58.7%

Average minimization time: 12 seconds.
Total: 10 repaired programs, over 63,000 lines of code.

21

Repair Quality
● Repairs are typically not what a human would

have done
● Example: our technique adds bounds checks to one

particular network read, rather than refactoring to
use a safe abstract string class in multiple places

● Recall: any proposed repair must pass all
regression test cases
● When POST test is omitted from nullhttpd, the

generated repair eliminates POST functionality
● Tests ensure we do not sacrifice functionality
● Minimization prevents gratuitous deletions
● Adding more tests helps rather than hurting

22

Technique Limitations
● May not handle nondeterministic faults

● Difficult to test for race conditions, etc.
● Long term: put scheduler constraints into the

variant representation.
● Assumes bug test case visits different lines

than normal test cases
● Assumes existing statements can form repair

● Current work: repair templates
● Hand-crafted and mined from CVS repositories

● Slower on large test suites: test case selection

23

Want to hear more?

ICSE 2009
● Formal algorithm,

crossover, mutation
● Representation,

parsing, stmt details
● Test cases used
● Sensitivity
● Repair quality
● “Does it work?”

GECCO 2009
● Evolutionary questions

● nonstandard crossover
● really evolutionary?
● operator frequency

● Effect of more test
cases

● Scaling behavior
● “Why did it work?”

24

Conclusions
● We can automatically and efficiently repair

certain classes of bugs in off-the-shelf legacy
programs.
● Ten programs totaling 63kloc in about 6 minutes

each, on average
● We use regression tests to encode desired

behavior.
● Existing tests encode required behavior

● The genetic programming search focuses
attention on parts of the program visited
during the bug but not visited during passed
test cases.

25

Questions

● I encourage difficult questions.

26

Bonus Slide: Test Cases

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

