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Motivation
● Software Quality remains a key problem

● Over one half of 1 percent of US GDP each year
● Programs ship with known bugs

● Reduce debugging costs
● Bug reports accompanied by patches are addressed 

more rapidly
● Automated Patch Generation

● Transform a program with a bug 
● Into a program without the bug
● By modifying relevant parts of the program
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The Cunning Plan
● We can automatically and efficiently repair 

certain classes of bugs in off-the-shelf, 
unannotated legacy programs.

● Basic idea: Biased search through the space of 
all programs until you find a variant that 
repairs the problem. Key insights:
● Use existing test cases to evaluate variants.
● Search by perturbing parts of the program likely to 

contain the error.
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The Process
● Input:

● The program source code
● Some regression test cases passed by the program
● A test case failed by the program (= the bug)

● Genetic Programming Work: 
● Create variants of the program
● Run them on the test cases
● Repeat, retaining and combining variants

● Output: 
● New program source code that passes all tests
● or “no solution found in time” 
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This Talk

● Genetic Programming
● Weighted Paths
● Our Technique
● Example
● Repair Experiments
● Big Finish
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What's In A Name?
● Genetic programming is 

the application of 
evolutionary or genetic 
algorithms to program 
source code.
● Population of variants
● Mutation, crossover
● Fitness function

● Similar in ways to search-
based software 
engineering:
● Regression tests to 

guide the search
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Two Secret Sauces

● In a large program, not every line is equally 
likely to contribute to the bug.

● Insight: since we have the test cases, run them 
and collect coverage information.

● The bug is more likely to be found on lines 
visited when running the failed test case.

● The bug is less likely to be found on lines 
visited when running the passed test cases.

● Also: Do not try to invent new code!
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The Weighted Path

● We define a weighted path to be a list of 
<statement, weight> pairs. 

● We use this weighted path:
● The statements are those visited during the failed 

test case. 
● The weight for a statement S is

– High (1.0) if S is not visited on a passed test 
– Low (0.1, 0.0) if S is also visited on a passed test
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Genetic Programming for 
Program Repair: Mutation

● Population of Variants:
● Each variant is an <AST, weighted path> pair

● Mutation:
● To mutate a variant V = <AST

V
, wp

V
>, choose a 

statement S from wp
V
 biased by the weights

● Delete S, replace S with S1, or insert S2 after S
– Choose S1 and S2 from the entire AST

● Assumes program contains the seeds of its own 
repair (e.g., has another null check elsewhere).
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Genetic Programming for
Program Repair: Fitness

● Compile a variant
● If it fails to compile, Fitness = 0
● Otherwise, run it on the test cases
● Fitness = number of test cases passed
● Weighted: passing the bug test case is worth more

● Selection and Crossover
● Higher fitness variants are retained and combined  

into the next generation
● Repeat until a solution is found
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Example: GCD
/* requires: a >= 0, b >= 0 */
void print_gcd(int a, int b) {
if (a == 0)
printf(“%d”, b); 

while (b != 0) {
if (a > b)
a = a – b;

else
b = b – a;

}
  printf(“%d”, a); 
return;

}

Bug: when 
a==0 and b>0,
it loops forever!
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{ block }

if (a==0) while 
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Abstract Syntax Tree
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{ block }

if (a==0) while 
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Weighted Path (1/3)

(printf ...b)

Nodes visited on
Negative test case 
(a=0,b=55) :
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{ block }

if (a==0) while 
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Weighted Path (2/3)

(printf ...b)

Nodes visited on
Negative test case 
(a=0,b=55) :

b = b - a

Nodes visited on
Positive test case 
(a=1071,b=1029) :
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{ block }

if (a==0) while 
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Weighted Path (3/3)

(printf ...b)

Weighted Path:
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{ block }

if (a==0) while 
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Mutation (1/2)

Mutation Source: Anywhere in AST
Mutation Destination: Weighted Path



17

{ block }

if (a==0) while 
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Mutation (2/2)

Mutation Source: Anywhere in AST
Mutation Destination: Weighted Path

return
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{ block }

if (a==0) while 
(b != 0)

printf(... a)

if
(isLeapYear)

if
(a > b)

{ block }{ block }

return

{ block }{ block }

printf(... b)

a = a - b b = b - a

{ block }

Example: Final Repair

return
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Minimize The Repair
● Repair Patch is a diff between orig and variant
● Mutations may add unneeded statements

● (e.g., dead code, redundant computation)
● In essence: try removing each line in the diff 

and check if the result still passes all tests
● Delta Debugging finds a 1-minimal subset of 

the diff in O(n2) time
● Removing any single line causes a test to fail

● We use a tree-structured diff algorithm (diffX)
● Avoids problems with balanced curly braces, etc. 



20

Experimental Results
Program LOC | Path | Time (s) Success Bug

gcd 22 1.3 149 54% inf loop

uniq 1146 81.5 32 100% segfault

ultrix look 1169 213.0 42 99% segfault

svr4 look 1363 32.4 51 100% inf loop

units 1504 2159.7 107 7% segfault

deroff 2236 251.4 129 97% segfault

nullhttpd 5575 768.5 502 36% buffer overrun

indent 9906 1435.9 533 7% inf loop

flex 18775 3836.6 233 5% segfault

atris 21553 34.0 69 82% buffer overrun

average  881.4 184.7 58.7%

Average minimization time: 12 seconds.
Total: 10 repaired programs, over 63,000 lines of code.
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Repair Quality
● Repairs are typically not what a human would 

have done
● Example: our technique adds bounds checks to one 

particular network read, rather than refactoring to 
use a safe abstract string class in multiple places

● Recall: any proposed repair must pass all 
regression test cases
● When POST test is omitted from nullhttpd, the 

generated repair eliminates POST functionality
● Tests ensure we do not sacrifice functionality
● Minimization prevents gratuitous deletions
● Adding more tests helps rather than hurting
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Technique Limitations
● May not handle nondeterministic faults

● Difficult to test for race conditions, etc.
● Long term: put scheduler constraints into the 

variant representation.
● Assumes bug test case visits different lines 

than normal test cases
● Assumes existing statements can form repair

● Current work: repair templates
● Hand-crafted and mined from CVS repositories

● Slower on large test suites: test case selection
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Want to hear more?

ICSE 2009
● Formal algorithm, 

crossover, mutation
● Representation, 

parsing, stmt details
● Test cases used
● Sensitivity
● Repair quality
● “Does it work?”

GECCO 2009
● Evolutionary questions

● nonstandard crossover
● really evolutionary?
● operator frequency

● Effect of more test 
cases

● Scaling behavior
● “Why did it work?”
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Conclusions
● We can automatically and efficiently repair 

certain classes of bugs in off-the-shelf legacy 
programs.
● Ten programs totaling 63kloc in about 6 minutes 

each, on average
● We use regression tests to encode desired 

behavior.
● Existing tests encode required behavior

● The genetic programming search focuses 
attention on parts of the program visited 
during the bug but not visited during passed 
test cases. 
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Questions

● I encourage difficult questions.
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Bonus Slide: Test Cases
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