
From System Specifications to Component Behavioral Models
Ivo Krka, George Edwards, Yuriy Brun, and Nenad Medvidovic

University of Southern California

Early System Specifications
• Early development activities (e.g., requirements elicitation 

and refinement) occur in the context of incomplete 
information and uncertainty 

• Resulting specifications are partial, and capture high-level 
behavior and characteristics of the system (e.g., UML 
sequence diagrams and OCL constraints)

Component-Level MTS Synthesis

Web Cache Specification

Algorithm Phases in a Nutshell
1. We translate the provided system-level constraints to 

component-level constraints which restrict the allowed 
behavior of each component

2. For each component, we generate an MTS which does not 
violate the component constraints and contains only 
potential transitions

3. We annotate the sequence diagrams with conditions that 
represent state variable values that must hold at particular 
points in scenario execution

4. We refine the initial component MTSs by incorporating the 
scenarios as required behavior

Cache Component’s Final MTS

Utilizing Component MTSs
• Discovering specification discrepancies

• Conflicts between scenarios and properties (e.g., a 
scenario cannot execute as specified)

• Inconsistent component states (e.g., a component does 
not reach a desirable state)

• Requirements elicitation
• Proposingnew scenarios (e.g., 

requestServer→responseServer→ dataChanged→ responseServer) 
• Proposing new properties (e.g., 

□((requestPending∧ ¬cached) ⇒ ○(requestPending )))

• Off-the-shelf component selection
• Final MTS explicitly captures behavior that is required 

by the specification and forbids behavior proscribed by 
the specification

• By comparing specifications of OTS components with 
the final MTS, we can select the most appropriate 
components

• Comparison of as-intended and as-implemented
• After implementation, the behavior of a component 

needs to be checked against the key requirements (i.e., 
how the system was intended to behave)

• Comparison between the final MTS with the behavior 
extracted from the implementation can serve as a 
measure of architectural drift

The Problem Statement
• Synthesizing more comprehensive behavioral models from 

early system specifications is beneficial

• Existing component-level synthesis approaches ignore the 
inherent partiality of the early specifications

• Existing approaches which account for partiality of 
specifications generate only system-level models

requestCache
pre: ¬requestPending
post: requestPending

responseCache
pre: cached and

requestPending
post: ¬requestPending

requestServer
pre: ¬cached and

requestPending

responseServer
pre: ¬cached
post: cached

dataUpdate
post: ¬cached

dataChanged
post: ¬cached

Modal Transition Systems
• A formalism for capturing both required 

and potential behavior in a single model

• Refinement of an MTS corresponds to 
notion of a “more specified” model

S1S1 S2S2

S3S3

e1
e1?

e3
e3?

e2

SpecsSpecs

Component 
constraints 
generation

Component 
constraints 
generation

Sequence 
diagram 

annotation

Sequence 
diagram 

annotation

Initial MTS 
generation
Initial MTS 
generation

Final MTS 
generation
Final MTS 
generation

1. 4.

3.

2.

S1S1 S2S2 S3S3

requestServer
dataChanged? dataChanged?

requestCache
requestServer?

dataChanged?

S5S5 S4S4

dataChanged?

requestCache

responseCache

responseServer

responseServer?

dataChanged?

responseServer?

responseServer?
responseServer?

Contributions and Conclusions
• Modal Transition Systems provide means to effectively 

capture the partial nature of early system specifications

• We designed an algorithm which compliments the existing 
behavioral model synthesis algorithms

• We enumerated ways in which component MTSs can 
support and enrich software development activities

• An in-depth description of this work as well as several new 
directions can be found in our ESEC/FSE 2009 paper: 
http://csse.usc.edu/~ybrun/pubs/Krka09fse.pdf

Problem Approach Outcome


