Improving the Reliability of Mobile Software Systems through Continuous Analysis and Proactive Reconfiguration

Sam Malek, David Kilgore, Ibrahim Elhag

Roshanak Roshandel

ICSE NIER – Vancouver, BC, Canada, May 2009
Motivation

• Proliferation of mobile and pervasive software systems

• Increasingly deployed in safety or mission critical settings

• Existing reliability analysis approaches are not suitable
 – Dynamic configuration
 – Fluctuating execution context
 – Changing operational profile
Challenges

1. Impact of Context on Reliability
 – Internal vs. external faults
2. Impact of Dynamism on Reliability
 – Impact of adaptation on reliability
3. Difficulty of Predicting Reliability
 – Is system’s past reliability indicative of its future reliability?
4. Granularity
 – Component-level as well as the system-level
5. Scalability
 – Efficient yet fine grained analysis
The Process

Monitor system → Observations → Analyze → Runtime reliability model → Effect reconfiguration changes → Reconfigured system

Design-time reliability model → Design-time architecture model
Reliability-Driven Reconfiguration Framework
Proactive Reconfiguration

• Infeasible to determine an optimally reliable architectural configuration for a mobile software system at design time

• Runtime reconfiguration may be necessary to achieve reliability requirements
 – E.g., Allocation of software components to OS processes
Allocation of Components to Processes

a) Rendering Agent → Resource Monitor → Deployment Advisor → OS Process

b) Rendering Agent → Resource Monitor → Deployment Advisor → OS Process

More Efficient Less Reliable

Less Efficient More Reliable
Refinement of Reliability Analysis

• Initial reliability *prediction* based on available sources of information at design time
• Runtime monitoring performed by the middleware is used to *refine* the initial prediction
 – internal software properties (e.g., frequency of failures, exceptions, and service requests),
 – external properties (e.g., network fluctuations, battery charge),
 – changes in the structure of the software (e.g., disconnection of components due to network drop outs, off-loading of components due to drained battery)
• Complementary sources of information
Reliability Analysis

• Calculate Component reliability
 • Build HMM based reliability model using
 • Component’s behavioral model
 • Training data from the running system

• Derive System reliability
 • Build HMM based reliability model using
 • System’s structural model
 • Component level reliability
Calculating Component reliability

- Build HMM based reliability model
- set of states $S = \{S_1, S_2, \ldots, S_N\}$, a transition probability matrix $A = \{a_{ij}\}$
- set of observations $O = \{O_1, O_2, \ldots, O_M\}$, an observation probability matrix $E = \{e_{ik}\}$

E.g.: Analyze behavioral model of controller
Calculating System Reliability

• Build Discrete Markov Chain based reliability model
• \(S \) is successful output state, \(F \) is failure state. \(D_1 = [1], D_2 = [1] \)
• The inner matrix \(M \) is a \(k \times k \) matrix with only transient states, in which \(s_1 \) is the entry state and \(s_k \) is the exit state (where \(k \) is the number of states)
• \(R_k \) is the probability of successful execution of state \(k \)

\[
T = \begin{bmatrix} S & F \\ D_1 & 0 & 0 \\ 0 & D_2 & 0 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 1 - \sum_{j=1}^{k} M(1, j) \\ \vdots \\ 1 - \sum_{j=1}^{k} M(k-1, j) \\ 1 - R_k^+ \end{bmatrix}
\]

Reliability

\[
R = (-1)^{k+1} R_k^+ \frac{|E|}{|I - M|}
\]

E is the matrix obtained by excluding the last row and first column of \((I-M)\)
Proactive Reconfiguration

\[M(i,j) = \begin{cases} R_i P_{ij}, & \text{state } s_i \text{ reaches state } s_j \text{ and } i \neq k, \\ 0, & \text{otherwise,} \end{cases} \quad \text{for } 1 \leq i, j \leq k \]

\[R_i = \begin{cases} r_{x_i}, & \text{only } c_x \text{ in } s_i, \\ 1 - \left(\prod_{x} (1 - r_x) \right), & \forall c_x \text{ in } s_i, \end{cases} \quad 1 \leq i \leq m \]
Prism-MW: Architectural Middleware for Mobile Systems
XTEAM: Modeling and Analysis Tool
Conclusion and Future Work

• **Problem:** architecture-based reliability analysis for mobile and adaptive software systems

• **Approach:** assess and improve the reliability of mobile and dynamic software systems through dynamic reconfiguration
 – Initial framework development, and preliminary evaluation [completed]
 – Incorporation of contextual information into reliability analysis, and evaluation of mobile software systems [TBD]