2. General Approach

- Obtain a bipartite socio-technical network
- Compute socio-technical concept lattice
 - Apply formal concept analysis (FCA) theory
 - Use free tool ConExp (Concept Explorer)
 - Input: bi-partite network
 - Output: concept lattice (1 node per concept)
 - A concept clusters all artefacts associated to the same people
 - Hierarchy is partial ordering of clusters (arc semantics: subset)
- Visualise hierarchy interactively using ConExp
- Study different and evolving socio-technical relations
 - Repeat 1.-3. for various relations and system releases

3. Example

4. Eclipse 1.0, assignees, $k = 10$

- Used higher k because bug reports accumulate over time
- Geographical and workload distribution like release 1.0

5. Eclipse 3.0, assignees, $k = 100$

- Fewer people and components than in assignees lattice
 - Developers don’t discuss all reports they are assigned to

6. Eclipse 3.0, discussants, $k = 100$

- Novel application of Formal Concept Analysis
 - Clustering and ordering of socio-technical relations
 - General tool-supported approach
- Some advantages over bi-partite graphs
 - More scalable: not one node per person and artefact
 - More explicit: related people & artefacts in same node
 - More intuitive: uniform vertical layout & arc semantics
- Helps spot expertise and potential problems
 - Generalist and specialist people
 - Artefacts with too many or too few people associated
 - Undesired or absent communication/coordination

7. Conclusions

For more details, see our paper in Proc. ICSE’09 (companion volume), pp. 327-330.