
Valerio Panzica La Manna

A Simple Pacemaker 
Implementation

Alfredo Motta

Andrea Tommaso Bonanno

Project Proponent: Alan Wassyng



05-20-2009 A Simple Pacemaker Implementation page 2

What is a Pacemaker?What is a Pacemaker?

 A medical device that regulates 
the beating of the heart using 
electrical impulses to contract the 
heart muscles.

 The primary purpose of the 
pacemaker is to maintain an 
adequate heart rate.

 Modern pacemakers are 
externally programmable and allow 
the cardiologist to select the 
optimum pacing modes for 
individual patients.



05-20-2009 A Simple Pacemaker Implementation page 3

Problem StatementProblem Statement

 Implement behavior described in the Pacemaker 
Requirements Document by Boston Scientific.

 Need to demonstrate:

  Utility : Utility : it performs helpful actions
 Safety : Safety : it does not perform harmful actions.



05-20-2009 A Simple Pacemaker Implementation page 4

Function ModesFunction Modes

 The pacemaker function modes are described by simple 
mnemonics.

I II III IV(optional)

 Category Chambers
Paced

Chambers
Sensed

Response
To Rate

Rate
Modulation

 Letters O–None
A–Atrium   
V–Ventricle
D–Dual      

O–None
A–Atrium   
V–Ventricle
D–Dual  

O–None 
T–Triggered
I–Inhibited
D–Tracked

 R–Rate

 Modes implemented:

 AAT: a very simple mode that “paces” the atrium every time  
           a “sense” is detected. 

 VVI:  a mode that paces the ventricle depending on whether    
           there is or is not a natural ventricle sense.

 DDD: a more complex mode that paces both the atrium           
            and/or ventricle depending on atrial and ventricular         
            senses.



05-20-2009 A Simple Pacemaker Implementation page 5

SolutionSolution

 Formal specification of a subset of the natural 
language requirements.

  TRIO used as the specification language.

 Analysis of the formal specification to check 
consistency.

 PVS and ZOT used.

 Simulation of the pacemaker behavior.
 Implemented in Java on a desktop platform.

 Simulation tested.



05-20-2009 A Simple Pacemaker Implementation page 6

The Importance of Formal MethodsThe Importance of Formal Methods

 The project is an example of:
 A safety critical system
 A real-time system

 Use of temporal first order logic to specify the  
   behavior of the system enables us to              
   produce test cases very easily and simplify     
   the design.
 We were also able to prove the correctness of 

  some properties: safety safety and utility. utility.

FORMAL METHODSFORMAL METHODS



05-20-2009 A Simple Pacemaker Implementation page 7

Project StepsProject Steps

Boston Scientific

Requirements

Initial TRIO

Specification
Satisfiability

Check

Proving System

Properties

Failed Modified

TRIO Specification
       OK

Failed

Final TRIO 

Specification

Design

Code

Legend
     Documents produced /given

     Activities

     Tool used

     Activities and data flow

PVS

ZOT

Test Cases

Testing

Failed



05-20-2009 A Simple Pacemaker Implementation page 8

TRIOTRIO

 TRIO is a Formal Language based on a metric 
extension of first-order temporal logic and exploits 
typical object-oriented features to support the 
managing of large, complex, and maintainable 
specifications.
 The basic operator Dist(F,t) specifies that F holds 

after/before t time instants.

time

Dist (F,t)

t

Current instant i i+t

F



05-20-2009 A Simple Pacemaker Implementation page 9

TRIO OperatorsTRIO Operators

 Futr(F, d) ⇔  d ≥ 0 ∧ Dist(F, d) 

 F will be true after a time interval of d.  
 Lasts[ee|ii|ie|ei](F, d) ⇔ ∀d’ (0<d'<d→Dist(F, d')) 

   F holds over a period of length d.

 Lasted[ee|ii|ie|ei](F, d) ⇔ ∀d'(0<d'<d → Dist(F, -d'))

  F held over a period of length d in the past.

 NowOn(F) ⇔    d (d>0 ∧  Lasts(F,d))

  F holds over a certain period of unspecified length.
∃

Current 
instant i

time

Futr(F,d)

Lasts(F,d)

Lasted(F,e)

NowOn(F)

e d



05-20-2009 A Simple Pacemaker Implementation page 10

System ComponentsSystem Components

 Boston Scientific Requirements: 
The system consists of 3 components

 Pulse Generator (PG)
 Device Control Monitor (DCM)
 Leads

 TRIO+ Modular Specification: 
 Using the concept of classes it is possible to 

group together sets of axioms that refer to the 
same component.





05-20-2009 A Simple Pacemaker Implementation page 12

VVIVVI

 V: Ventricle Paced
 V: Ventricle Sensed
 I: “A sense in a chamber shall inhibit a pending 

pace in that chamber”

 TRIO Specification:
1) AXIOM Alw( sensesignalV AND NOT ignoresignalV IFF  

senseV ) 

2) AXIOM Alw( senseV IMPLIES NowOn(ignoresignalV) )

3) AXIOM Alw(VVI IMPLIES 

      (Lasted(NOT senseV,TIMEOUT) IFF artpulseV) )



05-20-2009 A Simple Pacemaker Implementation page 13

What is a ventricular event? senseVWhat is a ventricular event? senseV

1) AXIOM Alw( sensesignalV AND NOT ignoresignalV IFF  
senseV ) 

senseV is an event occurring when there is a signal in the ventricle and it is 
not ignored.

2) AXIOM Alw( senseV IMPLIES NowOn(ignoresignalV) )
Detected the ventricular event senseV then ignore any signal for a certain 
time interval (refractory period).

time

sensesignalV

ignoresignalV

senseV



05-20-2009 A Simple Pacemaker Implementation page 14

VVIVVI

 I: “A sense in a chamber shall inhibit a pending 
pace in that chamber”
 TRIO Spec:

AXIOM Alw(VVI IMPLIES 

      (Lasted(NOT senseV,TIMEOUT) IFF artpulseV) )

time

VVI

artpulseV

NOT senseV

TIMEOUT



05-20-2009 A Simple Pacemaker Implementation page 15

VVIVVI

 I: “ A sense in a chamber shall inhibit a pending 
pace in that chamber”
 TRIO Spec:

AXIOM Alw(VVI IMPLIES 

      (Lasted(NOT senseV,TIMEOUT) IFF artpulseV) )

time

VVI

NOT senseV

TIMEOUT

senseV

False
False :Pace inhibited



05-20-2009 A Simple Pacemaker Implementation page 16

ZOT: Sat CheckerZOT: Sat Checker

 The ZOT tool is used to verify the satisfiability of the 
overall system TRIO axiomatization.
 If a contradiction is found, a counterexample is 

shown.
 Problem: The check is performed at discrete time.

Not enough for the proof of crucial system Not enough for the proof of crucial system 
propertiesproperties



05-20-2009 A Simple Pacemaker Implementation page 17

ZOT outputZOT output



05-20-2009 A Simple Pacemaker Implementation page 18

PVS: Proving PropertiesPVS: Proving Properties

 It is a Theorem Prover: a tool that automates 
some typical logical operation necessary for a 
formal demonstration.
 Human support required.
 Supports the TRIO Axiomatization. TVS: TRIO 

PVS
 When a property is proved, it holds for all the 

possible models even in continuous time.

The property is validThe property is valid



05-20-2009 A Simple Pacemaker Implementation page 19

PVS: Proved PropertiesPVS: Proved Properties

 Utility: Utility: If the patient Heart Rate (HR=1/RR)  is not 
within the normal range the pacemaker has to pace 
the heart artificially as defined by the required LRL.  
Note that Timeout= 1/LRL.
 CONJECTURE 

Alw( senseV AND RR>Timeout AND VVI AND 
Lastsii(VVI, Timeout) IMPLIES 

      Futr(senseV, Timeout) AND Lasts(NOT senseV, Timeout)) 

  Safety: Safety: If the heart behaves normally the 
pacemaker does not interfere with its natural pulse.
  CONJECTURE 

Alw( senseV AND RR<=Timeout AND VVI AND 
Lastsii(VVI, RR) IMPLIES

 Futr(senseV, RR) AND Lasts(NOT senseV, RR))



05-20-2009 A Simple Pacemaker Implementation page 20

PVS and ZOT: Complementary ToolsPVS and ZOT: Complementary Tools

 ZOT
 Automatically checks the satisfiability of the 

system.
 Produces examples useful in understanding 

the correctness of the axiomatization.
 PVS

 Used to prove the target properties.
 Forces a manual process that clarifies which 

axiom is not correct and why not.

Every time a new axiom is introduced, this 
validation process is repeated.

PVS

ZOT



05-20-2009 A Simple Pacemaker Implementation page 21

Java SimulatorJava Simulator

 Simulation is needed to:
 Have a visual verification of the Pacemaker 

behavior, validating the simulated results with the 
expected one in the analysis steps.
 Develop a visual understanding of the different 

function modes.
 Demonstrate how the formal approach we used is 

well suited to rapidly produce a software prototype.



05-20-2009 A Simple Pacemaker Implementation page 22

Java SimulatorJava Simulator

Java classes represent all the 
Pacemaker modules:

 Device Control Monitor, to set 
Pacemaker parameters.
 Heart Behavior (not presented 

in the BS Requirements).
 Pulse Generator set in the 

appropriate functioning mode.
Electrocardiogram as the 

output of the simulation.

 TRIO axioms are manually 
translated into Java methods.



05-20-2009 A Simple Pacemaker Implementation page 23

Java SimulatorJava Simulator

 Heart parameters:
 HAV(atrial-ventricular 

interval).
 RR (natural heart 

period).
 Wave Amplitudes.
 Wave Durations.

Pacemaker Parameters
 Modes.
 System Timeouts.
 Refractory periods.



05-20-2009 A Simple Pacemaker Implementation page 24

VVI Pacemaker ActionVVI Pacemaker Action

 At the beginning the heart has a natural pace which is 
regular and admissible.
 After a while the device is called to perform ventricular 

artificial pulses to resume the heart rate (HR) over the 
lower rate limit (LRL).



05-20-2009 A Simple Pacemaker Implementation page 25

ConclusionsConclusions

 The use of the TRIO language allowed us to 
produce a formal specification:

 Readable and understandable.
 Compact.
 Supported by powerful tools.

 The approach proposed by the complementary 
use of ZOT and PVS guarantees:

 A full understanding of the requirements.
 A very fast implementation step.

 The simulation:
 Reflects the behavior expected in the analysis 

step thanks to very usable graphs.


	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25

